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Nonlinear dynamics, chaos and complex cardiac
arrhythmias
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Quebec, Canada H3G 1Y6
2 Cardiovascular Division, Beth Israel Hospital, Boston, Massachusetts 02215,
US.A.

Periodic stimulation of a nonlinear cardiac oscillator in vitro gives rise
to complex dynamics that is well described by one-dimensional finite
difference equations. As stimulation parameters are varied, a large
number of different phase locked and chaotic rhythms is observed. Simi-
lar rhythms can be observed in the intact human heart when there is
interaction between two pacemaker sites. Simplified models are analysed,
which show some correspondence to clinical observations.

1. INTRODUCTION

The normal adult human heart at rest usually beats at a rate of between 50
and 100 times per minute. In many circumstances, some of which are life-
threatening, but most of which are not, the normal rhythmicity is altered, resulting
in abnormal rhythms called cardiac arrhythmias. The point of this paper is to
show that a branch of mathematics called nonlinear dynamics may be useful in the
analysis of physiological processes believed to underlie normal heart rate regu-
lation and some cardiac arrhythmias.

The idea that mathematical analysis can play a role in understanding cardiac
arrhythmias is not novel. Indeed, in the 1920s it was demonstrated that as
parameters in mathematical models for the heart were varied, several different
rhythms that resembled clinically observed arrhythmias could be generated
(Mobitz 1924; van de Pol & van der Mark 1928). In nonlinear mathematics,
these changes in the qualitative. features of the rhythms that are observed as par-
ameters vary are called bifurcations. Thus the problem of understanding cardiac
arrhythmias in the human heart is identified with understanding the bifurca-
tions and complex dynamics in mathematical models of the human heart.

One type of dynamic behaviour that is the object of intensive analysis in
mathematics is chaos. Loosely, chaos is defined as aperiodic dynamics in deter-
ministic systems in which there is sensitive dependence to the initial conditions.
This means that although in principle one could determine precisely the future
evolution of the system starting from some initial condition, for chaotic dynamics
any difference in the initial condition, no matter how small, will eventually lead
to marked differences in the future evolution of the system. Although the existence
of chaos was known to Poincaré and others since the end of the last century, in the
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past decade there has been a recognition of the potential significance of chaos in
understanding the genesis of aperiodic dynamics experimentally observed in the
natural sciences (Cvitanovic 1984). Unfortunately, there is in our view not yet an
adequate operational definition for chaos in experimental or naturally occurring
systems, but see Mayer-Kress (1986) for recent advances. The concept of chaos
excludes non-deterministic stochastic processes, such as the Poisson process or
random walk. It is not yet known how to measure the relative contribution of
chaos as opposed to non-deterministic stochastic processes in experimental
data.

Normal individuals show marked fluctuations in heart rate (Kitney &
Rompelman 1980 ; Kobayashi & Musha 1982 ; Pomeranz et al. 1985 ; De Boer et al.
1985). In addition, cardiac arrhythmias are often extremely irregular and unstable
(Pick & Langendorf 1979 ; Schamroth 1980). The adjective ‘ chaotic’ is sometimes
used to characterize cardiac arrhythmias that are believed to arise when there are
several pacemaker sites competing for control of the myocardium (Katz 1946;
Phillips et al. 1969 ; Chung 1977). It has been proposed that chaotic dynamics, in
the mathematical sense, may underlie normal heart-rate variability (Goldberger
et al. 1984 ; Goldberger & West 1987) as well as certain cardiac arrhythmias in
humans (Guevara & Glass 1982; Smith & Cohen 1984; Glass et al. 19865). The
absence of a clear definition for chaos in experimental data has led to controversy.
For example,ventricular fibrillation, an arrhythmia that leads to rapid death, is
frequently called chaotic by clinicians, and it has been proposed that it may be
associated with chaos in deterministic systems (Smith & Cohen 1984). However,
there are marked periodicities during ventricular fibrillation, and the presence of
deterministic chaos in this arrhythmia has been questioned (Goldberger et al.
1985, 1986).

