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Abstract

We study the problem of identifying genetic networks in which expression dynamics are modeled by a differential equation that

uses logical rules to specify time derivatives. We make three main contributions. First, we describe computationally efficient

procedures for identifying the structure and dynamics of such networks from expression time series. Second, we derive predictions

for the expected amount of data needed to identify randomly generated networks. Third, if expression values are available for only

some of the genes, we show that the structure of the network for these ‘‘visible’’ genes can be identified and that the size and overall

complexity of the network can be estimated. We validate these procedures and predictions using simulation experiments based on

randomly generated networks with up to 30,000 genes and 17 distinct regulators per gene and on a network that models floral

morphogenesis in Arabidopsis thaliana.

r 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

New high-throughput technologies for monitoring
gene expression, microarrays, serial analysis of gene
expression (SAGE), and others (Ding and Cantor, 2003;
Kosman et al., 1998; Lockhart et al., 1996; Velculescu
et al., 1995), offer an unprecedented capacity to view
the complex regulatory machinery of cells. It is now
possible to measure the activity of up to thousands
of genes simultaneously, as they evolve over time or
respond to different environmental, pharmaceutical, or
genetic conditions. Such access to the states of cells
gives rise to the hope of automatically inferring, on a
large scale, the network of interactions that controls
gene expression. However, a number of factors make
this a difficult problem: noisy measurements, missing
information, the apparent complexity and stochastic
nature of gene regulation (McAdams and Shapiro, 1995;
ing author. Tel.: +1-514-398-7071X09317; fax: +1-

esses: perkins@mcb.mcgill.ca (T.J. Perkins),

cgill.ca (M. Hallett), glass@cnd.mcgill.ca (L. Glass).

e front matter r 2004 Elsevier Ltd. All rights reserved.

i.2004.05.022
Yuh et al., 1998), and the sheer number of genes
involved.
In this paper, we consider several questions: Is it

possible to infer the regulatory relationships between
genes from expression time series? If so, what inference
algorithms are sufficient? How much data is required?
Theoretical answers to these questions depend on how
one models gene regulation and expression dynamics.
Linear differential equation models can be inferred
efficiently from expression data using least-squares
regression techniques (Chen et al., 1999; D’Haeseleer
et al., 1999; Gardner et al., 2003; Tegner et al., 2003;
Yeung et al., 2002). However, linear models are not
always flexible enough to model complex regulatory
relationships. Nonlinear differential equations are po-
tentially more realistic (Von Dassow et al., 2000;
McAdams and Shapiro, 1995; Reinitz and Sharp,
1995; Yuh et al., 1998). Unfortunately, model-fitting is
essentially a smooth nonlinear optimization problem
that is typically impossible to solve exactly and that
requires extensive computing power to solve even
approximately (Von Dassow et al., 2000; Reinitz and
Sharp, 1995). There has been some success in modeling
gene networks using logical formalisms (Bodnar, 1997;
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Kauffman, 1993; Mendoza and Alvarez-Buylla, 1998;
Sanchez and Thieffry, 2001; Somogyi and Sniegoski,
1996; Thomas and D’Ari, 1990). However, logical
models lose information by discretizing expression
levels. Furthermore, fitting these models requires an
exponential amount of computation (Akutsu et al.,
1999; Liang et al., 1998).
We explore the problem of gene network inference

using a formalism that combines nonlinear differential
equations and logical approaches (De Jong et al., 2003;
Glass and Kauffman, 1973; Glass, 1975; Mestl et al.,
1995). While gene expression is real-valued and changes
continuously in time, the rules that specify the time
derivatives of expression take a logical form. These
models can represent many of the complex, nonlinear
regulatory phenomena observed in real gene networks.
Despite this expressive power, we show that, under
idealized observation conditions, these models can be
efficiently inferred from expression time series. We
provide analytical predictions for the amount of
expression data needed as a function of the size and
connectivity of the gene network. We test these
predictions on simulated expression data from randomly
generated networks and from a network that models
floral morphogenesis in Arabidopsis thaliana. We also
consider the case in which the expression time series
includes data for only some of the genes in the network.
We show that regulatory relationships between the
observed genes can be inferred and that the overall size
and connectivity of the network can be estimated, even
if the detailed behavior of the unobserved genes cannot
be deduced.
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Fig. 1. Top: diagram of the three-gene repressilator network. Bottom:

simulation from initial state x1 ¼ 1; x2 ¼ 0; x3 ¼ 0: The first three

curves represent the concentrations of the three genes. The second

three curves represent the logical states of the genes.
2. A model of gene expression

