Limit cycle oscillations in compartmental chemical systems
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The dynamics of a chemical system which is localized in two compartments between which mass
transport occurs at a rate proportional to the difference in chemical concentrations between the two
compartments have been studied. Pursuing a problem posed by Smale, we have tried to find a set of
reactions such that when the cells are uncoupled there is a single unique stable steady state in each
compartment, but when the cells are coupled there is a single unique global limit cycle oscillator in
the combined system. We have analyzed open systems far from equilibrium in which there are two
reacting chemicals. A linear stability analysis in the region of the homogeneous steady state has been
performed for the case in which identical reactions are occurring in both compartments. We have
also studied, . using both local and global techniques, a class of systems in which different reactions
are occuring in each compartment. For this latter class of systems we have been able to find
evidence that there can be limit cycle oscillations which require transport in order to be sustained.

I. INTRODUCTION

In recent years there has been a rebirth of interest in
periodic processes in chemical systems. ! This interest
has been partially sparked by new demonstrations of os-
cillations in chemical systems, for example, the period-
ic bromination of malonic acid in an acid medium, 3 3
phenomenon reminiscent of the periodic oxidation of
phosphorous® and the Bray reaction.® Also, the physical
chemical basis of biochemical oscillations are being in-
tensively studied, using both iz vivo and in vitro prepa-
rations.® A fundamental and still poorly understood
problem is to determine the way in which diffusion in-
teracts with reactions to generate and sustain oscilla-
tions in spatially homogeneous and heterogeneous chemi-
cal systems. In the following, we analyze one way in
which diffusion can act to destabilize steady states and
generate limit cycle oscillations in chemical systems
localized in two compartments between which there is
diffusive coupling.

A large theoretical literature analyzing periodic chem-
ical systems has been developed. This work stems from
an early demonstration by Lotka of the possibility of
temporal oscillations in autocatalytic chemical reac-
tions,” and a study by Turing of the properties of chemi-
cal systems in which both reaction and diffusion are si-
multaneously occurring,® Turing demonstrated that
homogenous chemical systems can become unstable with
respect to concentration fluctuations of finite wavelength
and evolve into spatially periodic patterns. This analy-
sis has been extended from the cyclic one-dimensional
system considered by Turing, to a number of other ge-
ometries.? Since diffusion normally brings about ho-
mogeneization there is an element to Turing’s result
which might appear at first paradoxical. However,
Prigogine and co-workers have analyzed these instabili-
ties using nonequilibrium statistical mechanics and de-
veloped thermodynamic stability criteria corresponding
to the criteria found by Turing. =2 In recent work,
conditions needed for wave propagation in reaction dif-
fusion systems have also been analyzed.'*'* Turing as-
sumed homogeneous reaction kinetics. If this condition
is relaxed and the possibility of localized (heteroge--
neous) catalysis is admitted, then a whole new class of
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dynamic phenomena can be predicted. For example,
catalysts can act as pacemakers generating propagating
waves, * and the qualitative dynamics of reacting sys-
tems can depend on the geometrical arrangement of the
localized catalysts, &%

In the theoretical work cited, the stability properties
of reacting systems in the region of a homogeneous
steady state are usually analyzed by linearizing the
equations in the neighborhood of the steady state. Such -
techniques are intrinsically insufficient to give informa-
tion about the global properties of the dynamics for all
regions of concentration space where the complete non-
linear kinetic equations must be considered. The com-
parative lack of mathematical techniques for analyzing
the qualitative properties of these nonlinear systems
necessitates doing computer simulation of specific chem-
ical reactions on a digital or analogue computer, and one
such scheme, “the Brusselator” has been intensively
studied, 1012

