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ABSTRACT

Ever since 1819, when
Theophile Laénnec first put a
block of wood to a patient’s
chest in order to listen to her
heartbeat, physicians have used
auscultation to help diagnose
cardiopulmonary disorders. Here
the authors describe a novel
diagnostic method based in
music technology. Digital music-
synthesis software is used to
transform the sequence of time
intervals between consecutive
heartbeats into an electro-
acoustic soundtrack. The results
show promise as a diagnostic
tool and also provide the basis
of an interesting musical sound-

he term “biometric art” has been proposed to
describe art derived from physiological measurements of liv-
ing organisms [1,2]. While the term was coined to describe vi-
sual representations of cardiac activity and other physiological
functions, it can also be extended to auditory representations.
In a complementary manner, a number of composers have ex-

beat basis. A fuller understanding
of the dynamics of these kinds of
cardiac signals in health and disease
is the goal of contemporary heart
rate variability research [11].

To measure heart rate over ex-

plored applications of complexity (“chaos”) theory to music
composition and synthesis [3]. Heart rhythms have also been
used in musical contexts [4,5], and experiments have even
been conducted that have mapped real-time heart rhythms to
brief auditory displays for use in biofeedback [6]. This proj-
ect, however, has a different focus. Rather than setting out to
create musically interesting sounds, we explore whether phys-
iological variations in heart rate dynamics over a period of
hours could be a source of medically useful representations.
In other words, can bedside diagnosis be aided by informa-
tion taken from an auditory display of human heart rate vari-
ability?

HEART RATE VARIABILITY

Heart rate fluctuations can be easily measured from an elec-
trocardiogram (ECG), a graphical recording of the electrical
potentials generated by cardiac muscle cells. While clinicians
often refer to the healthy heartbeat as “regular sinus rhythm,”
healthy subjects typically display patterns more complex than
those found in unhealthy ones [7-9]. For example, researchers
have found that patients whose heart rates become overly reg-
ular following a heart attack may be at increased risk of fatal
cardiac arrhythmias [10]. This loss of variability may be related
to a decrease in the plasticity of the neural mechanisms that
help regulate and “fine-tune” the heart’s activity on a beat-to-
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tended periods, physicians make scape.

use of Holter monitors, ECG de-
vices that permit long-term ambu-
latory recording and storage of ECG waveforms for time
periods on the order of 24 hours. Following the recording, the
data can be processed via automated or semi-automated pro-
grams. Such programs detect the electrical pulses, termed QRS
complexes, that trigger mechanical contraction of the heart’s
pumping chambers (ventricles). Further analysis of these wave-
forms can be used to generate a sequence of intervals (the in-
tervals between QRS complexes, also called “NN intervals” or
“RR intervals,” shown in Fig. 1) that represent the time peri-
ods between consecutive normal beats. These NN intervals,
representing heart rate fluctuations, are the datasets most
often used in heart rate variability analysis.

The heart’s normal beats are initiated by impulses from
pacemaker cells in the sinus node, hence the term normal sinus
rhythm. The sinus node frequency is modulated primarily by
input from the autonomic (involuntary) nervous system.
There are two major components of this system: the sympa-

Fig. 1. Electrocardiographic recording of the heartbeat. (Courtesy
of Joseph E. Mietus, Margret and H.A. Rey Laboratory for Nonlin-
ear Dynamics in Medicine) The QRS complexes represent electrical
activation of the ventricles. The RR interval is the time between
consecutive QRS complexes.
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Fig. 2. The graphical user interface used in the sonifications. (© Mark Ballora)

thetic—which increases the heart rate—
and the parasympathetic (or vagal), which
decreases the heart rate. The nonlinear
interaction between these two compet-
ing components is responsible for much
of the heart rate’s intrinsically complex
fluctuations [12]. Mechanical and meta-
bolic influences may also contribute to
heart rate variability. A major factor reg-
ulating heart rate variations over the
short term involves the effects of respi-
ration, which are mediated via the
parasympathetic branch of the auto-
nomic nervous system. During inspira-
tion, heart rate typically increases, while
during expiration it decreases. These os-
cillations are referred to as respiratory
sinus arrhythmia. Pathologic breathing
patterns, such as those seen with ob-
structive sleep apnea, may be associated
with lower-frequency oscillations in the
heart rate [13,14].

Diverse measures of heart rate vari-
ability have been proposed, and some
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may be associated with a variety of car-
diopulmonary and systemic disorders
[15,16]. However, implementation of
such methods remains difficult to inter-
pret on an individual basis and, in the ab-
sence of a consensus as to their utility,
these measures have limited practical
bedside applicability at present.