Many types of molecules are involved in gene
expression. DNA, mRNAs, proteins and various small
molecules all have roles in the regulation of protein
production. By genetic network we mean a dynamical
model of a finite set of interacting chemical species
related to gene expression. In our model, each species i

has a real-valued time-varying concentration, xi(t),
which we assume to be normalized between zero and
one. In addition, each species has a logical state, Xi(t),
which is 1 (high) if the xi(t) is greater than one half and 0
(low) otherwise. Concentration dynamics follow a
production–decay model. The decay rate of species i is
proportional to its concentration. The production rate
of species i is controlled by a set of regulating species Ri.
The production rate is always zero (no production) or
one (maximum production), and depends on the logical
states of the regulators. Thus, the dynamics for species i

are

’xiðtÞ ¼ fiðXRi
ðtÞÞ � xiðtÞ; ð1Þ
where XRi
ðtÞ is a vector containing the logical

states of the regulators of species i at time t, and fi

is a Boolean function (Glass, 1975). We call fi the
production rate function or regulation function of
species i.
The regulator sets, Ri, define the structure of the

network. The structure is often conceptualized as a
directed graph in which vertices correspond to species
and an arc from j to i means species j regulates species i

(similar to the top of Fig. 1 and to Fig. 7). The regulator
sets together with the regulation functions specify the
dynamics. More general forms of Eq. (1) allow for more
than two logical levels per species, separated by
arbitrary real thresholds as well as production and
decay rate constants other than zero and one (Glass,
1975; Mestl et al., 1995; De Jong et al., 2003). Partly for
ease of exposition, we restrict attention to the simplest
form of this class of models.
As an example of this framework, the synthetic

‘‘repressilator’’ gene network (Elowitz and Leibler,
2000) can be modeled as a cyclic network of three
genes, each of which represses the next gene in the chain
(see top of Fig. 1). This can be modeled by the regulator
sets

R1 ¼ f3g; R2 ¼ f1g; R3 ¼ f2g
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Fig. 2. Concentration of species one through four in a random 100-

species network with 10 regulators per species.
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and the regulation functions

f1 ¼ 1� X3; f2 ¼ 1� X1; f3 ¼ 1� X2:

The bottom of Fig. 1 shows the concentrations and
logical states as a function of time from the initial
condition x1 ¼ 1; x2 ¼ 0; x3 ¼ 0: Expression measure-
ments for one of the genes in the real repressilator
system showed a regular, periodic oscillation in activity
(Elowitz and Leibler, 2000). This is in qualitative
agreement with the predictions of this model. (The
other two genes were presumed to be oscillating as well,
but their expression was not measured.)
A time at which the logical state of any species

changes is called a switching time. Between switching
times, the logical states of all species are constant
and so are production rates. Each concentration
changes according to a simple linear differential
equation ’xi ¼ �xi or 1�xi. At a switching time,
production rates can change, causing species to change
from ’xi ¼ 1� xi dynamics to 1�xi dynamics, or vice-
versa. The piecewise linear equations (1) can exhibit
complex behaviors not possible in linear differential
equations. For example, Fig. 2 shows the concentrations
of four species in a randomly generated network of 100
species. Each species has 10 regulators, chosen at
random from the 99 other species in the network. The
regulation function for each species was chosen ran-
domly from all Boolean functions depending on 10
inputs. Typically, such randomly generated networks do
not produce simple periodic behavior (Edwards and
Glass, 2000; Mestl et al., 1997). However, their behavior
exhibits statistical regularities that can be exploited
to predict the amount of data needed to identify
the network.
3. Network inference from fully observed continuous

concentration time series

3.1. The inference problem and efficient solutions

We wish to determine the structure and regulation
functions of an unknown system behaving according to
Eq. (1), based on a set of concentration time series. In
this section, we assume that each time series specifies the
concentrations of all species over a continuous time
interval. Access to concentration data over a continuous
time interval implies that time derivatives can be
inferred, as can the production rate of any species at
any instant.
Our approach for inferring the structure of the

network is based on the following observation. Suppose
that in one instance the concentration of species i is
rising (implying a production rate of one) and that in
another instance its concentration is falling (implying no
production). Suppose that in these two instances all
species except one, species j, have the same logical state.
Based on these two observations, it follows from the
form of Eq. (1) that species j regulates species i. This
suggests the following rule.

