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Abstract

Modern institutions face the recurring dilemma of designing accurate evaluation procedures in settings as diverse as
academic selection committees, social policies, elections, and figure skating competitions. In particular, it is essential to
determine both the number of evaluators and the method for combining their judgments. Previous work has focused on
the latter issue, uncovering paradoxes that underscore the inherent difficulties. Yet the number of judges is an important
consideration that is intimately connected with the methodology and the success of the evaluation. We address the
question of the number of judges through a cost analysis that incorporates the accuracy of the evaluation method, the cost
per judge, and the cost of an error in decision. We associate the optimal number of judges with the lowest cost and
determine the optimal number of judges in several different scenarios. Through analytical and numerical studies, we show
how the optimal number depends on the evaluation rule, the accuracy of the judges, the (cost per judge)/(cost per error)
ratio. Paradoxically, we find that for a panel of judges of equal accuracy, the optimal panel size may be greater for judges
with higher accuracy than for judges with lower accuracy. The development of any evaluation procedure requires
knowledge about the accuracy of evaluation methods, the costs of judges, and the costs of errors. By determining the
optimal number of judges, we highlight important connections between these quantities and uncover a paradox that we
show to be a general feature of evaluation procedures. Ultimately, our work provides policy-makers with a simple and novel
method to optimize evaluation procedures.
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Introduction

Ever since the late 18th century, when Nicolas de Condorcet

identified problems and paradoxes that arise when combining the

opinions of independent judges [1], it has been clear that it is

difficult, if not impossible, to establish evaluation procedures that

result in fair and accurate decisions [2–4]. Yet, evaluation is at the

heart of many societal procedures including: governmental

decisions [5–8], peer-reviewed processes [9–19], and athletic

competitions [20–22]. The recent revisions of evaluation proce-

dures in areas as diverse as figure skating [21,22] and NIH grant

review [9–13] underscore both the inherent difficulties and the

perceived importance of developing optimal methods.

In this article we do not examine the history of these issues nor

discuss the extensive social science research concerning psycho-

logical and group dynamic aspects of decision processes [23–25].

Nor do we consider the well-studied problem of how to combine

the evaluations of a panel of judges [2,4–6,8,26–31]. Rather, we

consider an important issue in the design of any evaluation

procedure: how many judges should be used?

The Condorcet Jury Theorem states that if judges are equally

accurate, perform better than random selection, and make

decisions according to majority rule then increasing the number

of judges will always result in more accurate evaluations [1].

Accuracy, however, cannot be the only criterion for designing an

evaluation procedure. For example, if a scientific journal needs to

determine whether a paper should be published then consulting a

large number of reviewers is not practical, even if it could lead to

more accurate decisions. So despite the importance of accuracy,

there is also an issue of cost whether in time or money or both.

We distinguish between two types of costs: the cost of a wrong

decision and the cost of a judge. If all options were equally

valuable then there would be no reason to consult any judges. The

use of an evaluation procedure, therefore, must assume that there

is at least one option better or ‘‘correct’’ among the choices. In this

context, picking an inferior option incurs some type of cost

whether it is lost revenue or greater risk to financial loss. Although

it may be difficult to determine the ‘‘correct’’ choice(s) or the

precise costs, societal institutions make major efforts to set

evaluation procedures. Difficulty in determining whether the

outcome was the best possible should not preclude examination of

the relevant factors at the heart of all evaluation procedures. While

it is beneficial to avoid a costly mistake, judges also have associated

costs in the form of expenses or salaries. The optimal number of

judges must balance these costs, weighing the benefit of additional

judges against their cost.