In humans it is frequently difficult to analyse the mechanism underlying an
arrhythmia, and systematic experimental studies are usually not feasible. One
means of analysis is from the electrocardiogram (Ecg), a record of electrical
potential differences on the surface of the body that reflects the electrical activity
associated with the heartbeat. Because the Eca can be obtained with lightweight
monitors, it can be readily recorded over long time intervals. The ambulatory
(Holter) Eca is an important means for evaluating patients. Holter recordings for
aslong as 24 h can be readily obtained, but conventional analysis of such records
is limited. The great wealth of data about the dynamics of the heart that is
contained in such records is generally distilled to characterize the mean heart rate
and range. The presence and frequency of abnormal electrocardiographic com-
plexes, which reflect abnormalities in cardiac impulse formation and propagation,
are also determined. However, the analysis of long-term fluctuations in the
Holter Ece is largely ignored.

One class of arrhythmias that has recently been the subject of much attention
results from the presence of two pacemakers: the normal (sinus) pacemaker and
a pacemaker at an ectopic (non-sinus) location. Such rhythms, whose existence
has been recognized since the start of this century (Fleming 1912; Kaufmann &
Rothberger 1917) are now called parasystolic rhythms. The possibility for inter-
actions between the sinus rhythm and the ectopic rhythm often complicates
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interpretation of such rhythms. However, recent workers have made great
progress in developing both experimental (Jalife & Moe 1976; Jalife & Michaels
1985) and- theoretical (Moe et al. 1977; Swenne. et al. 1981; Ikeda et al. 1983)
models for parasystole. Interpretation of Eca records has led to the recognition of
the importance of parasystolic mechanisms (Jalife et al. 1982; Nau et al. 1982;
Castellanos et al. 1984).

Here we consider the interaction between a fixed periodic stimulus and a cardiac
oscillator. Such a problem is of interest because it is amenable to experimental and
theoretical analysis and because of its relevance to the interpretation of para-
systolic rhythms. In §2 we consider the effects of periodic stimulation of spon-
taneously beating aggregates of cells from embryonic chick heart (Guevara et al.
1981; Glass et al. 1983, 1984, 1986b). Theoretical analysis of this system shows
that periodic dynamics are expected at some stimulation frequencies and
amplitudes, whereas chaotic dynamics are expected for other stimulation
parameters. Experiments are in close agreement with the theory. In §3 we develop
a theoretical model for parasystole. The model extends previous theoretical
models of parasystole (Moe et al. 1977 ; Swenne et al. 1981 ; Ikeda et al. 1983 ; Glass
et al. 1986a). We describe the bifurcations in the theoretical model and show that
chaotic dynamics is expected over some regions of parameter space. In §4 we
discuss Holter Ece records from ambulatory patients who display frequent ectopic
beats. These records may show extremely irregular dynamics which we discuss in
the context of chaotic dynamics and modulated parasystole. Finally, the
significance of this approach to the analysis of cardiac dynamics is discussed.

2. PERIODIC STIMULATION OF A CARDIAC OSCILLATOR

In this section we describe the effects of single and periodic stimulation of an
aggregate of spontaneously beating cells from embryonic chick heart. As this work
has been described in several recent publications, we briefly summarize the main
results and refer the reader elsewhere for more details (Guevara et al. 1981 ; Glass
et al. 1983 ; Glass ¢t al. 1984 ; Glass et al. 1986b; Guevara et al. 1986).

Spontaneously beating aggregates of ventricular heart cells are formed by
dissociating the ventricles of seven-day embryonic chicks and allowing the cells to
reaggregate in tissue culture medium. The resulting aggregates are approximately
100-200 pm in diameter and each beats with its own intrinsic frequency, which lies
in a range of about 60-120 times per minute (DeHaan & Fozzard 1975). A glass
microelectrode is inserted intracellularly and can be used to inject single and
periodic current pulses into the aggregate. In the present context, the electrical
stimulator is analogous to the sinus rhythm, and the aggregate is analogous to an
ectopic focus. Clearly, this represents a gross oversimplification of the anatom-
ically complex heart, as it in no sense takes into account the spatial heterogeneity
of cardiac tissue nor the various feedback mechanisms that act to modulate cardiac
activity in vivo. Nevertheless, as stimulation parameters are varied, this model
system generates a great variety of rhythms that resemble clinically observed
arrhythmias. Some of these rhythms are periodic with N cycles of the periodic
stimulation for each M cycles of the cardiac oscillation (NV:M phase locking).
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Other rhythms are aperiodic (figure 1). The dynamics of this system can only be
understood by using techniques in nonlinear dynamics. Thus, this model system
is useful to fix ideas and to form a foundation for the analysis of more complex
situations.