Rule 1: Infer that species j regulates species i if at two
different times in the same or different time series, (1) all
species except j have the same logical state, (2) the
production rate of i differs.
We assume that each time series contains a finite

number of switching times that divide the time series
into intervals of constant logical states and production
rates. Assuming that it is easy to find and iterate through
these intervals, Rule 1 can be tested by looping over all
pairs of intervals. The computation time required to
apply this rule is proportional to the number of species
and to the square of the number of switching times.
A special case of this rule is to look at pairs of times

immediately before and after a switching time in one
time series.

Rule 2: Infer that species j regulates species i if in one
of the concentration time series, (1) there is a switching
time at which j is the only species to switch logical state,
(2) at that switching time, the production rate of i

changes.
Given the same data, Rule 2 may identify fewer

regulatory relationships than Rule 1. However, the
computation time for Rule 2 is proportional to the
number of switching times in the data set, rather than to
its square. This advantage is important in the next
subsection, where we infer very large networks from
long time series. A second advantage is discussed in the
section on partially observed time series.
To estimate the regulation function of species i given

an estimate of its regulators, we store the observed
production rates for species i, conditional on the logical
states of its regulators, in a table. Suppose one of the
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above rules infers a set of regulators, #Ri; for species i,
and let X #Ri

denote a vector of logical states for the
species in #Ri: Regulation function estimation is for-
malized by the rule below.

Rule 3: Infer f ðX #Ri
Þ

¼

1 if the production rate is one whenever the

species in #Ri are in logical states X #Ri
;

0 if the production rate is zero whenever the

species in #Ri are in logical states X #Ri
;

? otherwise:

8>>>>>><
>>>>>>:
The last possibility, ‘‘?’’, can occur when the time

series data does not contain any instance in which the
species in #Ri had the logical states specified in X #Ri

: In
such a case, there is no basis for inferring the production
rate of species i. The ‘‘?’’ inference can also occur if two
different production rates are observed for the same
pattern of logical regulator states, X #Ri

: This can only
happen if at least one regulator of species i is not in #Ri;
and the difference in production rate is due to a
difference in the logical state of the unidentified
regulator.
These rules are sufficient to recover the repressilator

network from the time series depicted in Fig. 1. The first
switch occurs when x3 increases past one half, changing
X3 from zero to one. At the same time, x1 begins to fall,
revealing that gene 3 is a regulator of gene 1. Gene 1 is
the second to switch logical state. The expression of gene
2 simultaneously begins to rise, indicating that gene 1
regulates gene 2. Finally, gene 2 switches logical state
and the production rate of gene 3 changes, implying
regulation of gene 3 by gene 2. By this time, after one
period of the oscillator, the structure of the network and
all regulation functions are determined.
If the concentration data is generated according to an

equation of form (1), then Rules 1 and 2 posit that
species j regulates species i only if that fact can be
deduced from the data. Neither rule produces false
positive regulatory relationships. False negatives are
possible and unavoidable in general. There is no
guarantee that a set of time series, however long,
contains enough information to identify the network.
This is a well-recognized pitfall in dynamical-system
identification, and is not just a characteristic of systems
with dynamics given by Eq. (1). Theoretically, this
problem can be avoided by assuming multiple time
series from independently random initial conditions or
some other form of randomly sampled data (e.g.,
(Akutsu et al., 1999)). Another possibility is allowing
the inference procedure to choose which samples are
collected (Akutsu et al., 1998; Ideker et al., 2000). In the
next section, we demonstrate the network inference
procedures above on randomly generated networks.
Although no amount of data is guaranteed to be
sufficient for identification, statistical properties of these
networks allow us to estimate the expected amount of
data required for both structure and regulation function
identification.

