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A piecewise linear equation is proposed as a method of analysis of 
mathematical models of neural networks. A symbolic representation 
of the dynamics in this equation is given as a directed graph on an 
N-dimensional hypercube. This provides a formal link with discrete 
neural networks such as the original Hopfield models. Analytic criteria 
are given to establish steady states and limit cycle oscillations indepen- 
dent of network dimension. Model networks that display multiple sta- 
ble limit cycles and chaotic dynamics are discussed. The results show 
that such equations are a useful and efficient method of investigating 
the behavior of neural networks. 

1 Introduction 

An understanding of the dynamics of neural networks is essential to the 
study of many animal behaviors, from such primitive functions as respi- 
ration and locomotion to the most sophisticated such as perception and 
thought. In the past several decades, there have been extensive theo- 
retical analyses complementing purely experimental approaches. In this 
paper we discuss the properties of theoretical models of neural networks 
from a perspective of nonlinear dynamics. We analyze qualitative fea- 
tures of the dynamics such as the existence and stability of steady states, 
cycles, and chaotic dynamics. 

Theoretical models of neural networks (Hopfield 1984) in the infinite 
gain limit can be written as a piecewise linear ordinary differential equa- 
tion that was studied some years ago (Glass 1975, 1977a,b; Glass and 
Pasternack 1978). Since a good deal is known about the properties of 
the piecewise linear equation, this can be immediately translated to the 
study of neural network models. In Section 2 we motivate and illus- 
trate the results by analyzing a didactic example of a 2 neuron network. 
In this section we also show how this simple example generalizes to 
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an N-dimensional piecewise linear ordinary differential equation that is 
equivalent to more familiar theoretical models of neural networks. In 
Section 3 we discuss the properties of the piecewise linear equation and 
obtain graphic criteria for stable steady states and limit cycle oscillations. 
In Section 4 we consider dynamics in several specific networks. We il- 
lustrate many different types of dynamics found in these networks with 
the emphasis on exotic dynamics such as multiple attractors, complex bi- 
furcations, and chaotic dynamics. A preliminary report of some of these 
results has recently appeared (Lewis and Glass 1991). 

2 Theoretical Models of Neural Networks - 

2.1 A Network with Feedback Inhibition. This section contains a 
pedagogic example to illustrate the basic ideas of our approach. Consider 
a network consisting of 2 model neurons whose activities are represented 
by y1 and y2. We assume that yl excites y2, but that y2 inhibits y1. This 
network is modeled by the ordinary differential equation 

dy2 dt = -y2 - 

where H(y) is the Heaviside step function 

The equations are piecewise linear and can be integrated analytically. For 
example, consider a point [yl(0), y*(O)] in the positive quadrant. Integrat- 
ing equation 2.1, we obtain 

yl(t)  = -1 + [yl(0) +1] exp(-t), y2(t) = 1 + [y2(0) - 11 exp(-t) (2.3) 

From equation 2.3 we find that the trajectories in the positive quadrant 
are straight lines given by 

In similar fashion, the trajectories in the other quadrants follow from a 
direct integration of the equations. In any given quadrant the flow is 
focused towards a point in the adjacent quadrant in a counterclockwise 
direction (Fig. 1A). All the focal points lie on one of the vertices of a 
square centered at the origin. 

The limiting behavior as t + 00 is determined as follows. Consider an 
initial point (s, 0) lying on the positive yl axis. After passing through all 
four quadrants the point will be mapped to [ k ( s ) ,  01 where k ( s )  is called 
the Poincark or return map and is given 

S k ( s )  = - 
1 +4s (2.5) 



Nonlinear and Symbolic Dynamics of Neural Networks 623 

Figure 1: (A) Phase plane portrait of the neural network in equation 2.1. All 
trajectories are straight lines directed to the focal points indicated by the heavy 
dots. (B) Coarse grained phase space associating a Boolean state to each of the 
four quadrants. (C) A directed graph showing the symbolic transitions allowed 
in this network. 

By iterating this map we find that the subsequent images of the initial 
point approach the origin (Glass and Pasternack 1978). Thus, the flow 
spirals in toward the origin. This discussion provides a complete analysis 
of this problem from the perspective of nonlinear dynamics. 