The formidable mathematical difficulties encountered
in the study of nonlinear reaction-diffusion systems, has
lead to the formulation by Smale of the following in-
triguing problem.!® Consider two compartments which
are open to mass and energy flow and in which chemical
reactions are occurring. Let us designate the nonlinear
kinetics of N chemical species

dzy /dt=Ry{z,}
dzla /dt:Ria{ZZ}, i=1’ N

(.1

where z, and z, are the vectors of concentration in com-
partments 1 and 2, respectively. If the two compart-
ments are coupled so that mass transport by diffusion
occurs at a rate proportional to the concentration dif-
ferences between the two compartments the resulting
system is given by

dzyy /dt=Ry {2} +Dylzgp - 24)
dz,p /dt =Ry {2} + Dy (241 - 245), i=1,N

where D, is the effective diffusion coefficient for the ith
species.’® It is required to find a set of Ry, so that:

(1.2)

(1) When the two compartments are uncoupled [Eq,
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(1.1)] there is a single steady state attractor in each
compartment to which all trajectories tend as f—~ «,

(2) When the two compartments are coupled [Eq.
(1.2)] there is a limit cycle attractor to which all tra-
jectories tend as {— «.

(3) Concentrations of chemicals are bounded in a fi-
nite positive region of concentration space.

Smale constructed an example in which Ry =R, =1,
N where N =4 which displays these properties.!® The
paradoxical nature of the diffusional coupling here is
again apparent. Instead of tending to stabilize the dy-
namics of the coupled system, the effect is to desta-
bilize the system and lead to oscillations, No attempt
was made to find a realistic chemical system displaying
the proposed kinetics, and no other system for which
R, =R,, displaying these properties is known.

A number of other workers have previously studied
the properties of Eq. (1.2) for particular cases of Ry, .
Turing gave an example of a linear system in which
R, =R,,, i=1,2 which is destabilized by diffusion.?®
Further, the effects of localization of the “Brusselator”
in two compartments coupled by diffusion was studied
and the stability properties of the resulting homogeneous
and inhomogeneous steady states were analyzed, %2
This work has recently been extended, with particular
emphasis on the biological problem of coupling oscilla-
tors regulating mitosis.?! In other work, Glass and
Kauffman gave a system in which Ry; #R;;, ¢=1,2 and
gave numerical evidence that this system satisfies the
three properties cited above.?® The system was based
on a mechanism proposed by Jacob and Monod to ac-
count for metabolic oscillations.?

In the following, we study the properties of Eqgs.
(1.1)~(1.2) when N =2, with particular emphasis on find-
ing oscillatory behavior induced by diffusive coupling in
this system, In Sec. II we analyze the qualitative dy-
namics of Eq. (1.2) for homogeneous reactions, R,
=Ry, i=1,2 in the region of a homogeneous steady
state. In Sec. III we relax the condition of identical ki-
netics in the two compartments and consider the equa-
tions proposed by Glass and Kauffman. The steady
states for this system with and without diffusive coupling
are found, and a linear stability analysis is performed.
In Sec. IV a global analysis of a special case of these
equations is given and limit cycles are shown. The re-
sults are discussed in Sec. V.

. IDENTICAL KINETICS IN BOTH COMPARTMENTS

In this section we investigate the stability properties
of Eq. (1.2) in the region of a homogeneous steady state
for identical kinetics in each compartment, R;;=R,,,
i=1,2. We employ the methods of linear stability theory
which can be used to analyze and classify the dynamic
behavior of nonlinear chemical systems in the region of
steady states provided the kinetic equations have non-
vanishing first order terms in the series expansion
around the steady state. The linearized kinetic equa-
tions can be represented

X=AX , 2.1)
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where X is a column vector giving the displacement of
concentrations from steady state and A is a matrix giv-
ing the linearized equations, The qualitative dynamics
are determined by the eigenvalues of the characteristic
equation®*

det|A-p1| =0 , (2.2)

where | is the identity matrix (see Appendix A).

We assume the linearized equations in the region of
the steady state for Eq. (1.1) are

x=ax +by
. 2,
y=cx+dy , @.3)

where we have called the reacting chemicals x and y.