Previous studies have mainly addressed the question of how best

to select among competing options using a set number of judges

[2,4–6,8,26–31]. Though there has also been some consideration

of the accuracy and cost of an evaluation procedure as a function

of the number of judges [9,15,32–34], these earlier papers did not

explicitly consider the cost of making a wrong decision in their

calculations of the optimal number of judges. The cost of an error

is important because it converts the accuracy of an evaluation into

a currency comparable to the cost of judges. Here, we examine

how the optimal number of judges depends on the accuracy of the
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judges, the cost of the judges, the cost of errors, and the method for

combining the judges’ scores.

Throughout the paper, we assume that judges are honest but

prone to error. In this case, we can define a judge’s accuracy as the

expected probability that an individual judge will choose the correct

option (see File S1 for a glossary of additional key terms). This

definition of accuracy may be case-specific and subject to other

qualifications but there has been work in estimating judge accuracy

in complex scenarios such as grant review [14–16,19]. Some

evaluation procedures such as Cooke’s method attempt to estimate

judge accuracy with seed questions as part of the procedure [26–28].

If we have some measure of judge accuracy and know the rules

for combining the evaluations of the judges, we can compute a

curve that gives the probability of making a correct decision as a

function of the number of judges: the judge accuracy curve. The judge

accuracy curve can be computed using many different models of

evaluations including ones in which judges are unequal, non-

human, or reach decisions under influence from other judges.

With the judge accuracy curve, the cost per judge, and the cost per

error, we can compute the cost curve, which represents the expected

cost as a function of the number of judges. The number of judges

at the minimum of the cost curve is defined as the optimal number

of judges. For a given method of evaluation, at the optimal

number of judges there is an implied relationship between the

accuracy of the evaluation, the number of judges, and the ratio

between the cost of an error and the cost per judge. Knowing any

two of these quantities, allows us to estimate the third.

Based on our formulation we present a paradox. From the work

of Condorcet, it might appear that if the accuracy of judges were

improved, then the optimal number of judges should decrease.

However, we show examples in which as the accuracy of the

judges increases, the optimal number of judges may also increase.

In the remainder of this paper we illustrate each of these points

and present some practical implications of these results.

Results

To balance cost and accuracy, we represent the expected total

cost of an evaluation (Ctot) as

Ctot~njudge CjudgezCerror Perror(njudge), ð1Þ

where, Cjudge is the cost per judge, Cerror is the cost of making an

incorrect decision, njudge is the number of judges, and Perror is the

probability of making an error. Perror is a function of the number

of judges and is equal to (1{panel accuracy), where panel

accuracy is the probability a set of judges picks the better option.

In practice Perror depends on many other factors but we hold these

constant here. By taking a difference approximation of the

derivative in Eq. (1), the optimal number of judges will occur when

DPerror

Dnjudge

~{
Cjudge

Cerror
ð2Þ

where DPerror=Dnjudge is the rate of change in Perror as a function of

the change in the number of judges. In order to determine the

optimal number of judges for particular situations, we first consider

how Perror depends of the number of judges for the two most

common evaluation methods: majority rule and scoring systems.

Majority Rule
In majority rule the option favored by the most judges is the

winner. When the majority rule is used in a series of decisions like

rank-ordering options, the well-known Voter’s paradox can occur,

so that there is no clear winner (Figure 1A) [3–6,8,20,23–25].

Since majority rule gives an equal weighting to all judges, it does

not make allowances for differences in judge confidence or

accuracy [35,36] – giving more weight to more accurate judges

would improve the accuracy of the evaluation [27]. The

Condorcet Jury Theorem shows that for equally accurate judges

the judge accuracy curve monotonically increases as the number of

judges increase. However, in practice the most accurate judges are

consulted first.