Symbolic dynamics provides a complementary method of capturing 
qualitative features of the flow. In symbolic dynamics one divides the 
phase space up into coarse regions and gives each a symbol. Instead of 
the trajectory that gives the values of the variables as a function of time, 
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the dynamics is given by a sequence of symbols reflecting the coarse 
grained regions through which the flow passes. In the current case a 
natural coarse graining is to label each of the four quadrants by a Boolean 
state as shown in Figure 1B. The flow between the four states is now 
reflected as a directed graph (Fig. 1C). Thus, in symbolic dynamics the 
flow is represented as 

10 --t 11 ---f 01 + 00 + 10 + ' .  

The analysis that follows shows several ways in which symbolic dy- 
namics can be used in the analysis of neural networks. We show that 
(1) restrictions on symbolic transitions can be determined without a de- 
tailed numerical or analytical integration of the dynamics but based solely 
on the logical structure of the network; (2) in some cases the properties of 
the differential equations can be derived from the symbolic transitions; 
and (3) symbolic dynamics offers novel ways to classify dynamics. 

2.2 N-Dimensional Equations. We now consider vector fields in N 
dimensions that represent a natural extension of the example in Sec- 
tion 2.1. In N dimensions, Euclidean phase space is subdivided into 2N 
regions, called orthants. All the orthants share a common point at the 
origin. In each orthant the trajectories are straight lines directed from 
each point of the orthant to a focal point. All the trajectories in each or- 
thant are directed toward the same focal point, but the focal points may 
be different for the different orthants. The focal points are chosen such 
that the flows across the boundary between any two adjacent orthants 
are transverse and are of unique orientation. 

Piecewise linear equations, originally proposed by Glass and Paster- 
nack (1978), represent the class of vector fields just described. There are 
N variables, designated y;, i = 1,2 , .  . . , n. For each variable yi, we define 
a corresponding Boolean variable, yi,  where 

(2.6) 

The equations can be written in terms of the Boolean variables to give 

dy, = A l ( i j l , .  . . ,y,-l,ij,+l,.  . . , y ~ )  - y,, dt 
i == 1,2 , .  . . , N (2.7) 

where for each i the value of A;(y,, . . . ,yi-l ,y,+l, . .  . , y ~ )  does not depend 
on ji, and Ar is nowhere 0. 

Now we consider neural networks. One popular formulation (Hop- 
field 1984; Sompolinsky et al. 1988; Amit 1989) of neural networks is 

N 
-yi + C wjjGj(yj) - 

j=1 
r;, i = 1 , 2  , . . . ,  N (2.8) 
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where N is the number of elements constituting the network, Gi is a 
nonlinear gain function describing the response of each element to an 
input, ri is a parameter that we interpret as the response threshold, wij 

gives the weight of the input of element j to element i, and wii = 0. 
It is usual to assume that the nonlinear functions Gj are monotoni- 

cally increasing or decreasing sigmoidal functions. Consider the limit of 
infinite slope (or gain) of the sigmoidal function in which the functions 
G, are piecewise constant with a single discontinuity at 0, so that 

(2.10) 

Consequently, equations 2.7 and 2.8 are equivalent provided the values 
of A, are 

N 

]=I 
Ai(y1 , .  . . ,Yip,, Y ~ + I , .  . . , YN) = xwijG/(yl)  - ~ i ,  i = 1,2,. . . , N (2.11) 

This analysis shows that commonly used neural network models in 
the infinite gain limit are a special case of the piecewise linear equations 
proposed by Glass and Pasternack (1978). 

3 Symbolic Dynamics and the State Transition Diagram 

Some of the qualitative features of the dynamics of equation 2.7 can be 
appreciated from a symbolic representation of the dynamics on an N- 
dimensional hypercube, called an N-cube. We now describe some of the 
properties of N-cubes and then show their connection with the piecewise 
linear differential equations. Readers may find it useful to refer back to 
the example discussed in Section 2.1 to see how the concepts apply in a 
simple case. Several additional examples are given in Section 4. 