SONIFICATION

The auditory system is particularly well
suited for following multiple streams of
information [17-19] such as those con-
tained in complex heartbeat time series.
Sonification may thus offer an effective
means for simultaneous display of many
signal-processing operations. A heart rate
variability dataset, which can be consid-
ered a one-dimensional vector, may be
displayed as a multidimensional sonifi-
cation. Such a means of display may allow
correlations among analytic tech-
niques—which might normally be diffi-

start from the selected time.

cult to detect—to be observed aurally.
Further, such a technique might prove
useful in screening long-term series
records for clinically important dynam-
ics.

SOFTWARE

We use a software sound synthesis
(SWSS) program to sonify the heart rate
variability data. Such programs, the basis
of computer music [20], have existed
since the 1950s. Music is represented dig-
itally by converting the air pressure
changes of musical events into a discrete
series of numbers or samples. The sam-
ples are audified by being passed into a
digital-to-audio converter (DAC), which
converts the sample values into voltage
values, which are used to vibrate the cone
of aloudspeaker, thus producing the de-
sired sound. For example, an audio CD
contains a set of discrete samples. The
CD player contains a DAC that feeds the
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Fig. 3. Healthy subjects show a complex pattern of heart rate variability that is neither ran-

dom nor periodic. (© Mark Ballora)

numbers to an amplifier, which in turn
sends energy proportional to the discrete
sample values to a loudspeaker. SWSS
programs enable composers to create
sets of samples so that compositions may
be realized and stored digitally.
We sonify heart rate variability data
with the synthesis program SuperCol-
lider <www.audiosynth.com>, a special-
ized programming language designed
for real-time audio applications. Super-
Collider is well suited to our sonification
model because of its computational effi-
ciency, its array and list processing capa-
bility, its methodology for generating
(spawning) musical events according to a
programmer’s instructions, and its inter-
active potential as realized through the
use of custom-designed graphical user in-
terfaces (GUIs).
In our procedure, a series of signal-
processing operations are saved as sepa-
rate files, loaded into SuperCollider and
stored as array variables. The arrays are
iterated simultaneously, with each suc-
cessive value employed as a source of mu-
sical events. The model employs the
following mappings:
¢ Each interbeat interval is mapped to
a pitch, sounded by an oscillator that
produces short sine-wave sounds
(“grains”). Higher heart rates corre-
spond to higher pitches. To produce
a harmonious blend of sounds, the
same pitch-mapping formula is used
as the basis for all sonification tracks.

® Successive interbeat intervals differ-
ing by more than 50 msec are given
an additional timbral annotation, a
“tinkling” sound produced by phase
modulation synthesis.

¢ The currentinterbeat interval is con-

sidered to be the center of a sliding
window of 300 values. This value cor-
responds to roughly 5 minutes of car-
diac activity, a time window used for
some heart rate variability analyses
[21]. The window’s standard devia-

tion is sonified by a pulsing, spectrally
rich waveform with all harmonics at
an amplitude equal to the funda-
mental. The standard deviation value
is mapped to pulsing speed and num-
ber of harmonics.

® Two smaller sliding windows sonify

running means. The windows are
smaller than the standard deviation
window in order to render changes
on shorter time scales. The first is a
window of 15 values, sounded by a
glassy hum. The second, sounded
with a clarinet-like timbre, is a win-
dow of five values, all of which are
rounded to the nearest one-fifth of a
second, so that cardiac changes are
rendered with a lower degree of pre-
cision.

We have found a useful default play-
back rate to be 60 events per second, a
number corresponding to roughly 1
minute of cardiac activity, since normal
sinus rhythm in the resting state tends to
produce one heartbeat per second. This
pointillistic “sound cloud” of extremely
short events is an example of granular
synthesis, an approach explored by such
composers as lannis Xenakis, Barry
Truax and Curtis Roads [22]. Via the in-

terface, listeners may adjust relative vol-
ume levels among signal-processing op-
erations, playback rate (data points per
second) and the region of the file to be
played. Thus, users may “zoom” in or out
to focus on any dimension (s) of the data.
The interface is shown in Fig. 2.

CASE STUDIES

In preliminary studies, we have studied
heart rate dynamics for four cardiac
states: good health, congestive heart fail-
ure, atrial fibrillation and obstructive
sleep apnea. Audio examples of the soni-
fications may be heard at <www.music.
psu.edu/Faculty%20Pages/Ballora/soni
fication/sonex.html>.

Good Health

The heart rate of healthy individuals
shows subtle but complex variations with
intermittent, but not extreme, fluctua-
tions in all parameters (Fig. 3). Changes
in the mean and standard deviation are
easily perceived, reflecting physiologic
nonstationarity (changeability of mean
and standard deviation). Patches of
higher variability produce clusters of the
tinkling sound associated with larger in-
terbeat intervals.