To assess the effects of adding inferior judges to the judge

accuracy curve, we suppose there is a panel of three judges

deciding between two options A and B, where A is better than B. If

there are 3 judges, each with 80% accuracy who make decisions

independently by a majority rule, then their collective accuracy or

the ‘‘panel’s accuracy’’ is 89.6%. If we now add additional

evaluators with 70% accuracy then the probability of making a

correct decision increases even though the judges are inferior. If

instead we add evaluators with 60% accuracy, the probability of a

correct judgment decreases and does not increase until we add 22

judges, see Figure 1B (see Methods: Judge Accuracy Curve with

Inferior Judges). These observations are consistent with earlier

studies that showed that additional judges can increase or decrease

a panel’s accuracy depending on the accuracy of the individual

judges and the number already in the panel [32–34]. Thus, judge

accuracy curves need not be monotonic. This permits the

possibility for multiple values of the optimal number of judges

where the same expected total cost could be achieved with

different numbers of judges and different accuracies of the

evaluation.

Scoring Systems
In contrast to the majority rule, scoring systems, such as those used

in figure skating [22] are procedures in which judges assign

numerical ratings, or scores, to competing options. The winner is

often chosen by the sum rule whereby the option with the highest

sum of scores wins. The sum rule can reach different conclusions

than the majority rule (Figure 2A). Based on the distribution of

scores in the US Junior Figure Skating Championship 2006

(Figure 2B, data available at http://www.usfigureskating.org), we

simulate an evaluation and find that the sum rule is more accurate

than the majority rule (Figure 2C and Methods: Sum Rule vs

Majority Rule Methods). This finding supports the International

Skating Union’s switch from a majority rule-based system in 2002

to a sum rule-based system in 2006 [21,22]. The sum rule enables

judges’ scores to reflect their certainty – so that a judge who scores

two options with a 6.0 and a 9.0, respectively expresses more

confidence than a judge who scores the same two options with a

6.0 and a 6.1, respectively. Adding the judges’ scores gives the

judges who assign larger score differences between options more

power in determining the final evaluation. This can make scoring

systems susceptible to manipulation by dishonest judges [2].

Although the example of Figure 2C shows a case in which a

scoring system is more accurate than majority rule, the situation can

reverse in instances where the judges’ scores are widely distributed.

An example of this is in gene microarray analysis [37,38]. Genetic

microarrays measure the expression of thousands of genes

simultaneously using DNA probes. Each gene’s mRNA transcript

has a set of probes designed to bind it specifically in different

regions. Samples of mRNA are labelled so that the amount bound

to each probe on the microarray can be measured. Here, the probes

are judges and the fluorescent intensities are scores. Applying the

sum rule in this case is analogous to comparing means, except the

sum rule does not consider the standard deviation nor calculate a
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test statistic like a p-value. In microarray analysis, the fluorescence

magnitudes from the probes are broadly distributed (Figure 2D,

data available at http://www.affymetrix.com/support/technical/

sample_data/datasets.affx) unlike the tight distributions found in

figure skating. Now the sum rule is not as accurate as a majority rule

(Figure 2E) because each judge/probe is scoring according to a

different rubric, i.e. the same score difference does not represent the

same degree of confidence.

The distribution of the judges’ scores affects the accuracy of the

evaluation. In evaluations using scoring systems, guidelines are

often used to ensure that the range of each evaluators’ scores will

be comparable. When that is not possible, as for microarrays,

where the distribution of fluorescent intensities of individual

probes is approximately lognormally distributed, it is common to

first take the logarithm of the probe intensity before further

statistical analysis [38,39]. Hence, even with the same decision

method (the sum rule) and the same judge accuracies the

implementation of evaluation procedures such as the permitted

scores can alter the judge accuracy curve.

Paradox
Based on the preceding analysis of the judge accuracy curve, we

return to the cost analysis. Equation 2 shows that if we know the

ratio between the cost per judge and the cost per error we can

calculate the optimal number of judges for particular evaluations.

For example, if we assume the cost per error is 55 times the cost

per judge and use the Perror from Figure 2E we obtain Figure 3A.

The expected total cost has a minimum at either 5 or 7 judges

depending on the evaluation method and the accuracy of the

judges.