The characteristic equation

a-p b
d-p

is solved to give

det =0 ' 2.4)

pre=3{a+dx[(a~d)? +4bc]'/?} . (2.5)

For the case in which the two compartments are coupled
by diffusion in the neighborhood of the homogenous
steady state corresponding to the steady state of the un-
coupled system, the linearized equations for Eq. (1.2)
are given by

Xy=ax,+by, + D, (x; ~ %) ,

Yi=cxy +dy, +D,(yz-y1)' ’

. 2.6
xz =axa +bya +Dx(x1 -xa) , ( )
j)z=cxz +dya+D,(y1—y2) .
If we introduce the change of variables
X,=X1+Xp  X.=X;~Xp
_ _ (2.7
Ye=¥1+Y2  Y=Y1~Y2

the characteristic equation for this system can be writ-
ten

a-p b 0 0
¢ d-p 0 0
det| o o so2p-p b =0. (2.8)

0 0 ¢ d-2D,-p

Two of the eigenvalues of this equation are identical to
those in the uncoupled system and are given by p, , in
Eq. (2.5). The other two eigenvalues are

ps,a=3la+d-2(D,+ D))+ {{(a~d) - 2(D, - D,)I? +4bc}/?) .
(2.9)
We are interested in determining the cases in which dif-
fusion can act to destabilize a steady state in a compart-
mentalized system. In the present case, we wish to de-
termine if there are any cases in which the real parts
of p,,, are both negative and the real parts of at least
one of the roots Ds,4 are positive, If Rep, , <0 then
a+d<0. Since D,, D, are positive definite, if p; , are
complex conjugates, Rep; ;< 0. It is therefore impos-
sible for a Hopf bifurcation (see Appendix A) to occur
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for this system. If p; 4 are not complex conjugates,
there will be a single positive root provided

{[(a-a)-2(D, - D,)F +4bc}/2> |a+d - 2(D, +D,)| .
2.10)
Turing gave an example® in which a=5, 5=-6, c=6,
=-1, D,=0.5, D,=4.5, for which p, ,=~1, —1 and
P3,4=2, —14. When the two compartments of this sys-
tem are uncoupled, both reach a single unique steady
state. However, if the two compartments are coupled,
the homogeneous steady state is unstable. In order to
study the dynamics of the system away from the insta-
bility, the complete nonlinear kinetics would have to be
analyzed.

{Il. LINEAR ANALYSIS OF A TWO COMPARTMENT
OSCILLATOR

In the preceding analysis we have shown that for
chemical systems with two chemicals there is no Hopf
bifurcation in the region of the homogeneous steady
state of Eq. (1.2) if the kinetics are identical in both
compartments and if there is a single stable steady state
for each compartment when the compartments are un-
coupled, However, when the kinetics differ in the com-
partments, oscillations driven by diffusive transport
between the two compartments can be demonstrated.

In the remainder of this paper we discuss a class of re-
action-diffusion systems based on (but not limited to) a
mechanism for feedback regulation of cellular metabo-
lism which was initially posed by Jacob and Monod. %%
The equations we adopt are discrete analogs of the equa-
tions proposed previously’® ! to describe localized ca-
talysis in continuous systems.

We assume that there are two chemicals, called x and
y. Synthesis of x occurs only in compartment 1, and
synthesis of y occurs only in compartment 2, The syn-
thesis of each chemical will be assumed to be regulated
by the concentration of the other chemical so that the
production is given by

dxy /dt=2[1=S.(3,)]
dya /dt: Ay Sy(xz) »

where A, ), are production constants and S, S, are non-
linear monotonic functions such that

S,y 0)=0 ,
sx,y (©)=1 ’
ds,,,,,(z)/dz >0 .