In response to a single pulse of electrical current, the phase of the oscillation is
usually reset. The magnitude of the resetting is proportional to the amplitude and
the phase of the current pulse. Generally within a few cycles, the rhythm is re-
established at the same frequency as before but with a permanent shift of phase.
The re-establishment of the same amplitude and frequency of the oscillation
following a perturbation, indicates that from a mathematical point of view it
should be useful to think of the cardiac oscillation as a stable limit cycle oscil-
lation. A stable limit cycle oscillation represents a periodic solution of a differential
equation that is attracting in the limit ¢ — oo, for points in the neighbourhood of
the cycle.
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Fiaure 1. Representative transmembrane recordings showing the effects of intracellular
periodic stimulation i vitro of spontaneously beating embryonic heart cells from chick. The
stimulus artifact is obseérved as a narrow upward deflection. The broader complex is the
action potential which corresponds to the contraction of the aggregate. (a) Stable phase-
locked rhythms; (b) rhythms in which the time from the stimulus artifact to the action
potential progressively increases until a beat is dropped; this is analogous to the
Wenckebach phenomenon in electrocardiology (Pick & Langendorf 1979); (c¢) period-
doubling bifurcations and irregular chaotic dynamics; (d) irregular rhythm in which there
are more action potentials than stimuli. From Guevara et al. (1981).
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Theoretical analysis of this system is possible by assuming that following a
stimulus, the return to the cycle is extremely rapid (figure 2). Thus, if a periodic
train of stimuli is delivered to the system with a time interval of 7' between the
stimuli, then the effects of periodic stimulation can be computed from the finite
difference equation

Pi+1 = 9(¢;) +7(mod 1), 1)

~.

B b a=9@)+7

$=1
Freure 2. A schematic model for the perturbation of a limit cycle oscillation by a periodic
stimulus. Provided that the relaxation to the limit cycle following a stimulus is rapid, (1)
can be derived.

where ¢, is the phase of the ith stimulus and 7 = T'/T,, where T is the control
cycle length of the aggregate. The function g, called the phase transition curve,
depends on the strength of the electrical current and can be measured from the
phase resetting resulting from a single stimulus (Perkel et al. 1964 ; Pavlidis 1973 ;
Guevara et al. 1981; Glass et al. 1983, 1984).

Equation (1) is a finite difference equation and the analysis of bifurcations of
such equations is a topic of much current interest. In the present case, the finite
difference equation takes a point on the circumference of a circle, ¢;, and generates
anew point also on the circumference of a circle, ¢,,, (it is called a circle map). The
analysis of circle maps was initiated by Poincaré and major advances in analysing
the bifurcations of circle maps were made by Arnol’d (1965) for the case of
invertible (for each ¢; there is a unique ¢,,, and vice versa) circle maps. In the
practical situations that arise in the experimental system the circle maps are not
always invertible and an extension of the theory of invertible circle maps was
carried out (Guevara & Glass 1982 ; Glass ef al. 1983, 1984 ; Keener & Glass 1984;
Belair & Glass 1985). The analysis of bifurcations of noninvertible circle maps
provides a fertile field for mathematical research (for a recent study and references
to other work see MacKay & Tresser 1986).

From (1) it is possible to compute the effects of periodic stimulation at any
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frequency once g, which is measured experimentally, is determined (figure 3). The
following are the main conclusions derived from the experimental and theoretical
studies. (i) There is a well-defined ordering of phase-locked rhythms corresponding
to theoretical predictions based on the analysis of circle maps; (ii) for some
stimulation parameters for which one theoretically computes that there should be
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Fioure 3. Experimentally observed dynamics for periodically stimulated aggregates of chick
heart cells superimposed on theoretically computed phase locking zones. The computations
use (1) and experimentally measured phase transition curves as described in Glass et al.
(1984). 7 represents the period of the stimuli divided by the period of the oscillations in the
aggregates. A is the amplitude of the stimulus in arbitrary units. The circle map in (1) is
invertible for 0 < 4 < 0.039 and the Arnol’d tongue structure is observed. From Glass ef al.
(1984).