Figure 3A presents a paradox: the optimal number of judges

may increase despite the use of more accurate judges or more

accurate evaluation methods. Even though the majority rule with

judges 70% accurate is more accurate than both a sum rule with

70% accurate judges and a majority rule with 65% accurate

judges, it has a minimum cost at 7 judges while the latter

procedures have a minimum cost at 5 judges. This counterintuitive

effect occurs because the judge accuracy curve for the majority

rule with 70% accurate judges (see Figure 2E) has a larger slope

Figure 1. Condorcet results. (A) Voter’s paradox. A hypothetical ranking of 5 competitors evaluated by 5 judges, where 1 is most preferred and 5 is
least. By comparing options two at a time with majority rule, we produce a directed graph. The nodes are the competitors and the edges stemming
from a node indicate which competitors that node beat. For example, the edge from B to A represents more judges favored B to A. The cycle through
all of the nodes is indicative of the Voter’s paradox (3): no clear winner. (B) The Condorcet Jury Theorem. Given a panel of 3 judges of 80% accuracy,
we show the effects of adding judges with accuracy of 60% (red), 70% (blue), 80% (green) on the group’s accuracy (panel accuracy) under majority
rule. According to the Condorcet Jury Theorem if all judges have the same accuracy (green), then adding more judges increases the panel’s accuracy.
However, if the judges have a lower accuracy, the judge accuracy curve is not necessarily monotonic. The 60% accurate judges initially detract from
the panel’s accuracy and do not improve it until 22 judges are added (25 total in the panel).
doi:10.1371/journal.pone.0012642.g001
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than the other two procedures in the range of 5 to 9 judges. Thus,

adding two additional judges reduces the probability of an error,

and hence the expected cost, enough to offset the cost of the extra

judges.

Since the optimal number of judges depends on the cost ratio

(Cerror=Cjudge), the paradox also depends on the relationship

between the costs. Figure 3B shows that as the cost ratio increases

the optimal number of judges increases divergently for majority

rule procedures with 65% and 70% accurate judges. There are

three ranges of the cost ratio where the majority rule with more

accurate judges has a higher optimal number of judges. Once the

cost ratio increases above 60, the more accurate procedure never

has a higher optimal judge number.

The contours in Figure 3C denote the optimal number of judges

of a majority rule evaluation as a function of judge accuracy and

the cost ratio (Cerror=Cjudge). For small cost ratios, (Cerror=
Cjudge)v&23, there is never an optimal panel size greater than

one, because the cost of the judges outweighs the benefit of

avoiding an incorrect decision. As the cost ratio increases so does

the value of additional judges. For any optimal panel size of more

than one judge, at the same cost ratio there are smaller optimal

panels of both less accurate and more accurate judges.

Although Figure 3C was computed for a very specific evaluation

procedure, we expect similar contour plots to occur over a broad

range of evaluation procedures (see also File S1 and Figure S1). If

the accuracy of each judge is no better than random selection or if

the accuracy is 100% then the most cost effective strategy is to use

only one judge. These two conditions define the boundaries on the

contour plot and guarantee the generality of the paradox, even for

a host of different evaluation settings.

Figure 2. Majority rule versus sum rule. (A) The score-sheets for two competitors in the 2006 US Junior Figure Skating Championship show that
while only 3 of the 9 judges (shaded) preferred Competitor KW, she has the higher total score. (B) The histograms show the frequency of scores for
skaters ranked 1–5 (red) and those ranked 6–10 (blue). (C) Judge accuracy curves of the sum rule (red) and the majority rule (blue) on a hypothetical
problem based on B with judges that are 70% accurate (see Methods). The sum rule is more accurate than the majority rule (confirmed by a
nonparametric sign test, p-valuev.01 for all cases of more than one judge). (D) The distributions of probe intensities from the Affymetrix Latin
Squares data-set measuring 64 picomolar (blue) and 128 picomolar (red) transcripts are very broad. (E) Judge accuracy curves on a model based on D
(see Methods) where the judges’ scores come from a wide scoring distribution. The majority rule of judges 70% accurate (blue) outperforms the sum
rule of 70% accurate judges (red). In fact a majority rule of judges at 65% accuracy (green) does better than the sum rule of 70% accurate judges as
the number of judges increases beyond 21. A nonparametric sign test confirms the differences in performance (p-valuev.01) for all cases of more
than one judge.
doi:10.1371/journal.pone.0012642.g002
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Cost Analysis
From the findings presented in Figure 3, there is an implied