3.1 The N-Cube. Boolean N-cubes have often been used to represent 
dynamics in switching networks (Keister et al. 1951). A Boolean variable 
is either 1 or 0. If there are N variables, then a Boolean state is an N-tuple 
of Is and 0s designating a value for each variable. For N variables there 
are 2N different Boolean states. 

For equation 2.7, the N-dimensional Euclidean phase space can be 
partitioned into 2N orthants, by the coordinate hyperplanes defined by 
y; = 0. Each orthant can be labeled by an N-tuple of 1s and Os, cor- 
responding to the values of y i  from equation 2.6. The N-cube can now 
be constructed by selecting a single point from each of the 2N orthants. 
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Each of these points, called vertices, is labeled by the Boolean N-tuple 
designating the orthant from which it was derived. Each vertex can be 
connected to N adjacent vertices associated with Boolean states that dif- 
fer in 1 locus. The resulting geometric object, called the N-cube, has 2N 
vertices and N x 2N-' edges. The (Hamming) distance between any 2 
Boolean states, or vertices on the N-cube, is equal to the number of loci 
that differ in the 2 states. 

3.2 Integration of the Piecewise Linear Equations. From the above 
discussion every point in phase space is mapped to a vertex of the N- 
cube. The solution curves of equation 2.7 originating at a point P = 

(3.1) 

(PI 3 ~ Z I  . . . IPN) are given by 

y; = A; + (p i  - A;) exp(-t), i = 1,2,. . . , N 
where 

A = M p l ,  p2r . . . I p N )  (3.2) 

Thus, all the local solutions to equation 2.7 in the orthant containing P 
are straight lines directed to a common focal point (A1, Az, . . . , AN). Each 
orthant in phase space has an associated focal point, so that the flows 
are piecewise linear and piecewise focused. 

Solving the equation is reduced to connecting the analytical solution 
curves in equation 3.1 in a piecewise fashion for each element. This 
entails finding the sequence of times at which the solution trajectory 
crosses one of the threshold hyperplanes, y; = 0. Given an initial condi- 
tion P = ( p l , p Z , .  . . ,PN) at a time t ,  the times, t ;  (i = 1,. . . ,N), at which 
each of the N variables would cross a threshold hyperplane are given 

(3.3) 

Taking the minimum of t ;  (over all i) gives the next transition time. To 
carry out a numerical integration of the system, we compute the next 
transition time, then update the variables, and iterate the process using 
equation 3.3 with the new definitions of A,. 

3.3 The Truth Table and the State Transition Diagram. Based on the 
above discussion, we have the coarse grained symbolic transition 

- -  
Plrp2,. . . ,pN A1, A 2 , .  . . > A N  

where the first state represents the orthant of th.e initial point P and the 
second state represents the orthant of the focal point toward which the 
flow is directed. The table that gives the symbolic location of the focal 
point for each orthant is defined here as the truth table. 

Now consider the connection between the flows in the piecewise lin- 
ear equations, and the truth table. Call the current Boolean state S1 and 
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the Boolean state toward which the flow is directed, given by the truth 
table, S2. If the distance between S1 and S2 is 0, then all initial conditions 
in orthant S1 are directed towards the focal point in S1 leading to a stable 
steady state in the differential equation. If the distance between S1 and 
S2 is 1 then trajectories from all initial conditions in S1 are directed across 
the common boundary between S1 and S2. Now suppose the distance 
between S1 and S2 is greater than 1; for example, let the two states differ 
in n loci. Then the flow from S1 can be directed to any of the n different 
orthants that lie a distance of 1 from S1 and n - 1 from S2. The boundary 
that is crossed depends on the initial condition in S1. As a consequence 
of the above properties the allowed transitions can be represented as 
a directed graph on an N-cube. This directed graph is called the state 
transition diagram. As the dynamics of equation 2.7 evolve, the trajec- 
tories may pass into different orthants in phase space. Thus a symbolic 
sequence is generated corresponding to the sequence of orthants visited 
along the trajectory. These symbolic sequences are consistent with the 
allowed transitions from the state transition diagram on the N-cube. 