3.2. Analysis and simulation experiments based on

randomly generated networks

We performed simulation experiments with randomly
generated networks of N species and K regulators per
species, for various N and K. ‘‘Randomly generated’’
means that for each species i, Ri was chosen randomly
from all size-K sets of species excluding i. The regulation
functions were chosen randomly from all Boolean
functions depending on K inputs. To a first approxima-
tion, a time series from a randomly generated network
typically displays three properties:

Property 1: A change in the logical state of any species
has a 50% chance of changing the production rate of
any species it regulates. This is due to the assumption
that the regulation functions are randomly generated
Boolean functions.

Property 2: At most one species switches logical state
at a given time. This is because logical state switches
occur at isolated, real-valued times.

Property 3: For any l, every species is equally likely to
be the lth species to switch logical state, regardless of
which species switched before. In the current work, we
do not account for the possibility of correlations in the
switching sequence (Mestl et al., 1997).
Suppose Rules 2 and 3 are applied to a single

concentration time series obeying these three properties.
How long must the time series be, in terms of the
number of logical switches, before the network is
identified? Consider a particular species i. Initially, none
of its K regulators have been identified. To identify a
regulator, two things must happen. The regulator must
switch logical state and the production rate of species i

must change. By Property 3, there is probability K/N
that a particular logical switch will involve one of i’s
regulators. By Property 1, there is probability 1

2
that i’s

production rate will change. Thus, there is probability
K/2N that any particular logical switch reveals one of
the regulators of i. The expected number of switches
until the first of K regulators is revealed is thus 2N/K.
Once the first regulator is identified, there is probability
ðK � 1Þ=2N that any subsequent switch will reveal one
of i’s other K � 1 regulators. The expected additional
switches until the second regulator is identified is thus
2N=ðK � 1Þ: The expected number of logical switches
until all of i’s regulators are identified is

2N

K
þ

2N

K � 1
þ � � � þ

2N

1
¼ 2NHK ;

where HK ¼ 1þ 1
2
þ 1

3
þ � � � þ 1

K
is the Kth harmonic

number. HK is approximately equal to the natural
logarithm of K.
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If we make the assumption that the processes of
identifying regulators are statistically independent for
the different species, then an inductive argument can be
used to show that the expected number of logical
switches before the structure of the network can be
identified is no more than

2NHNHK : ð2Þ

That is, identifying the regulators of all species
requires only about HNEln N times as much data as
is needed to identify the regulators of a single species.
We tested this prediction using computer simulations of
networks with N ¼ 300; 3000, and 30,000 species and K

between five and 25. For each choice of N and K, we
randomly generated 100 networks and initial concentra-
tions. We simulated the dynamics of each network until
the entire structure of the network was identified by
Rule 2. Fig. 3 displays the mean number of logical
switches before the structure was identified, along with
the prediction of Eq. (2). Predictions and simulation
results match well across a wide range of N and K. For
most values of K, the expected number of switches
required in the simulations was smaller than theoreti-
cally predicted. For the smallest values of K, however,
the predictions were too low. The simulations display an
increase in the number of switches needed for small K,
which is absent in the theoretical predictions. We expect
this is due to a failure of Property 1, according to which
a change in the logical state of a regulator has a 50%
chance to change the production rate of the regulated
species. The fewer the regulators, the more likely it is
that a randomly generated Boolean function will be
mostly zero or mostly one for the different combinations
of logical regulator states. In such cases, changes in the
production rate are seen less often, and one expects
structure identification would take longer.
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Fig. 3. Number of logical switches until network structure is

identified—simulation results and theoretical predictions.
How long must a time series be for the network
structure and all of the regulation functions to be
identified? Even if the regulators of species i are known,
the regulation function cannot be identified until every
combination of logical states of the regulators appears
in the time series, 2K combinations if there are K

regulators. The sequence of logical regulator states in
the time series can be viewed as a random walk on a K-
dimensional hypercube. At each switching time, there is
probability K/N that one of the regulators changes
logical state, corresponding to a step to an adjacent
vertex on the hypercube. The expected number of
switches between steps on the hypercube is N/K. For a
random walk on a K-dimensional hypercube, the
expected number of steps until all vertices have been
visited is K2K (Chandra et al., 1997). Thus, the expected
number of switches until all combinations of regulator
states have been observed is (N/K)K2K=N2K. If
identifying regulation functions is assumed to be a
statistically independent process for each species, then
the expected number of switches before all of the
regulation functions can be identified is no more than