For example, in many experiments, dependence of syn-
thetic rates is well fit by the phenomenological Hill
function (belonging to the class S),

San@)=2"/"+6") |

where n and 6 are positive, definite numbers.
both compartments both x and y decay at rates 7, 7,,
respectively, proportional to their concentrations. We
assume the system is open and far from equilibrium,
The resulting kinetics for this compartmentalized sys-
tem are then given by®

dx]_ /dt:hx[l _Sx(yl)]" Y Xy +Dx(x2_xl) H

3.1)

(3.2)

(3.3)

25,26 1

: Limit cycle oscillations

dx, /dt=—)’xxg +D, () - x,)
dy, /dt=—7’yy1 +D, (9, =31 .4
dyy /At =X, 8,063 = ¥, 9, + D, (9, = 9,)

Since we are interested in displaying oscillatory behav-
ior, we choose a special case of the parameters which
facilitate algebraic computations. Assuming

Y=Y =Y, D=D =D, (3.5)
and defining
B=D/y, T=vt (3.6)

Eq. (3.4) can be rewritten in terms of reduced variables

-1 - _. 3
S wo R WL

o o 3.7
xa:()\x/},) s yaz()‘y/y) ’

to give
di, /dr =1 - S, [0\, /7)3_)1] - %, +Bl, ~ %)
i, /AT = =%y + B(%; = %) (3.8)

dyyy /AT = =5, +B(5, - ¥1)

Ay, /AT =S, [\ /) Tp] - T2 + (T~ 72) .
When the two compartments are separated, D=0, we
find the steady state concentrations
(3.9)

to which all trajectories tend as t—«, For D=#0 the
equations can be solved for the steady state by setting
all derivatives equal to zero. After some algebra we
find the steady state is given by the solution of the si-
multaneous nonlinear equations

% =[p/ +28)[{1 - S, [\ /M1
y.=[8/(L +28){S, [(\, /N %]}
from which ¥, and y, can be found from the relations

%, =[(8+1)/B]%,
3—13 = [(B +1)/ﬁ]§1 .

From the conditions of monotonicity on S, and S, we find
there is one and only one steady state for this system.

¥2=51=%,=0, ;=1

(3.10)

(3.11)

The linearized stability criteria in the neighborhood
of this steady state can now be evaluated. Defining

8
25 5 L, (3.12)
1ls.s. 2] s.s.

we find the characteristic equation of the linearized sys-
tem

~1-8-p B - Wy 0
B -1-8-p 0 0
det 0 0 —1-p-p 8 =0.
0 w, B -1-8-p

(3.13)
Expanding the determinant we compute
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(L +B+p) ~2B(L+B+pP +8* + Fuw, 0w, =0 . (3.14)
Equation (3.14) can be solved for the four roots

pre=—(8+1) - [Blw, ,)/2/20] £id

Do == (B+1) +[B(w,0,) /2] 4 i9, (8.15)
where

¢ =BN2){-1+ [1+(ww/B)EPE (3.16)

The real parts of p, , are always less than zero. How-
ever, the real parts of p; , can either be positive or
negative, and the locus along which the values change
is found by solving

2(8 +1)¢ = Blw, w2 | (3.17)
Calling
(3.18)

and substituting in Eq. (3.17) we find after some sim-
plification
2/8)2 (1 +8)=(B+m)'/? (3.19)

From this we can compute the curve that separates the
stable from the unstable region

w, w, = (4/F) +(18/8) +20 +8B .

The two stability regimes are indicated in Fig. 1.2 We
note that although our initial problem Eq. (3.8) is given
in terms of four parameters A,, A,, 7, D and two nonlin-

2 _ 2
N =Rt w, Wy

(3.20)

120 T T

unstable

30— stable ]

FIG. 1. The two stability regions found when Eq. (3.4) is
linearized at the steady state. The curve which separates the
stable and unstable regions is given in Eq. (3.20). The aster-
isk gives the value of w,w, at steady state when the parameters
in Eq. (4.1), are substituted in Eq. (3.4).

|.Q T [
08— —
06— ]

Yy
04— ]
0.2 -
b ] ! i
0 0.2 04 08 08 10
Xy

FIG. 2, A two dimensional representation of Eq. (3.4) found
by numerically integrating the equation using the parameters
of Eq. (4.1). Each trajectory starts from an initially homoge-
neous state.

ear functions, §,, S, the stability criteria of the linear-
ized equation in the neighborhood of the steady state can
be given in a two dimensional space. For any value of
8, the steady state can be destabilized by arbitrarily in-
creasing the slope of either S, or S, in the region of the
steady state.