Congestive Heart Failure

Congestive heart failure is a syndrome
characterized by a marked reduction in
the pumping efficiency of one or both
ventricles (low cardiac output) and by
fluid retention (edema). Heart rate vari-
ability datasets from subjects with con-
gestive heart failure (Fig. 4) often display
reduced variability in sinus rhythm, in ex-
treme cases displaying a nearly flat line.
They also may display low-amplitude os-
cillations within a frequency range of
approximately 0.01-0.02 Hz (50-100 sec-
onds per cycle), corresponding to a
pathological pattern of periodic breath-

Fig. 4. Severe congestive heart failure, a major cardiac pathology, may be associated with a
striking loss of heart rate variability, producing a flat, monotonous pattern. (© Mark Ballora)
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Fig. 5. The heart rate with the cardiac arrhythmia known as atrial fibrillation shows an erratic,
uncorrelated response over short time scales, producing a white noise (static-like) output.

(© Mark Ballora)

ing known as Cheyne-Stokes respiration.
Individuals who suffer from congestive
heart failure are at high risk for sudden
cardiac death [23]. Congestive heart fail-
ure sonifications for subjects in sinus
rhythm are typically extremely monoto-
nous, reflecting greatly reduced variabil-
ity. The interbeat interval pitches appear
to be nearly constant, as does the run-
ning mean. The standard deviation soni-
fication has such a low oscillation rate
and such reduced harmonic content that
itis almost inaudible. The “tinkling” from
larger intervals is far less apparent than
in sonifications of other cardiac states.

Atrial Fibrillation

Atrial fibrillation describes a cardiac
rhythm that is no longer set by the sinus
node, but rather by rapidly circulating
waves (300-500/sec) originating in the
upper chambers of the heart (the atria).
The actual heartbeat does not result di-
rectly from each of these waves, but
rather from a fraction that manage to
reach the lower chambers of the heart,
the ventricles, which pump the blood
to the rest of the body. In atrial fibrilla-
tion, the heart rate is highly irregular,
with no obvious patterns (Fig. 5). Due to
the high levels of variability, the cardiac
interbeat interval sonifications in atrial
fibrillation jump discontinuously be-
tween high and low pitches, and the tin-
kling sounds are relatively constant
throughout. Despite such ongoing vari-
ability, the mean does not change
markedly, and the standard deviation
stays at a consistently high value.

Obstructive Sleep Apnea

Obstructive sleep apnea is associated with
excessive relaxation of muscles in the
back of the throat during sleep. The air-
way becomes intermittently closed, and
breathing can stop for time periods on
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the order of a minute or so. Breathing
then suddenly resumes, often accompa-
nied by a loud snorting. These episodes
may occur 20 to 30 times per hour, hun-
dreds of times in a night, without the suf-
ferer even being aware of them. The
daytime result may be loss of alertness,
even to the point of suddenly falling
asleep. In the long term, obstructive
sleep apnea increases risk of high blood
pressure, heart attack and stroke. People
with obstructive sleep apnea are also at
increased risk of involvement in traffic
accidents [24].

While sleep apnea is typically diag-
nosed via polysomnographic analysis (an
expensive and often burdensome proce-
dure), the syndrome can also often be
observed indirectly by periodic changes
in the heart rate associated with cessation
and resumption of breathing [25,26].
Sonifications of apneic variability data
may sound similar to healthy sets, par-
ticularly in milder cases, due to the spo-
radic nature of apneic episodes. Severe
cases, characterized by a high density of
apneic episodes, are quite perceptible
and have a siren-like sound correspond-

ing to the recurring, relatively low-
frequency heart rate oscillations (0.01-
0.04 Hz) with relatively large amplitude
[27,28] (Fig. 6). This oscillating tone is
also apparent in the two running mean
sonifications. Furthermore, often the
heart rate oscillations are also percepti-
ble in the tinkling sounds of the larger
intervals, which are heard in regular
“clumps” associated with the oscillations.
While some heart rate variability plots
of subjects with sleep apnea are straight-
forward, others are “noisy,” displaying no
clear oscillations (Fig. 7). However, by
using the sonification interface described
above to “fine tune” a sonification of the
data, the oscillations may become audi-
ble, allowing a diagnosis to be made.