The state transition diagram for equation 2.7 has the following prop- 
erty. Each edge is oriented in oneand only one direction. This can be established 
using simple arguments (Glass 1975, 1977a,b). Since we assume that for 
each i the value of Ai(y1,. . . , y,-1, y,+l,. . . , y ~ )  does not depend on yi ke., 
wii = O), an edge cannot be directed in two directions. From the con- 
struction of the state transition diagram, the number of directed edges in 
the state transition diagram is equal to the distance between each state 
on the left-hand side of the truth table, and the subsequent state on the 
right-hand side. Each column on the right-hand side of the truth table 
contributes ZN-' to the total distance, and there are N columns so that 
the total distance is N x 2N-1. This is equal to the total number of edges 
of the N-cube. Since no edge can be oriented in 2 directions, it follows 
that every edge has one unique orientation. 

- -  

3.4 Steady States and Limit Cycles. A problem of general interest is 
to make assertions concerning the qualitative dynamics of equation 2.7 
based solely on the state transition diagram. Previous work established 
rules to find stable steady states and limit cycles (Glass and Pasternack 
1978). Very briefly, if the N edges at any given vertex of the N-cube 
are all directed toward it, then in the corresponding orthant of phase 
space there will be a stable steady state. These steady states, which are 
called extremal steady states, have been the main focus in the study of 
neural networks (Cowan and Sharp 1988). For an oscillation to result, a 
necessary condition is that there be a cyclic path in the state transition 
diagram. This is not, however, a sufficient condition to guarantee stabil- 
ity or uniqueness of the oscillation. In some circumstances, a much more 
powerful result can be found. A cyclic attractor is defined as a configura- 
tion on the N-cube that is analogous to a stable limit cycle in a differential 
equation. A cyclic attractor of length n is a cyclic path through n vertices 
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of the N-cube such that (1) the edge between successive vertices on the 
cycle is directed from one to the next in sequence; (2) for any vertex on 
the cycle, there are N - 2 adjacent vertices that are not on the cycle, and 
the edge(s) from each of these adjacent vertices idare) directed toward 
the cycle. If there is a cyclic attractor in the state transition diagram then 
in the associated piecewise linear differential equations there is either a 
stable unique limit cycle in phase space such that all points in all orthants 
associated with the cyclic attractor approach the limit cycle in the limit 
t 4 00, or there is an asymptotic oscillatory approach to a point Pf. The 
point Pf is analogous to a stable focus with each of the n coordinates 
involved in the cyclic attractor approaching zero. The proof of this re- 
sult relies on the explicit algebraic computation of the limiting properties 
of the Poincare map, giving the return to a threshold hyperplane. The 
Poincare map is 

(3.4) 

where z is an (N - 1) vector on a threshold hyperplane, A is an (N - 1) x 
(N - 1) positive matrix, 4 is a nonnegative (N- 1) vector, and the brackets 
represent the inner product. For this system, the limiting properties of 
equation 3.4 on iteration follow using the Perron theorem (Glass and 
Pasternack 1978). 

3.5 Chaotic Dynamics. Chaotic dynamics are aperiodic dynamics in 
a deterministic system in which there is a sensitivity to the initial state of 
the system so that two initial conditions, arbitrarily close to one another 
diverge exponentially over time (Ruelle 1989). Since the flow in any given 
orthant is always focused toward a single point, it is not obvious that 
equation 2.7 can display chaotic dynamics. However, as we will show in 
Section 4 [see also Lewis and Glass (1991)1, numerical integration shows 
chaotic dynamics in some systems. We have not yet found criteria for 
chaotic dynamics based on the state transition diagram on the N-cube. 

4 Dynamics in Model Networks 

In this section we illustrate the dynamics that we have observed so far 
in equation 2.7. Since we are interested in neural networks, we assume 
the special case given by equations 2.8 and 2.9, and we assume unless 
otherwise stated that for all j ,  the functions Gj(yj) are the same with 
uj = 1 and b, = 0, and 7; = 7 for all i. Likewise all terms of the connection 
matrix, wll, are either 1 or 0. Each of the N elements in the network has 
the same number of inputs, np.  
Example 1: Steady States. Consider the network in Figure ZA, where 
the symbol y2 -I y1 implies y2 inhibits yl (w12 := 1) and T = 0.5. The 
integration of the dynamics starting from several initial conditions is 
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Figure 2: (A) Schematic diagram of a neural network in which there is mutual 
inhibition. (B) Integration of the PL equations in the phase plane, r = 0.5. The 
heavy dots indicate the focal points. (C) State transition diagram on the 2-cube 
(yly2) and the associated truth table. 

shown in Figure 2B, and the N-cube state transition diagram and truth 
table are shown in Figure 2C. There are two stable steady states. 