relationship between the cost ratio, the number of judges, and the

accuracy of the evaluation. If we know any two of them, we can

calculate a range for the third. To illustrate this, we consider

different paradigmatic situations from athletic competitions and

from academic grant review.

Athletic competitions. First, we apply our analysis to figure

skating and infer the cost ratio from the number of judges and the

expected accuracy of the evaluation. We estimate judge accuracy

by assuming each judge is equally accurate and then counting the

times a judge failed to give the stage’s top competitor the highest

score. While individual judges may have different accuracies,

figure skating competitions occur in many different places with

different collections of judges so such averaging approaches might

be more appropriate to establish standards for evaluation

procedures. From the results of the 2006 US Junior Figure

Skating Championship, we calculate an individual judge’s

accuracy as 76%. This serves as an upper limit to the accuracy

since it assumes the number one competitor was in fact the best. If

the competition choice of nine judges is optimal, the implied ratio

of cost of an error to cost of a judge is 100–152.

Now we use a similar approach to estimate the cost per judge in

boxing bouts and compare with actual salaries. World Boxing

Association bouts are scored by three judges. If the fight ends by

knockout or is stopped by the referee then the scores are not used.

If, however, the fight continues to the last bell then the judges’

scores determine the winner. The scores are not added but instead

count as a vote, so if two judges score one competitor higher that

competitor wins regardless of the values of the scores. From this,

we estimate a judge’s accuracy as was done for the figure skating

example. We counted how often a judge disagreed with the

majority decision in 2006 (found at http://wbaonline.com) and

calculated an accuracy of 95%. We set the cost of an error equal to

the prize since the wrong person gets it. In boxing the actual cost

of an error might reflect the displeasure of the fans and lost

revenue as well as any legal ramifications. The prize varies

depending on many factors, but for this analysis we set the prize to

$100,000. Assuming three judges is optimal, we use the cost

equation to calculate the range for a judge’s salary as $ 305–$

Figure 3. The paradox of the optimal number of judges. (A) The expected cost function (Equation 1) applied to the judge accuracy curve
shown in Figure 2E. The cost per error is 55 times the cost per judge. The black line is the sum rule with 70% accurate judges, while the gray lines are
majority rule (solid for 70% accurate judges and dashed for 65% accurate judges). The optimal number of judges, shown with the bigger dot, is
different for the majority rule with 70% accurate judges. (B) The optimal number of judges as a function of the cost ratio. The majority rule with 70%
accurate judges (red) and 65% accurate judges (blue) both increase the optimal number of judges as the cost ratio increases but diverge at points. (C)
Contour plot of the optimal number of judges for majority rule as a function of the cost ratio and the judge accuracy. The reds indicate higher
number of judges while the blues indicate lower numbers.
doi:10.1371/journal.pone.0012642.g003
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2138. This range is in line with the actual salary boxing judges get

paid in a bout with a $100,000 purse (found at http://wbanews.

com/artman/publish/regulations). The International Boxing Or-

ganization changes the fees paid to judges based on the purse

(from http://www.iboboxing.com /public_disclosures.html). For

prizes worth $100,000 judges get paid $1,200 which is in

agreement with our calculated range. For prizes worth a million

dollars, judges get paid $2,000, but using our analysis we calculate

that the optimal number of judges would be 5 and not 3,

suggesting that the procedure is not optimal.