chaotic dynamics, aperiodic dynamics are experimentally observed ; (iii) for situ-
ations in which the dynamics are believed to be chaotic, if ¢,,, is plotted as a
function of ¢, from experimental data then the results are in good agreement with
maps calculated based on single pulse phase resetting studies. Thus, our ability to
compute theoretically the bifurcations for this system, and the strong agreement
between theory and experiment, gives us confidence that the aperiodic dynamics
in some regions of parameter space would still be present even if it were possible
to eliminate all environmental noise (i.e. the dynamics is chaotic for some par-
ameter values).

3. THEORETICAL MODELS FOR PARASYSTOLE

In parasystole there is competition between the normal sinus pacemaker and a
pacemaker which is present at some ectopic (i.e. non-sinus) focus. Although the
ectopic focus can be present in either the atria or ventricles, for the current
discussion we assume that the ectopic focus is present in the ventricles. The
recognition of the possibility of ventricular parasystole dates back at least as far
as Fleming (1912) who based his work on the analysis of pulse pressure data. In
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the ideal situation the two rhythms have their own set frequencies and there is no
phase resetting of the ectopic focus by the sinus rhythm. This ‘pure’ parasystole
has recently been analysed (Glass ef al. 1986 a) and we follow the treatment there.
It is also possible that the sinus rhythm can act to modulate the ectopic rhythm
(Jalife & Moe 19776 ; Moe et al. 1977 ; Swenne et al. 1981 ; Ikeda et al. 1983). For this
case of ‘modulated parasystole we follow the basic ideas sketched out in these
earlier papers, but try to place the analysis in the context of current studies in
nonlinear dynamics and give some new computations. The above formulations
assume that parameters remain constant. In realistic situations, the parameters
may in fact fluctuate. Accordingly, we consider some effects of parameter fluc-
tuation in the above models.

(@) Pure parasystole

We assume the mechanism for parasystole considered by Fleming (1912) and
Kaufman & Rothberger (1917); figure 4. There is a normal sinus rhythm with
period #;, and an ectopic rhythm with a period ¢,, where ¢, > t.. After each sinus
beat there is a refractory period 6. If the ectopic focus generates an impulse during
the refractory period it is blocked, but otherwise it will lead to an ectopic beat
which can be recognized on the electrocardiogram because of its abnormal mor-
phology. After each ectopic beat, the next sinus beat is assumed to be blocked,
resulting in a ‘compensatory pause’.

e © t t i t & f t

F1GURE 4. Schematic model for pure parasystole. Sinus rhythm (s) and ectopic rthythm (e) are
shown. Refractory time is represented as a shaded region. Any ectopic beat that falls outside
the refractory time is conducted (filled arrows) and leads to a blocking of the subsequent
sinus beat (dashed lines). Ectopic beats falling during the refractory time are blocked (open
arrows). In the illustration 6/t, = 0.4, ,/t, = 1.65, and there are either 1, 2 or 4 sinus beats
between ectopic beats. From Glass ef al. (1986a).

Remarkably, the hypothesized mechanism for pure parasystole is equivalent to
a well-studied problem in number theory (Slater 1967) and a very detailed analysis
of the dynamics for fixed ¢, ¢, and 6 can be given (Glass et al. 1986 a). In particular,
we have found the following rules for parasystole.

Rule 1. For any ratio of t,/t, there are at most three different values for the
number of sinus beats between ectopic beats.

Rule 2. One and only one of these values is odd.

Rule 3. For any value of t./t; at which there are three different values for the
number of sinus beats between ectopic beats, the sum of the two smaller values is
one less than the larger value.

Rule 4. Consider the sequence giving the number of sinus beats between ectopic
beats. One and only one of these values can succeed itself.