Example 2: Stable Limit Cycle. A second example is the cyclic inhibitory 
loop shown in Figure 3A with N = 3. For T = 0.5, this system gives a 
unique stable limit cycle oscillation, associated with the cyclic attractor 
in the state transition diagram (Fig. 3B) (Glass 1975, 1977a,b; Glass and 
Pasternack 1978). Classification of stable limit cycles using the result in 
Section 3.4 has been considered previously. The number of distinct cyclic 
attractors under the symmetry of the N-cube is 1, 1, 3, 18 in dimensions 
2, 3, 4, 5, respectively (Glass 1977a). 

Example 3: Multiple Limit Cycles in a 5-D Network. Now consider the 
dynamics of the 5-element network shown in Figure 4A (n, = 2) with 
r E (1,2). The state transition diagram for this network is shown in 
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Figure 3: (A) Schematic diagram of a neural network composed of 3 elements. 
(B) State transition diagram on the 3-cube (Y i i j2 i j3 )  and the associated truth table. 
There is a cyclic attractor passing through the states 001, 101, 100, 110, 010, 011. 

Figure 4B. Let each vertex on one 4-cube represent all the vertices of the 
5-cube in which the first digit of the 5-tuple is 0 and each vertex on the 
other 4-cube represent all the vertices of the 5-cube in which the first digit 
is 1. Each vertex on one 4-cube is connected to the equivalent vertex on 
the other. 

From numerical integration, there are 8 stable cycles that have dif- 
ferent symbolic sequences for the range of T considered. The sequences 
of states for each of these cycles are shown in Table 1, and can also be 
followed on the state transition diagram. Each state is represented by 
the 5-tuple y l y 2 y 3 y 4 y 5 .  

Figure 4: Facing page. (A) The 5-element network described in Example 3. All 
connections are inhibitory and of uniform magnitude (i.e., wij = 1). (B) The 
state transition diagram for the network in (A). The upper 4-cube represents 
all states in which the first locus is 1; the lower 4-cube represents all states in 
which the first locus is 0. See text for a more detailed description. 
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Table 1: Limit Cycles in Example 3. 

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 

10010 10010 10010 10010 10010 10010 10010 11010 
00010 00010 00010 00010 00010 00010 00010 01010 
00011 01010 00011 00011 01010 00011 00011 01011 
00111 01011 00111 00001 O l O l l  00111 00111 00011 
00101 00011 00110 00101 00011 00110 00110 00111 
00100 00111 01110 00100 00001 00100 01110 00101 
01100 00101 01100 01100 00101 01100 01010 00100 
01000 00100 01000 01000 00100 01000 01011 01100 
01001 01100 01010 01001 01100 01010 01001 01000 
11001 01000 01011 00001 01000 01011 11001 01001 
10001 01001 01001 10001 01001 01001 10001 11001 
10000 11001 11001 10000 11001 00001 10000 11000 

11000 10001 11000 10001 
11010 10000 10000 10000 

The stability of each of these cycles depends on the value of 7 .  For 
example, Figure 5 shows the three different stable cycles for T = 1.9. 
From left to right the panels show the time series corresponding to cycle 
4, 5, and 6 from Table 1. To illustrate the bifurcations, we consider the 
returns to a 4-dimensional face 3 3  separating two neighboring orthants 
in phase space. The state transition diagram can be used to choose &. 
In this example, there is not one state transition that is common to all 8 
cycles. However, the transition 01100 + 01000 is common to all cycles 
except cycle 7. By plotting the point of intersection of the trajectory with 
this hyperplane as the value of T is varied for different initial conditions, 
the regions of parameter space for which each of the 8 cycles are stable 
can be observed. Projections of the bifurcation diagram constructed in 
this way onto the yi-axes are shown in Figure 6. In such diagrams, 
more than one branch for a given value of 7 indicates that either there 
are multiple cycles, or that one or more cycles have multiple crossings of 
F3. In Figure 6, each different branch represents a unique cycle. We have 
numerically analyzed the bifurcations shown here. Briefly, the bifurcation 
occurring near T = 1.29 appears to be a subcritical Hopf bifurcation. 
Increasing T above this value causes cycles 2 and 3 to lose stability (upper 
and lower branches). Cycle 1 maintains its stability through this point 
(middle branch). Near T = 1.66, an exchange of stability from cycle 1 to 
cycle 4 occurs. Cycles 5 and 6 gain stability near T = 1.79 in a bifurcation 
that is similar to that occurring with cycles 2 and 3 for 7 = 1.29. Cycles 7 
and 8 are stable for values of T E (1,1.25). 