Grant Review. Assuming a hypothetical situation that

corresponds roughly to current norms of grant reviews, we

estimate a reviewer’s accuracy based on the costs and number of

reviewers. To estimate the cost per judge, we calculate the cost per

judge per review. We assume that a committee reviews 50 grants

in two days. Assuming $1,000 in travel expenses per judge, we

obtain a cost of 20 dollars per grant/per judge.

It is difficult to estimate the cost of an error in awarding research

grants [16,18,19]. While publications may be a quantifiable

measure there are issues concerning the quality of the publication,

the role of coauthors, and the long range impact of the work [16,19].

Although the cost of an error in grant reviews may be troublesome

to exactly quantify, policy-makers are interested in the value of

research [40]. In view of the uncertainty, we consider a range of

costs per error from 1% to 100% of a $400,000 grant.

We consider the choice of ten judges to be optimal and from the

cost equation find that: Perror(10)vPerror(11)z(Cjudge=Cerror)
and Perror(10)vPerror(9){(Cjudge=Cerror). To find a reviewer’s

accuracy, we need a model of the decision-making process to see

how Perror changes with judge accuracy.

Grant reviews typically employ a sum rule rather than a majority

rule and use strict guidelines to set the range of judges’ scores [9].

Because of this we used a model like the one from Figure 2C.

Typically, grant reviews are a multi-stage process with alternating

rounds of scoring and discussion [9]. Here, we apply our analysis to

the first round of scoring before the reviewers discuss (‘‘prescores’’)

and treat the reviewers as independent [9]. In File S1, we also

consider models of dependency and multiple-stage processes.

For our Perror(njudge) function we construct a scenario with two

competing grants: A and B, where A is better than B. Each judge

scores the grants according to a unique normal distribution NAi

and NBi
(where i represents judge i’s score). The means of NBi

are

samples from a normal distribution (mean of 2 with a standard

deviation of 0.5) so each judge’s average score is different. As in

Figure 2C, the standard deviation of a judge’s score for both A and

B is a constant multiple of his/her mean score– 0.2 in this case.

This ensures that the judges have the same coefficient of variation

in their scores. The remaining term is the mean of NAi
which

determines the overlap of NAi
and NBi

, and consequently the

extent to which a judge mistakenly scores B higher than A. For

simplicity, we assume that the mean for NAi
is a constant ‘‘c’’ times

the mean of NBi
, where cw1.

To determine the implied accuracy of the judges before the

discussion, we find the range of ‘‘c’’ values that give a Perror(10)
which meets the two criteria listed above. If the cost per error is

100% of the grant’s value, or $400,000, the implied judge

accuracy is 87–89%. If, on the other hand, the cost per error is

only 1% of the grant’s value, or $4,000, the implied judge accuracy

is 67–69%.

Discussion

Evaluation procedures are ubiquitous and great significance for

individuals and society may devolve from a single decision. An

important question in the design of any evaluation procedure is how

many judges to consult. Previous work has approached this problem

through analyzing evaluation costs or accuracy [14,15,32–34].

Here, we link these two components to find the optimal number of

judges, balancing the cost of a judge with the cost of making an error

in evaluation. Through this analysis, we demonstrate that there

exists an inter-connectivity of the factors governing an evaluation

procedure. Decisions such as whether to use a majority rule or sum

rule or what type of scores judges can assign also affect the optimal

number of judges. Thus, as evaluation procedures evolve over time

so does the optimal number of judges.

We also found that paradoxically the optimal number of judges

may be higher in evaluations using more accurate judges. From

the cost analysis, better training of judges does not necessarily lead

to a decrease in the optimal number of judges. Since the cost

analysis is optimizing cost rather than accuracy, our result does not

contradict the Condorcet Jury Theorem that states that for a fixed

number of judges of equal accuracy, better training will always

lead to improved group accuracy.