IV. GLOBAL ANALYSIS OF A TWO COMPARTMENT
OSCILLATOR

In the preceding section we have given local results,
Nothing has yet been said about the dynamics in the non-
linear regime away from the steady state. However,
computer simulation shows global limit cycle oscilla-
tions in this regime, In Fig, 2 we display the kinetics
found by numerically integrating Eq. (3.4) for the pa-
rameters

B=4.5 (A/¥)=(\/7)=5
S,(2)=8,(2)=[2%/(6% +2%) ] 0=0.75.

The linearized steady state for this system falls well
inside the region of instability shown in Fig. 1, and is
indicated by an asterisk. No general technique for glob-
al analysis was found for Eq. (3.4). However, by se-
lecting a special case of these equations limit cycle be-
havior can be shown. For convenience, we assume
N=A=Mand My=a,

In similar fashion to Sec. II, we define the new vari-
ables

(4.1)

Ko=E+ly , X=X -7 ,
V4=V t¥z , F.=V-¥1 .

Equation (3. 8) can now be rewritten in terms of these
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new variables. We designate the plus and negative vari-
ables by the subscript / and write

d)? 5&"5- x
pacad SN NN RA IS ) 3
ar ! sx[a( 2 )] U

dy, 7 ~%.\] ¥
2 = Pt SEe42 _-—L
ar S”[ a( 2 )] o

T,=1, T.=1/(1 +2p) .

4.3)

In a previous study, the dependence of the qualitative
properties of Eq. (4.3) was studied as a function of S. %
By numerically integrating this equation it was found
that, in at least a limited region of parameter space,
the existence, phase relations, and period of the limit
cycle oscillation found for this equation were not sensi-
tive to changes in the control function S, from the Hill
function, to the error function, to the discontinuous
Heaviside function

Sw)=H(w-6)=1 w=§¢

Sw)=Hw-6)=0 w<$ 4.4)

We choose to consider the special case of step function
control fEq. (4.4)] where we require

g<ap/(1+28) . (4.5)

With these assumptions, Eq. (4.3) becomes piecewise
linear, and starting from any initial condition can be
integrated exactly. The solutions can be written as

X (1) =%,(0)e" " "t 4T, (1 - H{a[y:———————"(T) k] '(T)]- 9}) 1-e""'m)

2
4.6)

5, =5(0) e o, fa BRIl

x(1= /™) §=4, -

Here the initial values are first assumed. The concen-
trations of each variable is then given in terms of these
values until the step function of one of the variables
crosses a threshold for production, This determines a
new set of initial values. This process is iterated until
a steady state or cycle is reach. We have been unable
to find any analytic techniques which can be used to study
the qualitative properties of the solutions of Eq. (4.6).
We thereiore make the additional assumption, > 1.

o I
*%.=0 x. =0
y. =0 y- =3
Yy
I
I R X =8
x_= v =8
7.=0 y.
X4
FIG. 3. The four regions of phase space found when 8> 1 and

there is discontinuous Heaviside step function modulation of
production (see text).

L. Glass and R. Perez: Limit cycle oscillations

(=

X4

FiG. 4. Figure 3 redrawn with diagonal bisectors included in
each region. All trajectories defined by Eq. (4.7) enter the
region bounded by the central square and the diagonal bisectors.