NHN2
K : ð3Þ

We tested this prediction using computer simulations
of networks with N ¼ 300; 3000, and 30,000 species and
K between five and 12. For each choice of N and K, we
used the same 100 networks and initial conditions as in
the previous simulations, and simulated the dynamics
until Rules 2 and 3 were sufficient to identify the
structure of the network and all of the regulation
functions. Fig. 4 displays the results of the simulations
along with the theoretical predictions. As with structure
identification, the networks are identified faster in
simulation than predicted for higher values of K. For
smaller values of K, the increasing number of switches
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Fig. 4. Number of logical switches until all regulation functions are

identified—simulation results and theoretical predictions.
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needed in the simulations is not captured by the
theoretical analysis.
These analyses and simulations rely on Rule 2 for

structure identification. Analysis for Rule 1 is more
difficult, but its data requirements can be no greater
than those of Rule 2. We expect little difference for
networks with many species, because there is little
chance that at two arbitrary times there is only a single
species in a different logical state. Most regulatory
relationships should be revealed by single switching
events. However, for smaller networks or networks
whose dynamics do not obey the three properties we
have assumed, the data requirements of the two rules
may be quite different. For example, the structure of the
Arabidopsis thaliana model below cannot be inferred
entirely by Rule 2, because some of the regulatory
relationships cannot be revealed by any single time
series. Comparisons of multiple time series, and hence
Rule 1, are necessary for inferring the complete
structure.
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Fig. 5. Number of logical switches until visible structure of the

network is identified—simulation results and theoretical predictions.
4. Network inference from partially observed expression

time series

For the partially observed inference problem, we
again assume the concentration data is in the form of a
finite set of concentration time series, each over a
continuous time interval. However, we assume that
concentration values are given for only MoN of the
species. The concentrations of the other species are
unknown, as is the total number of species in the
network, N. We call species 1 through M visible species,
and we call species j a visible regulator of species i if j is
visible and if j regulates i.
Determining the entire structure and regulation

functions of the network from such data is not possible
in general. However, it is possible to determine the
visible regulators of each visible species, which we call
the visible structure of the network. In the partially
observed problem, using Rule 1 to identify regulators
may produce false positives. If two production rates for
species i are observed while a single visible species j is in
a different logical state, it does not follow that j

regulates i. The difference in i’s production rate may
result from regulation by an unobserved species. Rule 2
can also produce false positives, but only if an
unobserved species and an observed species change
logical states at the same time. If simultaneous changes
are ruled out (Property 2), then Rule 2 does not produce
false positives.
How much data is required to identify the visible

structure of a randomly generated network? We assume
a single time series obeying the same three properties
described in the previous section. For a species i with Ki

visible regulators, we expect 2NHKi
logical switches until
all the visible regulators are identified by Rule 2. (This
counts all switches, not just the visible ones. The number
of visible switches would be 2MHKi

:) Because each
species may have a different number of visible regula-
tors, the number of logical switches until the entire
visible structure is determined can be estimated as

2NHM

XK

l¼0

PrðKi ¼ lÞHl ; ð4Þ

where PrðKi ¼ lÞ ¼
M � 1

l

� �
N � M

K � l

� �
=

N � 1
K

� �
is

the probability that species i has l visible regulators in a
randomly generated network.
Fig. 5 compares this prediction with the results of

simulations for randomly generated networks of N ¼
300; 3000, and 30,000 species with K ¼ 10 regulators per
species. The fraction of species visible was varied
between 10 and 90 percent. The predictions are slightly
low, but scale correctly with network size and with the
fraction of the species visible.
Although it is not possible to make detailed inferences

about the unobserved part of the network, one can
estimate the total network size, N, and the number of
regulators per gene, K, for randomly generated net-
works. Two types of data are useful for making these
estimates: the visible structure of the network, once it
has been determined, and the frequency with which
changes in the production rate of a visible species can be
attributed to a visible species versus an unknown,
invisible species. Suppose the structure identification
procedure has determined that species i has Ki visible
regulators. Suppose the data contains Ti changes in the
production rate of species i, and Vi of these can be
attributed to one of the visible regulators. For a
randomly generated network, a regulator of a species
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has probability M/N of being a visible regulator. Each
change in the production rate of species i has probability
Ki/K of being due to a visible regulator. Thus, the
probability of a particular set of Ki’s, Ti’s and Vi’s is
approximately