Our main results are summarized in Figure 3C, which shows

the optimal number of judges, defined as the number of judges

resulting in minimal expected cost, as a function of judge accuracy

and (Cerror=Cjudge) using a majority rule evaluation scheme. For

judge accuracies near 50% or 100%, there is little benefit of

adding additional judges, so that the optimal number of judges is

1. For a fixed (Cerror=Cjudge), the optimal number of judges has a

single peak for an intermediate value of judge accuracies. For

example, for a (Cerror=Cjudge)~80 the maximal value for the

optimal number of judges is 9 for judge accuracy in the range

&60{70%. Although increasing the judge accuracy leads to a

reduction in the optimal number of judges, paradoxically,

decreasing the judge accuracy also leads to a reduction in the

optimal number of judges.

Our theory can also be used to make quantitative predictions.

Consider a granting institution that has a large variety of programs

with different funding levels. If we assume that optimal evaluation

procedures are being used, and that both the cost per judge and

judge accuracy remain constant, computations such as those in

Figure 2B predict the number of judges as a function of the size of

the grant.

While the computations presented in this paper used simple

models of evaluation procedures, our results should extend into

more complicated evaluation procedures. In File S1, we apply our

analysis to an example with judges of different accuracies who

make decisions dependently. Ultimately, the cost analysis relies on

the calculation of the probability of an error as a function of the

number of judges (the judge accuracy curve). As long as we have a

model of the decision-making process we can compute this curve

for a variety of evaluation methods and conditions.

There are limitations to our approach that would require a

more detailed and case-specific analysis. For example, if judges

have different costs associated then a more elaborate cost analysis

than the one presented here would need to be performed, assessing

the costs and probabilities of an error with different combinations

of judges. Our work also assumes that there is a model of the

evaluation procedure and its parameters can be estimated. Thus,

in grant reviews we assume that we know the procedures and can

obtain some measurements of evaluation accuracy. This may be

difficult in some situations– especially dependent decision-making

where some reviewers may have more sway over committee

members than others. Still, there is a body of work that attempts to

estimate accuracy in areas such as grant review and it is possible

for granting organizations to collect data necessary to build more

explicit models [9,14–16,19].
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Our work also relies on the assumption that it is possible to

estimate the cost per error and the cost per judge. In cases like

athletic competitions there is often a fixed fee for judges making

the cost of a judge apparent. In contrast, for grant reviews judges

are not usually remunerated monetarily and part of the cost of

judges might include the time lost to other pursuits [17,18]. Of

course, there are often benefits for judging that accrue such as

establishing ties with colleagues, editors, and grant administra-

tors. The cost per error can also be difficult to explicitly quantify.

For example, although, nominally the cost per error for a

research grant review is a product of the probability of failure and

the value of the grant, success in obtaining a grant may have

major personal ramifications in terms of career advancement and

monetary benefits such as patents or additional grants that might

accrue or not depending on successful completion of a project.

However, a major point of the current analysis is that there is an implied

range for (Cerror=Cjudge) that is set by the number of judges, Figure 3C.

This point should be appreciated by those who set evaluation

procedures.

The findings presented in this paper are particularly relevant in

the context of a recent review of NIH grant procedures [10] which

highlighted the need for more explicit criteria for grant evaluation,

reviewer training, and evaluation of reviewers. Although the NIH

report also focused on the need to adopt procedures that would

lessen the administrative burden, it also concluded (p. 78)

‘‘Engaging more reviewers per application and throughout the

review process will help to ensure review quality and consistency,

as would enhanced reviewer training.’’ However engaging more

reviewers may not be advantageous if the reviewer quality of

additional reviewers is inferior to a smaller, more expert panel,

Figure 1B [32–34]. Even if increasing the number of reviewers

increased the accuracy of the decision, it certainly increases the

administrative burden which is a type of cost.