Cycles 5 and 6 are identical under a relabeling transformation. To 
make this more clear, consider the sequences of the state transitions in 
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Figure 5: Multistability of cycles for the network described in Example 3 
(Fig. 4A). Three different cycles are stable for T = 1.9 and are shown here 
by choosing three different initial conditions. The time axis is arbitrary. 

Table 1 corresponding to the two cycles. As mentioned earlier, each state 
is represented by the 5-tuple y l y 2 y 3 y 4 y 5 .  The relabeling transformation is 
the following: switch locus 1 with 3 and locus 2 with 4. In other words, 
the 5-tuple y&y3y4y5 becomes y3y4y&Y5. Performing this transformation 
on one of the cycles shows that the sequences of state transitions are the 
same, and thus the cycles are the same. This symmetry is also evident 
in the connectivity of the network (Fig. 4A). A similar relationship exists 
between cycles 2 and 3 and cycles 7 and 8. 

Example 4: Chaotic Dynamics in a 6-D Network. The 6-element net- 
work (n ,  = 3) in Figure 7 exhibits chaotic dynamics for some parameters. 
A projection of the attractor onto the y2-1~4 plane is shown in Figure 8A. 
We consider a face, F.4 separating the orthants defined by 011011 and 
010011. Figure 8B shows the density histogram for the times between 
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Figure 6: Bifurcation diagram for returns to the face F3 and values of T from 
1.001 to 1.999 in steps of 0.001. Each panel (A-D) shows the projections onto 
the different axes. 

2000 successive returns to F4 and Figure 8C shows the density for a sin- 
gle variable y4 on each return to F4. We also consider the evolution of 
the density histograms for successive returns to F4 for a set of 2000 ini- 
tial conditions in which y4 was varied, and the other variables were held 
constant. Figure 8D-F shows that by the 20th return, the histograms have 
reached a density that is the same as that of a single trajectory (Fig. SC). 
The approach to an invariant density and the observation of the same 
invariant density along a single trajectory constitute numerical evidence 
that this system is ergodic and has a unique invariant density, two fea- 
tures common to many chaotic systems (Lasota and Mackey 1985). 

Now we consider the effects of varying 7 on the dynamics of this 
network. The dynamics are tracked by plotting the values of y4 on 30 
successive crossings of F4 as T is varied. Figure 9A shows the resulting 
bifurcation diagram. As T is increased from 7 = 1.2, the dynamics change 
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Figure 7 The 6-element network discussed in Example 4. 

from a simple limit cycle to aperiodic behavior. For larger values of 7, 

a limit cycle is evident again. In the aperiodic region, there are at least 
4 periodic windows, spaced nearly symmetrically about T = 1.5. This 
simple example shows how r can influence the network dynamics. 

Since the step function nonlinearity in equation 2.9 is not realistic 
as a model for most biological processes, it is important to clarify the 
dynamics when continuous nonlinear functions are used in equation 2.8. 
We consider the continuous gain function, 

(4.1) 

where p is a positive constant, and equation 4.1 approaches a step func- 
tion in the limit p -+ 00. A 4th order Rung-Kutta integration scheme 
(At = 0.01) was used to solve the equations. 