YM
i¼1

K

Ki

� �
M

N

� �Ki

1�
M

N

� �K�Ki

	
Ti

Vi

� �
Ki

K

� �Vi

1�
Ki

K

� �Ti�Vi

: ð5Þ
29
49

31

60 EMF1

73/103 56/60
TFL1AP1

54
The first three terms approximate the probability that
species i has Ki visible regulators, and the last three
terms express the probability of the observed number of
production rate switches of species i due to visible and
invisible regulators.
The principle of maximum likelihood, which states

that the best hypothesis is the one under which the
observed data is most likely, can be used to derive
estimates for N and K. It is readily shown that for
any fixed K, the choice N ¼ M2K=

PM
i¼1 Ki


 �
max-

imizes Eq. (5). The optimal choice of K can be found
simply by evaluating different choices of K over a
reasonable range. We tested this procedure on the same
networks as above, using for data the visible structure
discovered and the switching data up until the time at
which the visible structure was fully identified. The
results are presented in Fig. 6. Estimates improve with
increasing N and with increasing percentage of the
network visible. In 100 independent runs, the estimates
were always correct to within a factor of two even with
networks of 300 species of which only 10% of the species
were observed.
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Fig. 6. Minimum, mean, and maximum estimates for N and K for

networks of varying sizes, over 100 independent simulations.
5. Demonstration on a model of floral morphogenesis in

Arabidopsis thaliana

In this section, we demonstrate the network inference
procedures on a model of floral morphogenesis in
Arabidopsis thaliana. Mendoza and Alvarez-Buylla
(1998) proposed a Boolean network model that qualita-
tively describes differentiation of the four floral organs:
sepals, petals, stamens, and carpels. We adapt this
model to equations of form (1). The model contains
twelve interacting chemical species, depicted in Fig. 7.
Eleven are proteins, designated EMF1, TFL1, LFY,
AP1, CAL, LUG, UFO, AG, AP3, PI and SUP. The
twelfth species, BFU, is a dimer of the AP3 and PI
proteins. The Mendoza–Alvarez-Buylla model specified
conditions for expression of the different species by
means of linear threshold functions. We translated these
into the logical rules below.

fLUG ¼ 0

fUFO ¼ 0

fLFY ¼ 0

fSUP ¼ 0

fEMF1 ¼ XEMF1

fCAL ¼ XLFY
37
37

83 245

14 27

27

3022

LFY
39 39

54

54 37

33

LUG

SUP

UFO253/308

70/224

52/52
70/224
AP3

BFU

PI

AG

14/14
CAL

Fig. 7. Diagram of the network modeling floral morphogenesis in

Arabidopsis thaliana (Mendoza and Alvarez-Buylla, 1998). Activation

indicated by-, repression byB. Regulation functions are given in the

text. (The original Mendoza–Alvarez-Buylla model includes regulators

for LFY, but the regulation function they propose does not allow

activation under any conditions. We have removed those links.)

Numbers on edges indicate the mean number of switches before that

regulatory link was discovered. The two numbers in circles indicate the

mean number of switches before all regulators of the species are

identified and the mean number of switches before all regulators and

the regulation function are determined.
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fTFL1 ¼ XEMF1 and not XLFY

fAP1 ¼ XLFY or ðnot XEMF1 and not XAGÞ

fBFU ¼ XAP3 and XPI

fAG¼ not XTFL1 and not XAP1 and ðXLFY or not XLUGÞ

fAP3 ¼XLFY or ðXUFO and XBFUÞ or

ðnot XSUP and ðXUFO or XBFUÞÞ

fPI ¼XLFY or ðXUFO and XBFUÞ or

ðnot XSUP and ðXUFO or XBFUÞÞ

Five of the proteins have no regulators or are
autoregulating and act as ‘‘inputs’’ to the network.
The first four, LUG, UFO, LFY, and SUP, always
decay to zero from their initial concentration. EMF1
is autoregulating. If its initial concentration is high
(greater than one-half), then it stays high, approaching
one. If its initial concentration is low, then it decays to
zero. Depending on initial conditions, the system tends
to one of six attractors in which each concentration is
zero or one. Four of these correspond to the four types
of floral organs. One corresponds to a non-floral state,
and one corresponds to a floral state that has not been
observed experimentally, perhaps because unmodeled
factors prevent its occurrence or because the initial
conditions that lead to this attractor do not occur
naturally (Mendoza and Alvarez-Buylla, 1998). Fig. 8
shows an example time series for the network.
To test the inference procedures, we simulated the

model to produce time series data. A single time series
was generated by setting the initial concentrations
EMF1