To illustrate these rules we have numerically computed the sequences giving the
number of sinus beats between ectopic beats for fixed parameter values. For any
fixed set of parameters call p(a), p(b) and p(c) the probability that there are a, b
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or ¢ sinus beats between ectopic beats, where p(a)+ p(b)+p(c) = 1. In figure 5 we
display these probabilities as a function of ¢/t for 6/¢, = 0.4. In figure 6 we show
the number of sinus beats between ectopic events in the (t,/t,, 6/t,) plane. The
regions that are not labelled contain smaller zones which can be readily determined
by using the procedures in Glass et al. (1986a). Some of the features theoretically
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Fieure 5. Histograms showing relative numbers of sinus beats between ectopic beats for pure
parasystole for 8/, = 0.4. From Glass et al. (1986 a).
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Ficure 6. Allowed values for the number of sinus beats between ectopic beats for pure para-
systole. Allowed values in the unlabelled regions can be determined from the construction
described in Glass et al. (19864a). From Glass et al. (1986a).

predicted can be found in published reports of parasystolic rhythms. For example
Kinoshita (1978, case 7) and Schamroth (1980, case 79) report patients who display
either 1, 2 or 4 sinus beats between ectopic beats for parameters that fall in the 1,
2, 4 zones in figure 6 and Lightfoot (1978) describes transitions that arise as the
sinus frequency varies that are also consistent with this figure. However, these
reports as well as others in-the literature, are not consistent with all the four rules
above. Deviations from the rules of pure parasystole would be expected if there
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was modulation of the ectopic rhythm by the sinus beat, and also if there were
fluctuations in the sinus or ectopic rhythms. We now consider the effects of these
modifications.

(b) Modulated parasystole

The theoretical model for modulation of an ectopic ventricular pacemaker by
the sinus rhythm developed by Moe et al. (1977) is quite close to the theoretical
model for the periodically stimulated heart-cell aggregates outlined in §2. The
normal sinus pacemaker is analogous to the microelectrode, and the ectopic focus
is analogous to the spontaneously beating aggregate of heart cells. However, sinus
beats which fall after an ectopic beat are blocked and consequently the sinus beat
following an ectopic beat does not act to phase reset the ectopic rthythm. In
addition, ectopic beats which fall during the refractory time of the ventricles are
not observed (they are concealed).

We assume that the sinus rhythm acts to reset the ectopic focus, and call ¢, the
phase of the ith sinus beat in the ectopic cycle. Assume that the ¢th sinus beat acts
to phase reset the ectopic cycle. Then we expect that the phase of the next sinus
beat will be at the phase g(¢;) +7 where 7 = ¢,/t,. However, if g(¢;)+7 > 1 and if
also 1—g(¢4;) > 60/t, then there will be an ectopic beat before the next sinus beat
and the next sinus beat will not lead to a phase resetting. From the above, it can
be shown that the only sinus beats that do not lead to phase resetting occur in the
interval 0 < ¢ <7—6/t,. Thus, the finite difference equation for modulated
parasystole can be written

¢i+1=¢i+7’ O<¢i<7'—0/te’ }
Pis1 =9(@)+7(mod 1), 7—-60/t, < ¢, <1.

This is equivalent to the formulation by Ikeda et al. (1983). For the special
situation in which there is no phase resetting of the ectopic cycle g(¢) = ¢, and
the model is identical to the model for pure parasystole. If each sinus beat were
effective in phase resetting the ectopic rhythm, the model would be identical to the
model for periodically stimulated heart cells, except not every action potential of
the heart cells would be observed.

It is straightforward to iterate (2) to determine the expected dynamics for a
given function g. Such computations have been carried out with a number of
different functional forms for g. Because of the compensatory pause, the sinus
beat following an ectopic beat does not lead to a phase resetting of the ectopic
rhythm and consequently the finite-difference equations for modulated para-
systole can display discontinuities (see fig. 3 of Ikeda et al. 1983). Further the
observation or non-observation of ectopic beats depends sensitively on the re-
fractory time. As a consequence of these technicalities, the mathematical analy-
sis of modulated parasystole presents greater difficulties than the analysis of
entrainment of the chick heart cell aggregates or pure parasystole. Despite the
difficulties of a general theory some observations can be made. For phase resetting
curves measured experimentally, the effects of a stimulus in the immediate after-
math of an action potential are negligible. This is so, for example, for the phase
resetting for the chick heart cell aggregates. For such circumstances, there is