The focus of this paper has been finding the balance between

accuracy and cost. By making explicit the relationships between

the evaluation accuracy, the cost per judge, and the cost per error,

the methods reported here should help policy-makers improve

decision-making procedures.

Methods

Computer code for Figures 1B, 2C, 2E, 3A, 3B, and 3C can be

found in File S1.

Judge Accuracy Curve with Inferior Judges
We can calculate the accuracy (Pa) of a panel that uses the

majority rule using equation 3 below. We assume that all judges

are equally accurate and have a probability p of choosing the right

option. The variable N is the number of judges in the panel (we

assume N is odd to avoid ties). The panel’s accuracy can also be

expressed as the ratio of an incomplete beta function and a beta

function.

Pa~
XN

k~
Nz1

2

N

k

� �
pk(1{p)N{k ð3Þ

When we add additional judges with a different accuracy, we

calculate the panel’s accuracy with equation 4 [32]. This

represents a mixing of two panels: N1 judges with accuracy p1

and N2 judges with p2 accuracy such that the total number of

judges is odd.

Pa~
XN1

k~0

N1

k

 !
pk
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2
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j
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0
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Sum Rule vs. Majority Rule Methods
We first assume that there are two competitors A and B, where

A is better than B. These competitors are scored by a number of

different judges. An individual judge is not perfectly consistent and

will some times give the same performance different scores. To

account for this lack of precision, an individual judge’s scores for A

and B will be drawn from two different normal distributions Ai

and Bi (where i is an index for judge i). The mean of Ai will be

larger than the mean of Bi since A is better than B.

The amount of overlap between the Ai and Bi determines the

inaccuracy of the evaluation, quantifying how often B is

incorrectly given a higher score than A (judge ac-

curacy = 1{
Ð?
{? NAi

(x)(
Ð?

x
NBi

(s)ds)dx). This is a common

interpretation of scores in which if a judge gives the incorrect

option a higher score, then the judge is wrong. For simplicity, each

judge has the same accuracy, say 70%.

In addition to the distribution of a given judge’s scores for a

single competitor, different judges may assign scores for the same

competitor based around a different mean value. So any two

judges will have scoring distributions for A with different means.

To simulate the differences between judges, the mean score each

judge assigns option B is randomly drawn from a tight or broad

distribution, modeled by a normal or a log normal distribution,

respectively. Thus, while an individual judge scores options A and

B according to normal distributions Ai and Bi, the mean of Bi is

picked from either a normal or lognormal distribution. We then

determine the mean of that judge’s Ai scoring distribution by

multiplying the mean of Bi by a fixed constant 1.16 (the same for

all judges throughout the simulation, calculated so the judges are

70% accurate). For simplicity, we also fix the the coefficient of

variation for Ai to be the same as Bi and equal to 0.2.

The total accuracy of a panel of judges in these simulations

depends on the number of judges and whether their mean scores

come from a tight or broad distribution. Similar to figure skating,

the tight distribution of judges’ scores for the mean of Bi has a

mean 7 and standard deviation .7 (used in Figure 2C). The log

normal distribution (used in Figure 2E) has mean 700 and

standard deviation 1400. Each data point represents the mean

accuracy from 100,000 different samples of judges’ scores (100,000

panels of judges).

Supporting Information

File S1 This supplementary material, referred to in the text as

File S1, includes a glossary, a worked example with added

complexity, and computer code for the figures.

Found at: doi:10.1371/journal.pone.0012642.s001 (0.15 MB

PDF)

Figure S1 The vertical axis is the constant added to ‘‘c’’ for

every judge, thus further separating the scoring distributions for

the grants and improving each judge’s accuracy. The horizontal

axis is the cost ratio, (cost per error)/ (cost per judge). The colored
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bar shows the optimal number of judges. As in Figure 3C from the

paper, there is a single peaked surface, and thus the paradox is

present.

Found at: doi:10.1371/journal.pone.0012642.s002 (0.15 MB TIF)
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