This assumption introduces two distinct time scales in
the solution of Eq. (4.3). The variables ¥, ¥. change at
a rate which is rapid in comparison to changes in %,, v,.
Physically this corresponds to a fast diffusion limit in
comparison with the slower synthetic processes and
should be applicable to systems of the size of cellular
systems in biology (10% m),

The solutions can now be considered in the two di-
mensional ¥,, ¥, phase plane. The >>1 limit allows
relaxation of the ., y. variables to their constant limits
before ¥,, 7, have changed. We can consider in the
phase space, a two dimensional surface which is decom-~
posed into four regions, where the trajectory in each
region is the straight line found by simultaneously solv-~
ing Eq. (4.6) for ¥,, ¥,. In each region the trajectory is
given by

51(0) - 3}-4-(00) :§¢(T) _5)_-5("0)
%.(0) =%, (=) %x,(1)-%,(x) ’
where the asymptotic values ¥, (), 7,() differ in each

region. Calling §=6/a and 6=1/(1 +28), the four re-
gions can then be given;

(4.7)

Region1. ¥.=0, 3.=8;12%,220, 127,=29+85;
Xy(0)=0, 7,(=)=1.

RegionII. ¥.=0, y_=0; 26 >%,>0, 1>5,=26;
X.(«) =0, y,(=)=0.

Region I, X.=6, y.=0; 26+6>%,>0, 26 >3, >0;
%, () =1, y,(=}=0,

Region IV. %.=06, J.=06; 1=%,=20+0, 20+6>y,>0.

X o) =1, pl)=1,

The four regions are indicated in Fig, 3, For any point
in each region there passes a single trajectory that is a
straight line directed from this point to ¥,(»), 7,(«).
There are consequently no steady states in any of these
regions. In Fig. 4 we have redrawn Fig, 3 but included
diagonal bisectors in each of the regions. Consider the
trajectories on the border of the planar region bounded
by the central square and the diagonal bisectors. By
the construction described, the trajectories along this
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border can be drawn and are shown in Fig. 4. Since all
trajectories enter the planar region, thereisalimitcycle
attractor inthis regionby applicationof the Poincaré-
Bendixson theorem,?® Starting from any initial point in
the planar region, the trajectory can be traced out as a
sequence of straight lines in the x|, ¥, phase plane. In
Fig. 5 we show this construction for the parameters in
Eq. (4.1). With the exception of the central point, the
same initial values used in Fig, 2 are assumed. Com-
parison of Figs. 2 and 5 gives an indication of the com-
parative insensitivity of the qualitative dynamics of Eq.
(4.3) to the strong assumptions used to compute Fig. 5.
An algebraic demonstration that there is a unique limit
cycle attractor in the piecewise linear system is given
in Appendix B.

V. DISCUSSION

In the preceding we have studied the kinetics of sys-
tems of two reacting chemicals localized in two com-
partments between which diffusion can take place. Our
purpose has been to determine conditions of the reaction
kinetics such that oscillations occur when the two com-
partments are coupled by diffusion, but do not occur
when the compartments are not coupled. We have shown
that for identical reaction kinetics in each compartment,
there is no Hopf bifurcation in the region of the homoge-
neous steady state. However, if the kinetics are differ-
ent in both compartments, it is possible to find chemical
systems which are destabilized by diffusion and evolve
to asymptotic limit cycles, and a large class of kinetic
equations which display this behavior have been pre-
sented. Although the kinetic equations we have analyzed
were based on a hypothetical mechanism proposed by
Jacob and Monod as a basis of cellular oscillations, ® to
our knowledge, no natural or synthetic chemical system
displaying the kinetics of Eq. (3.4) have yet been anal-
yzed. It is our hope that the present analysis will fa-
cilitate the identification of natural systems whose ki-
netics correspond to these equations.