As the value of B increases, the continuous system exhibits a complex 
sequence of bifurcations. By using a method similar to that described for 
Example 3, a bifurcation diagram was constructed for values of between 
7.0 and 12.0 (Fig. 9B). The value of y4 is plotted as the solution trajectory 
crosses the y3 = 0 hyperplane in a negative sense. For each value of p, 
a transient of 300 crossings was allowed before the next 30 points were 
plotted. A different example of a chaotic 6-dimensional network also 
shows a complex sequence of bifurcations as a continuous sigmoidal 
function is steepened (Lewis 1991; Lewis and Glass 1991). Further study 
of the bifurcations in these systems is needed. 
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Figure 8: (A) Projection of the dynamics onto the y2-~4 plane for r = 1.5. 
(B) shows the density histogram for the times between successive crossings 
of F4. (C) The density histogram of y4 for 2000 successive crossings of F 4  
on a single trajectory. (D-F) The density histograms of y4 for the lst, 3rd, 
and 20th returns to F 4  using 2000 different initial conditions in which equally 
spaced values of y4 were chosen between -0.2 and 0, with yl = -0.293862, 
y2 = 0.478693, lj3 = 0.0, y5 = 0.028766, and y6 = 0.270764. 

Example 5: Chaotic Dynamics in a Network of 50 Elements. We now 
consider the dynamics of a larger network consisting of 50 elements with 
np = 5 and T = 2.5. Details concerning the network are in Lewis (1991) 
and will be provided on request. In this network, a search of 100 ran- 
domly chosen initial conditions revealed no steady states or limit cycles. 
As in previous examples, the value of a single variable on the return 
of the trajectory to an ( N  - 1)-dimensional face, 5 ,  is considered. Fig- 
ure 10A shows the density histograms of yl on & (left panel) and the 
times between returns (right panel) for 500 successive returns of a sin- 
gle trajectory. Figure 1OB shows the density histograms for y~ and the 
return times for a first return map constructed by taking initial condi- 
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Figure 9: (A) Bifurcation diagram showing the value of y4 on 30 successive 
crossings of F4 after a sufficient transient, for different values of T .  (B) Bi- 
furcation diagram as a function of P for the continuous network described in 
Example 4. After a transient, the values of y4 are plotted when the trajectory 
crosses the y3 = 0 hyperplane in a negative sense, 30 consecutive times. 

tions on F5 where all initial values were constant except y1 which was 
varied from -3.0 to -1.0 (as in Example 4). These density histograms 
are similar to those of a single trajectory (Fig. 10A) after only one return 
to F5. Calculating a first return map for a smaller interval of yl, between 
-2.1 and -1.9, again reveals similar density histograms (Fig. 1OC). This 
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Figure 10: (A) Left panel: The density histogram of yl on Fs for 500 successive 
crossings of a single trajectory. Right panel: The density histogram for the 
corresponding times between successive crossings of 35. (B) Left panel: The 
density histogram of yl on the first return map constructed for 500 different 
initial conditions on Fs in which the value of yl was varied between -3.0 and 
-1.0. Right panel: The density histogram of the corresponding crossing times 
for the data in the left panel. (C) Same as (B) but using initial values of yl 
between -2.1 and -1.9. 

system is chaotic and only a small number of passes through phase space 
is required for nearby trajectories to diverge. 

5 Discussion 

Neural networks in nature display a wide range of complex dynamic be- 
havior, ranging from more or less regular periodic behavior, to complex 
fluctuation that is difficult to characterize. The current paper shows that 
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complex dynamics can also be found in commonly used mathematical 
models for neural networks. The dynamics can be classified by using 
the state transition diagram, which links the wiring diagram of the neu- 
ral network to the coarse-grained activity patterns in the network. The 
simple structure of the mathematical equations enables us to demon- 
strate uniqueness and stability of limit cycle oscillations in some special 
circumstances. We comment briefly on the various dynamics found in 
these networks. We then discuss some open theoretical questions. 

The extremal steady states in these networks are easily identified us- 
ing the state transition diagram. Recent theoretical studies (Amit 1989) 
have linked such steady states with memories in neural networks, but we 
are not aware of physiological studies supporting such an identification. 