@)
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expected to be close correspondence between the entrainment zones using either
(1) or (2) because g(¢) = ¢, for small values of ¢. Thus in such circumstances there
will be zones of entrainment of the ectopic oscillator similar to the zones of the
Arnol’d tongues observed in figure 3 (see fig. 5 of Moe et al. 1977). However,
whether or not an ectopic beat will be observed is parameter-sensitive. Thus in
the 2:1 zone it is possible to observe no ectopic beats, or alternations of sinus
and ectopic beats (bigeminy). Similarly, in the 3:1 zone, one can observe either
no ectopic beats, or periodic sequences in which two sinus beats are followed by an
ectopic beat (trigeminy). Furthermore, because of non-monotonicity of g at some
stimulation strengths, the mathematical model for modulated parasystole is also
capable of displaying chaos (see also Ikeda et al. 1983).

In view of the above considerations, it is not practical to give a complete analysis
of the dynamics of modulated parasystole. However, to illustrate some of the
properties of modulated parasystole we show results from a simulation using a
phase resetting curve obtained from the chick heart cell experiments. The use of
such a curve for modelling purposes is justified in view of the similarities between
phase resetting behaviour in the chick heart cell aggregates and in clinical data
(Jalife et al. 1982 ; Nau et al. 1982 ; Castellanos et al. 1984). Such a curve may be
more appropriate than the piecewise linear functions used by other workers (Moe
et al. 1977; Swenne et al. 1981 ; Ikeda et al. 1983). The results of the calculations
are shown in figure 7. We show the allowed values for the number of sinus beats
between ectopic beats. For some parameter values, the allowed values for the
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FioUre 7. Allowed values for the number of sinus beats between ectopic beats for modulated
parasystole from (2). Horizontal bars show the range of values of ¢,/t, for which a given
value for the number of intervening sinus beats can be found. The narrow gaps in the
horizontal bars correspond to stable phase locking zones in which a particular value for the
number of intervening sinus beats is not found. A histogram in the same format as figure 5
is not possible because the curves are jagged, where the degree of jaggedness depends on
the fineness of the step size of the abscissa. The simulation used the same function as the
phase resetting of chick heart cells with 4 = 0.02 and 6/t, = 0.4.
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number of sinus beats between ectopic beats still obey the rules for ‘pure’ para-
systole. However, there are also regions in which there are no ectopic beats
observed. This is due to the phase locking of the ectopic oscillator to the sinus
oscillator in such a fashion that all the ectopic beats fall in the refractory time
following a sinus beat. Curves that give the probabilities for expected numbers of
sinus beats between ectopic beats (as in figure 5) are extremely jagged for the
parameter values in figure 7. This jaggedness depends on the fineness of the
iteration.

The above analysis shows that the theoretical model for modulated parasystole,
which has been developed by cardiologists and basic scientists with physiological
and clinical data, can be cast as a problem about the bifurcations of circle maps.
Because these maps are not necessarily invertible, and can be discontinuous, a
challenging set of problems for mathematicians arises.

(c) Variation of parameters

Until now, we have only considered a few different ways that parameters can
vary. The particular sorts of fluctuations that have been considered are motivated
by the clinical records that will be discussed in §4, and also by known physiological
mechanisms.

Although the sinus rhythm is frequently considered to be regular, all quan-
titative studies of the sinus rhythm have shown a surprising richness of behaviour
with striking variability (Kitney & Rompelman 1980; Kobayashi & Musha 1982;
Pomeranz et al. 1985; de Boer et al. 1985). There is a normal modulation of the
sinus frequency with respiration, the so-called respiratory sinus arrhythmia. As
well, some studies show fluctuations at a frequency of about 0.1 Hz which are
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Ficure 8. Histograms showing the relative number of intervening sinus beats between ectopic
beats for pure parasystole with sinusoidal modulation of the sinus frequency. The modu-
lation has a period of 5 ¢, and an amplitude of 0.15 ¢, with 6/t = 0.4.
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attributed to instabilities in the baroreceptor reflex (Kitney & Rompelman 1980).
To assess the effects of sinus rate modulation we assume a sinusoidal modulation
of the sinus rhythm.