It is possible that the mechanism we have analyzed
will provide at least a partial basis for understanding
diverse biological oscillations, Compartmentalization
of functions and metabolites is a ubiquitous phenomenon
in biological systems. For example, at a cellular level
there are nuclei, mitochondria, ribosomes, golgi bod-
ies, and cells themselves. Further, the monotonic co-
operative response to metabolites which we have as-
sumed, the Hill function, has been observed in a large
number of enzyme and gene systems.®'? A mechanism
similar to the one described here has been proposed as
a possible basis for glycolysis in mitochondria.?® It is
interesting to note that there is a formal similarity be-
tween Eq. (3.4) and kinetic equations proposed to study
ecological systems in which species migrate between
geographically separated islands,3°

In Lotka’s early study of oscillations,” an autocata-
Iytic step A +X~2X, played a key role in generating the
oscillations. In recent studies, the importance of auto-
catalysis (or cross catalysis, in which two chemical
species mutually catalyze each other’s synthesis) as a
basis for generating oscillations has been stressed, 1112

10 T T T

06 f— ]

Y+

0.2[* ]

FIG. 5. The construction of the trajectories in the %,, 7, plane
for the piecewise linear approximation to Eq. (3.4). All param
eters used are the same as Eq. (4.1).

In our compartmentalized system [Eq. (3.4)] there are
no auto- or cross-~catalytic steps. The feedback and
time delays introduced by diffusion are sufficient to
generate oscillations in this system, Further, al-
though it is necessary that the diffusion coefficients of
chemical species be unequal to generate the sorts of
instabilities considered by Turing and Prigogine, for
our system the diffusion coefficients of both chemical
species are equal.

Although we have limited ourselves to the study of
oscillations induced by diffusional coupling in an ideal-
ized compartmental model, there are experimental sys-
tems in which it has been shown that both reaction and
transport processes must be considered to determine
the stability of oscillations, In a study of electrochemi-
cal oscillations examples were given in which stable os~
cillations were found only when the electrochemical cell
was not stirred.*® If the cell was rapidly stirred the os-
cillations damped out. Further in his recent studies of
oscillation in the Zhabotinsky—Belousov reaction, Win-
free has shown that for one set of initial conditions (the
“Z” reagent) the reaction will not oscillate spontaneously
but is excitable and is capable of supporting travelling
waves of concentration, A consequence of this is that if
no pacemaker heterogeneities are initially present there
are at least two stable modes for reactions in two di-
mensional simply connected systems, a homogeneous
nonoscillatory reaction and a rotating spiral reaction.?
Theoretical analysis of the stability of the latter behav-
ior requires consideration of both reaction and diffusion.

In Sec. IV we have made stringent assumptions con-
cerning the parameters in Eq. (3.4) in order to demon-
strate limit cycle oscillations in the resulting systems.
These assumptions were motivated by our desire to find
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a suitable approximation which is tractable for analysis
but which appears to preserve the important qualitative
features of the original system, We have found no tech-
nique which can be used to analyze the qualitative dy-
namics of the original system. Although our computa~
tions for the model system, taken in conjunction with
the numerical analysis give convincing evidence that the
equations support global limit cycle oscillations, no
proof of this conclusion has been found. In the analysis,
the continuous nonlinear Hill functions were approxi-
mated by discontinuous Heaviside functions. The result-
ing oscillations strongly resemble the sort of dynamic
behavior which is found in discrete networks.* Indeed,
it is common for molecular biologists to speak of genes
being “switched on” or “switched off” and evidence of
switchlike behavior has recently been found for the os-
cillating Zhabotinsky~Belousov reaction.** The obser-
vation of switchlike behavior in natural systems, should
allow chemists to synthesize systems displaying the ki-
netics proposed here, or even more complex kinetics in
which reactions between chemicals synthesized at sever-
al localized sites can occur,
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APPENDIX A: THE HOPF BIFURCATION

Let X=/*(x) be an autonomous system of differential
equations depending on a parameter p and let X, be a
stationary or critical point, defined by

Fe(x) =0 . (A1)