Neural network limit cycle oscillations have been proposed as models 
for rhythmogenesis in a large variety of invertebrate and vertebrate sys- 
tems (Friesen and Stent 1978; Matsuoka 1985). These studies considered 
networks of a specific connectivity and some analytical results have been 
obtained for the oscillatory properties of these systems (Matsuoka 1985; 
Cohen 1988). The current approach provides techniques for associating 
patterns of oscillation with the underlying connectivity of the network 
(Glass and Young 1979). 

A novel behavior demonstrated here is multistability of limit cycle 
oscillations, where parameter changes of the network can lead to changes 
in the stability of the various behaviors (Figs. 5 and 6). This behavior 
is interesting in light of recent experimental studies on multifunctional 
invertebrate neural networks (Harris-Warrick and Marder 1991; Meyrand 
et al. 19911, where different types of oscillatory behaviors can be exhibited 
by a single network. 

The simple networks here also support chaotic dynamics. Although 
the possible role of chaotic dynamics in normal and pathological func- 
tioning in neurobiology was raised several years ago (Guevara et al. 1983; 
Harth 1983) clear identification of chaos in neural systems has been pos- 
sible only in rather simple systems in which there is a periodic forcing of 
neural tissue (Matsumoto et al. 1987; Takahashi et al. 1990). There have 
also been claims that neural activity in more complex situations is chaotic 
(Rapp et al. 1985; Skarda and Freeman 1987; Babloyantz and Destexhe 
1987). 

The existence of chaotic dynamics in models of abstract neural net- 
works has also been investigated. Kurten and Clark (1986) used spectral 
and dimensional analysis to identify chaos in a neural network model 
of 26 elements, each described by 2 ordinary differential equations and 
interconnected in a pseudorandom manner with each element receiving 
7 inputs (both excitatory and inhibitory). Sompolinsky et al. (1988) have 
shown that some continuous models of neural networks will show a tran- 
sition to chaotic dynamics as a gain parameter is varied. They proved 
this result in the thermodynamic limit (i.e., in an infinitely large net- 
work). Finally, Kepler et al. (1990) showed that for a specific formulation 
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of a neural network implemented as an electronic circuit, chaotic dynam- 
ics could be observed in three dimensions. Their investigation focused, 
however, on the dynamics of four-dimensional networks. A compelling 
question is to identify and classify network connectivities that are capable 
of generating chaotic dynamics. 

Several mathematical questions are raised by this work. Previously 
we reported that assuming the same connection parameters for each el- 
ement (i.e., w,j = l and np inputs to each element), the lowest dimension 
in which chaotic dynamics was observed is 6 (Lewis and Glass 1991). 
However, when the w,, are randomly chosen real numbers (with wii = 01, 
some networks of 5 elements have shown such behavior (less than 0.05% 
of networks tested). The general system, equation 2.7 has shown chaos in 
dimensions 4 and higher; in these cases the truth tables consisted of func- 
tions that do not correspond to those possible in neural network models. 
Preliminary studies of the prevalence of the various sorts of dynamic be- 
havior have been carried out. For 2 and 3 input systems in dimension up 
to 20, chaotic dynamics appear to be a relatively rare phenomenon found 
in less than 1% of trials in which there were 20 initial conditions for each 
of 1000 different networks. The number of different attractor basins in 
these networks is also very small (usually less than 10 attractors, even in 
dimension 20). However, systematic numerical studies require searching 
in huge parameter spaces, since one is interested in studying the effects 
of the numbers of inputs, the thresholds, and the connectivity. The sim- 
plicity of numerically integrating the piecewise linear equations facilitate 
such studies. 

A difficult mathematical question is to analyze the bifurcations as the 
piecewise linear functions are replaced by continuous functions. Numer- 
ical results indicate that in systems with cyclic attractors, the limit cycles 
maintain stability over a large range of steepness of the sigmoidal func- 
tion, but there is no proof of this (Glass 197%). The bifurcations in more 
complex networks that display chaos require further analysis. An espe- 
cially interesting question is how chaos arises in these systems whose 
dynamics are dissipative within every coarse-grained orthant of phase 
space. 

This work provides a conceptually simple way to correlate the connec- 
tivity and dynamics of simple models of neural networks. This provides 
a foundation for the investigation of more realistic models of neural net- 
works and complex rhythms observed in the laboratory. 
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