TFL1

LFY

AP1

CAL

LUG

UFO

BFU

AG

AP3

PI

SUP

time

co
nc

en
tr

at
io

n

Fig. 8. A simulated time series of the Arabidopsis thaliana model. The

curves represent the concentrations of the 12 species over time.

Diamonds mark changes in the logical state of a species. Circles mark

changes in the production rate of a species. This time series approaches

the attractor 000100010110, which corresponds to a petal cell.
uniformly randomly between zero and one and simulat-
ing until the logical states of the species reached one of
the six attractors. For a single test of the amount of data
needed to infer the network, we generated a sequence of
such time series until Rules 1 and 3 were sufficient to
infer the network structure and all regulation functions.
This test was repeated 100 times, to estimate average
data requirements. It was necessary to use Rule 1 for
inferring structure because EMF1 never switches logical
state during a time series. Only by comparing across
time series can one identify species regulated by EMF1.
Fortunately, the simulated data sets required to infer the
network were small enough that applying Rule 1 was
not a computational burden.
Fig. 7 displays the mean number of logical switches

observed before inferring each part of the network. On
average, it took 264 switches to determine the entire
structure of the network and 343 switches to determine
the structure and all the regulation functions. Although
this network was not generated randomly, one can
compare these numbers to the predictions for random
networks. There are 12 species and approximately 2
regulators per species on average. This suggests
2 � 12 � H12 � H2 ¼ 112 switches would be needed to
identify the structure, and 12 � H12 � 22 ¼ 148 switches
would be needed to identify all the regulation functions.
Both predictions are low by approximately the same
amount, 112

264
¼ 42% and 148

343
¼ 43%: The link that

required the most data to identify was LFY-AG: In
part, this is because LFY can influence AG only if TFL1
and AP1 are high and LUG is low. Furthermore, LFY
activates AG only when LFY is high. This is compara-
tively rare, as LFY converges to zero in all trajectories.
6. Discussion

We have examined the problem of inferring dynami-
cal models of gene expression in which the time
derivatives of chemical concentrations are expressed by
logical rules. Such models are able to capture complex,
combinatorial relationships between the concentration
or rate of production of a gene’s products and the
concentrations of the regulators of the gene (McAdams
and Shapiro, 1995; Yuh et al., 1998).
One of the contributions of this paper is to describe

computationally efficient algorithms for network infer-
ence. A network of N chemical species, each regulated

by K species, can be connected in
N

K

� �N

ENNK

different ways. Many algorithms that explicitly extract
regulatory relationships search directly in this exponen-
tially large space of network structures, either exhaus-
tively or using local search heuristics (Akutsu et al.,
1999; Ideker et al., 2000; Liang et al., 1998). Running
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these algorithms can be a significant computational
burden.
Our algorithms are predicated upon a number of

simplifying assumptions. Clearly, data in which there is
noise, time delays, an unknown number of regulators
for each species, and variable and unknown thresholds
would be more difficult or impossible to analyse using
the methods outlined here. For example, if the data is
noisy, no single pair of observations is sufficient to
definitively infer a regulatory relationship. However, if
the same regulatory link is suggested by many indepen-
dent pairs of observations, one begins to have con-
fidence that the link is real. We used the assumption that
concentrations are observed continuously in two ways:
(i) to estimate time derivatives of expression, and hence
production rates, and (ii) to pinpoint switches in the
logical state of a gene. The latter is most important for
inference by Rule 2; Rule 1 does not require that all
switches be observed. However, both rules need the time
derivative information, which no expression monitoring
technology can report directly. Worse, expression
experiments are often designed with samples spread
evenly over some time interval, in order to maximize
coverage. This makes it difficult to estimate time
derivatives. The importance of time derivative informa-
tion suggests an alternative strategy for expression
experiment design. At least some expression samples
should be packed closely in time so that expression levels
and their time derivatives could be estimated well. A key
assumption of Eq. (1) is that there are only two (or more
generally, just a few) possible production rates for each
gene. For some genes, such as developmental genes,
which show clear patterns of turning ‘‘on’’ or ‘‘off’’, this
may be a tenable assumption. Eq. (1) is not a good
model for genes which exhibit graded responses. These
issues would need to be addressed before applying the
inference algorithms we propose to real gene expression
data.
A number of features of real genetic control networks