The matrix of the linearization of the system in the re-
gion of the critical point is given by

a H
af =i (A2)

xaxg

The eigenvalues of this matrix, which depend on the pa-
rameter p, will characterize the solutions in a neigh-
borhood of the singularity. If all the real parts of the
eigenvalues are negative, the critical point is stable,
and if one or more of them are positive, the critical
point is unstable. If for some values of u, say < y,,
the critical point is stable, and if a pair of complex con-
jugate eigenvalues p (i), p,(i) crosses the imaginary
axis transversely when u=u,,

dRc;i;(u) 0 |

H2iy
we say that a Hopf bifurcation takes place at the value
u=4,. Ifa Hopf bifurcation occurs in a system of au-
tonomous differential equations, then there exists a
family of periodic solutions of the system in a neighbor-
hood of the critical point. This important theorem,
first stated by Hopf has recently been applied in a num-
ber of studies of oscillations and instability in chemical
and physical systems, %3%38 1t ig a local result, and
says nothing about the dynamics away from the Hopf bi-

: Limit cycle oscillations

furcation.

APPENDIX B: CONTRACTION MAPPING ANALYSIS
OF THE TWO CELL OSCILLATOR

An anlytical proof that the phase plane trajectories
defined by Eq. (4.7) give a unique stable limit limit cy-
cle oscillation can be given, A map f of a closed sub-
set E of a Banach space into itself is called a contrac-
tion map if there exists a real number 0=k <1, such
that for any two points p, ¢ € E the inequality

a[F(p), f(@)]<kd[p,q] (B1)

is satisfied where dfa, b] designates the distance be-
tween @ and 5.% If f is a contraction map, then it can
be shown

(1) There exists a-unique fixed point P< E such that
f(P)=P.

(2) If p, is any point of E and p, =f(p,), pa=f(®1)...0s
=f(ppmy), thenlim _ p,=P.

In the present case we consider the mapping f, which
takes a point, initially on the border of regions I and II,
Fig. 3, and generates the position of the point on the
borders of regions I and II after one complete circuit
around the four regions of the phase space. If fis a
contraction map, then starting from any initial point on
the border of regions I and II, a unique trajectory will
be reached which passes through the fixed point of the
mapping on the border between regions I and II. This
trajectory is the limit cycle.

Consider any two points p,q, where d[p,q]=1, on the
border between regions I and II. By applying Eq. (4.7)
in region II, it is readily shown that the distance be-
tween the images of these points on the border between
regions II and III is smaller than 46°1/(26+6)%. Simi-
larly, after iteration of the equation through the remain-
ing regions we find

(20)*(1 - 26 - 5)*
dlf(p), flg)]< m I . (B2)

Since 0 is a positive definite finite number, the inequal-
ity (B1) holds and f is a contraction map. This proves
that a unique limit cycle attractor exists, and is a
stronger result than was found in Sec. IV.

It is possible to compute analytically the fixed point
on one of the boundaries by iterating the equations
through the four regions, and requiring that the coordi-
nates of the initial point are the same as the coordinates
of the point generated after one cycle. Since the com-
putations for arbitrary 6, & are involved algebraically
we consider a special case which clearly illustrates the
geometric properties involved. Assume 6=0.4, 6=0.2.
For this case the vector field is invariant to rotations
about the point (0.5, 0.5) of #7/2 radians where » is an
integer. Assume that the coordinates of the point on the
border between regions I and IT are (0.4, 1 - ¢) and that
the coordinates of the point generated after iteration
through region II are (x,, 0.4). If there exists an € in
the range 0= €= 0.4 such that x, = ¢, then by the sym-
metry of the vector field, (0.4, 1 - ¢) will be the fixed
point of the map after one cycle and the limit cycle at-
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tractor will pass through it. By applying Eq. (4.7) in
region Il we find € — ¢ +0.16 =0 which has the solution
€=0.2. The reader can confirm by construction that the
sequence of points (0.4, 0.8), (0.2, 0.4), (0.6, 0.2),
(0.8, 0.6), (0.4, 0.8)... which are generated by the
procedure described fall on the limit cycle attractor for
this system,
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