We first consider the effects of sinusoidal modulation of the sinus rhythm during
pure parasystole. Figure 8 shows the histograms showing the relative number of
sinus beats between ectopic events as a function of ¢,/¢,. In the region of the ratio,
t./ts = 2 and t,/t; = 3 new values not present for pure parasystole are found. In
fact, the values for the number of sinus beats between ectopic events falls in the
series 2n — 1 in the neighbourhood of the value ¢, /¢, = 2 (i.e. the values are odd), and
in the series 3n—1 the neighbourhood of ¢./t, = 3, where n is an integer. These
rhythms are called concealed bigeminy and trigeminy respectively (Schamroth &
Marriott 1963 ; Schamroth 1985).

Now consider the effects of sinusoidal modulation of the sinus rhythm during
modulated parasystole in which the ectopic pacemaker is being reset. We consider
an example in which the sinus rate modulation occurs in the 3:1 zone in which
there is trigeminy (i.e. 2 sinus beats followed by an ectopic beat repeating
periodically). Associated with the modulated sinus rate are shifts in the intervals
from the sinus to the ectopic beats (R—X intervals) and the ectopic to the sinus
beats (X—R intervals) which parallel the intervals between consecutive sinus beats
(R-R intervals), figure 9. The shifts that are found parallel shifts observed in a
clinical case of parasystole (see §4).
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Ficure 9. Time series showing the effects of sinusoidal modulation of the sinus rhythm in a
mathematical model of modulated parasystole, equation (2), during trigeminy in which
there are two sinus beats followed by an ectopic beat. The variations of the intervals
between sinus beats (R—R), the interval from the sinus beat to the ectopic beat (R—X) and
from the ectopic beat to the sinus beat (X—R) are shown. The modulation was assumed to
have a period of 50 s and an amplitude of 0.16 s. The same phase resetting curve used for
the chick heart cell simulations in figure 3 were used with 4 = 0.046. Other parameters are
t,=08s, t,/t, = 0.265, 0/t, = 0.4.
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4. ANALYSIS OF HOLTER RECORDS

Previous studies of Eca records provide convincing demonstration that the mech-
anism of modulated parasystole is applicable in at least some circumstances
(Jalife et al. 1982 ; Nau et al. 1982 ; Castellanos et al. 1984). However, arrhythmias
in which there are frequent ventricular ectopic beats are extremely common in
clinical practice and it is currently not clear the extent to which modulated
parasystole will successfully account for the observed arrhythmias. Furthermore,
detailed analysis of arrhythmias over extended periods of time is not generally
attempted. We briefly discuss Holter recordings from two patients who display
frequent ectopy.

First consider the Ece of an elderly patient who displayed long periods of
intermittent ventricular trigeminy (figure 10a). This patient also had Cheyne—
Stokes ventilation characterized by a regular waxing and waning of ventilation
with a period of about 50 s. Holter records from this patient were obtained and
digitized, and interbeat time intervals were measured. The time series reveals
oscillations of all three component heart rate intervals (R-R, R—X, X-R) at the
same frequency as the Cheyne—Stokes cycle (figure 105). These shifts display the
same phase relation as the theoretical model of modulated parasystole with slowly
oscillating sinus frequency (figure 9). Periodic relations between heart rate,
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Ficure 10. (@) Ambulatory Ece record of an elderly man with Cheyne—Stokes breathing showing
episodes of ventricular trigeminy. (b) Time series showing the variation of the R-R, R-X
and X-R intervals.
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breathing and ventricular ectopy have been previously reported (Findley et al.
1984).

A second example is a middle aged patient with frequent ventricular ectopic
beats (figure 11a). A 30 min record was printed on standard Ece paper at 25 cm s~
and the intervals between the R-waves of sinus beats and ectopic beats were
digitized. The number of consecutive sinus beats between ectopic beats fell in the

(a) =

(b) 0.50

ll,

probability

9 11 13 15 17 19 23 2729 31 3345 59
intervening beats
FiGURE 11. (a) Ambulatory Ece record of a middle-aged man with frequent ventricular ectopic
beats. The number of sinus beats between ectopic beats over a 30 min period was always
an odd number. This phenomenon is referred to as concealed bigeminy (Schamroth &

Marriott 1963). (b) A histogram showing the relative numbers of intervening sinus beats
between ectopic beats over a 30 min period.

range between 1 and 59. During this period the patient only displayed an odd
number of sinus beats between ectopic events, i.e. there was concealed bigeminy
(figure 11b). Figure 12 shows the consecutive values for the number of sinus beats
between ectopic beats and also the sinus rate over a 30 min period.