might simplify the inference problem. For example,
there is growing recognition that genetic control might
be modular (Alon, 2003; Von Dassow et al., 2000), and
this would restrict the set of possible network structures.
Kauffman and colleagues have suggested that logical
functions controlling transcription tend to be a small
subset, called canalyzing functions, of the possible
logical functions (Harris et al., 2002). Finally, methods
based on time series analysis can be supplemented by
data from other sources, such as observations of the
network under perturbed environmental or genetic
conditions, genomic data or localization (chip-on-chip)
data (Akutsu et al., 1998; Ideker et al., 2000; Segal
et al., 2002).
A second contribution of the paper is that we have

analysed the data requirements of our inference
procedures. We analytically derived predictions for
randomly generated networks based on their size and
connectivity, and performed simulation experiments on
randomly generated networks as well as on a more
realistic network that models floral morphogenesis in
Arabidopsis thaliana. A surprising result of our analy-
tical predictions, verified by simulation, is that for
randomly generated networks, the amount of data
needed to infer the structure of the network scales only
logarithmically with the number of regulators per
species. For example, to identify all the regulators of a
species with 100 regulators takes only twice as much
data as to identify all the regulators of a species with 10
regulators. In contrast, theoretical analysis and simula-
tions of Boolean network inference suggest that
inferring the structure requires an amount of data that
is exponential in the number of regulators (Akutsu et al.,
1999). We made two major assumptions that differ from
the analysis of Akutsu et al. We assumed time series
data in which one gene at a time changes logical state,
and we assumed that the regulation functions are chosen
randomly from the set of all Boolean functions. It is not
yet clear if both assumption are necessary or if only one
of the two results in such a dramatic difference in the
data requirements.
Our analysis relied on statistical properties of

randomly generated networks in which every gene has
K regulators for some fixed K. Other models may better
capture the structure of real genetic networks. For
example, there is some evidence that transcriptional
regulatory networks show a scale-free degree distribu-
tion (Lee et al., 2002). The structure of scale-free
networks can result in much different dynamical
properties than seen with fixed-indegree networks
(Aldana and Cluzel, 2003; Oosawa and Savageau,
2002). We performed a small number of simulation
experiments to determine how the conclusions of the
current work might change for scale-free networks. We
found some evidence that the expected amount of data
needed for structure identification scales as in Eq. (2),
where K is taken to be the mean number of regulators
per gene. However, identifying regulation functions
takes at least 2Kmax logical switches, where Kmax is the
maximum number of regulators for any gene. For scale-
free networks, this can be much greater than the mean
number of regulators. Determining a succinct set of
parameters which characterize, for any type of network
structure, the amount of data required for inference
remains an open problem.
No gene expression-monitoring technology simulta-

neously measures the concentrations of all chemical
species related to gene expression (mRNAs, proteins,
small molecules, etc.). While this fact is well-recognized,
many methods being proposed for network inference
make no allowance for the influence of unobserved
factors. As a third contribution, we have introduced a
‘‘partially observed’’ version of the network inference
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problem, in which concentration values are reported for
only a subset of the species in the network. We showed
that the structure of the visible portion of the network
can be identified. We also showed that the total size of
the network (observed and unobserved species) as well
as the number of regulators per species can be inferred
from the observable data. We did this for a particular
kind of randomly generated network in which each
species has exactly K regulators chosen uniformly at
random. It remains to be seen whether similar inferences
could be made for other types of randomly generated
networks, such as scale-free networks.
Despite reservations about the applicability of these

computations to real biological networks, the current
work demonstrates that it is possible to infer the
dynamics of very large model networks and to estimate
the amount of data required to do so. These results
underscore the importance and value of collecting data
in which gene expression is monitored over time, and
show how this data might be used to relate the patterns
of activity of genes to the underlying logical structure of
the network controlling gene activity.
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