A possible mechanism for this record is that there is a broad range of 2:1
entrainment between the sinus rhythm and the ectopic focus, but that some
ectopic beats are blocked because of random fluctuation of the refractory time.
If there are random fluctuations of the refractory time, then the probability for
n sinus beats between ectopic beats decreases geometrically and is given by
p(1—p)¥» "V, where n is an odd positive integer. However, an interesting feature
of this record is that the histogram giving the number of sinus beats between
ectopic beats is peaked around the value 5 (figure 11b), and this excludes a simple
random flucturation of the refractory time.

An alternate hypothesis can be developed based on experimental studies in
dogs. An electrical stimulus was delivered to the ventricles following every second
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F1aurE 12. (a) Sequence of intervening sinus beats between ectopic beats for the patient in
figure 11 over a 30 minute period. (b) The number of intervening sinus beats (upper) and
the average R-R interval (lower) as a function of time. The R-R values represent a five-
beat moving average.

sinus beat (Lee et al. 1974). It was found that even though the electrical stimulus
was delivered at the same phase of the cycle (i.e. at a fixed delay) the effects were
not the same; some stimuli were blocked whereas others were not. The inter-
pretation of this finding was that the conduction of one ventricular stimulus
increased temporarily the refractory time to subsequent stimuli. Simulations were
carried out assuming the mechanism of modulated parasystole with a refractory
period of the ventricles which is geometrically decreasing following an ectopic
beat. With these assumptions it is possible to approximately reproduce the
statistical features of the observed histograms if additional stochastic noise is
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added to the refractory time and a conduction delay is assumed. The simulations
also showed that at faster sinus rates, an even number for the number of sinus
beats between ectopic beats should be observed. In fact, in other portions of the
record in which the R—R intervals were 700-800 ms, an even number of sinus beats
between ectopic beats were occasionally observed. We hope to present a more
complete analysis of this case in a subsequent publication.

From the above discussion it should be clear that a detailed analysis of dynamic
data can be used to exclude plausible hypotheses about the underlying physio-
logical mechanisms of these arrhythmias. However, it is extremely difficult to
establish unambiguously the mechanism for the arrhythmias. Alternative hypo-
theses for these rhythms may also be consistent with the observed dynamics.

5. DiscussioN

Simple biological and mathematical models of the intact heart display some
features that can be found in clinically observed cardiac arrhythmias. This
observation has implications both for basic science as well as clinical cardiology.

The simple model systems considered here are extreme caricatures of the ana-
tomically and electrophysiologically complex human heart. A more complete
mathematical model of the human heart must necessarily be formulated as non-
linear partial differential equations. We expect that the bifurcations and dynamics
in these more realistic models should bear striking similarities to the bifurcations
observed here.

Although we expect that the parasystolic mechanisms considered here are
important in the generation of ventricular ectopy, other mechanisms such as re-
entry (Lee et al. 1974 ; Pick & Langendorf 1979) and delayed after depolarizations
(Ferrier 1977; Wit et al. 1980) are also believed to be important. Consequently, it
is likely that ventricular ectopic beats in any given individual may be due to one
(or more) of several different mechanisms. Differential diagnosis of plausible
mechanisms is difficult. Conventional analyses of Ecas that are now done, do not
take into account the long-term fluctuations such as those presented in figure 12.
An intriguing possibility is that nonlinear dynamics may eventually be useful
in helping in diagnosing the mechanism and guiding the therapy of complex
arrhythmias.

The human heartbeat shows striking fluctuations in rate during normal sinus
rhythm and also during various arrhythmias. Although in some instances the
fluctuations may be easy to characterize, more typically the dynamics are rich and
highly complex. As an example, the sequences of the numbers of sinus beats
between ectopic beats at first sight appear ‘random’ but contain regularities that
reflect the underlying physiological mechanisms. The relative roles of ‘stochastic
noise’ and ‘deterministic chaos’ in generating normal rhythms and arrhythmias
are not clear. A full understanding will only be achieved from the integration of
nonlinear mathematics with experimental physiology and clinical cardiology.
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