CLINICAL APPLICATION

Preliminary studies with undergraduate
volunteers without biomedical expertise
suggested that auditory displays were
more useful than visual representations
in differentiating obstructive sleep apnea
from healthy states. We tested this ob-
servation further in an international
physiologic signal analysis data competi-
tion <www.physionet.org/physiobank/
database/apnea-ecg/> in which 30 ECG
datasets from subjects with moderate to
severe sleep apnea and 30 datasets from
healthy control subjects needed to be dif-
ferentiated. By transposing these records
into auditory signals, one of us (MB) was
able to achieve a 90% correct identifica-
tion rate. The identifications were
achieved not by automatic recognition,
but by adjusting the volume balances of
the various properties shown in Fig. 2 to
“tune in” telltale oscillations. The results
suggest the potential for diagnosis of
sleep apnea through heart rate variabil-
ity data taken from an ambulatory
(Holter) or bedside heart monitor and
mapped to an auditory display [29].

Fig. 6. Subjects with obstructive sleep apnea typically show periodic heart rate oscillations
that correspond to repetitive cycles of apnea and arousal during sleep. (© Mark Ballora)
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Fig. 7. Comparison of straightforward and “noisy” heart rate variability plots during apneic episodes (records from different subjects).
(Courtesy of Joseph E. Mietus, Margret and H.A. Rey Laboratory for Nonlinear Dynamics in Medicine) In the top record, the dark triangles
along the time axis indicate apneic episodes identified through standard polysomnographic analysis. The heart-rate oscillations clearly corre-
spond with the triangles, making this example easy to diagnose visually with a heart rate variability plot. In the bottom record, there is no
visually clear correlation between the heart rate plot and the apneic episodes. However, the sonification interface effectively filters the
“noise” out, allowing the “hidden” oscillations to be heard and enabling a diagnosis.

Based on the experiences described
above, sonifications could be employed
in two ways. The sonification model
could be adjusted to register known con-
ditions automatically—for example, if a
certain number of intervals within a
given range occurred within a certain
number of successive beats, a warning
tone could sound. Alternatively, the
model could be used as is, with the pos-
sibility of adding more operations as sep-
arate audio “tracks.” This second model
would allow a more open-ended investi-
gation that could reveal unexpected phe-
nomena.

MUSICAL APPLICATION

To explore musical applications, we
chose a greater variety of mappings than
those used in the diagnostic tests, with
the goal of creating a soundscape of con-
tinually shifting timbral elements. We
used some of the same external files as
for the diagnostic sonifications: the car-
diac interbeat interval and a series of
standard deviation values corresponding
to window sizes of 300 data points. The
piece Heart Rhythms: Healthy was played
at the 2002 conference of the Society for
ElectroAcoustic Music in the United
States (SEAMUS). An excerpt can be
heard on-line at <www.music.psu.edu/
Faculty%20Pages/Ballora/sonification/
hrhythms.htmI>. It employs the follow-
ing mappings:
¢ FEach cardiac interbeat interval is
mapped to a pitch sounded by an os-
cillator that produces short sine wave

sounds (“grains”), as with the diag-
nostic sonifications. The interbeat in-
tervals were also used as a clock to
provide the timing for each granular
event.

A bell-like sound was synthesized
based on the values of the differences
between successive interbeat data
values. The sound was created by
sending impulses to a filter bank with
adjustable center frequencies and
ring times. The frequency at which
the impulses were generated was
based on the current standard devi-
ation window value. The center fre-
quencies and ring times were based
on the global mean of the data
points, plus minimum, maximum
and mean values from the list of stan-
dard deviation values.

Avocal chorus sound was synthesized
by sending a rich harmonic wave and
noise through a set of bandpass fil-
ters and setting center frequencies
and their amplitude values to corre-
spond with formant regions used in
vocal synthesis [30]. The values for
center frequencies and amplitudes
were mappings of the standard devi-
ation values of the inter-beat intervals
in windows of 300 beats.

The set of inter-beat intervals was
subdivided into six equal subdivi-
sions; each subdivision was succes-
sively divided in half, creating
subdivisions of Y2 the set’s length,
Yoy the length, and so on to 468 the
dataset’s length. The median of each
subdivision was taken and mapped to

a frequency and stereo pan position.
The frequencies were assigned to a
variety of synthesized sounds resem-
bling a sitar, wooden wind chimes,
plucked strings and a number of ab-
stract timbres. These sounds were
generated at time intervals corre-
sponding to the proportion of the
dataset they represented. A sitar-like
tone was heard every time Y6 of the
dataset was iterated (approximately
every 40 seconds), another drone was
heard every 19 of the set’s iteration,
and so on. The shortest subdivision
was mapped to a plucked string
sound that occurred approximately
every 0.75 seconds, thus creating the

piece’s “melody.”

AFTERWORD

Although Laénnec was not the first to lis-
ten to the human heart, his signal con-
tribution was in demonstrating how to
systematically interpret its sounds in
terms of underlying health and pathol-
ogy. Computer methods now enable us
to generate new ways of listening to the
heart and even to compose music from
its workings. But we are still at the early
stages of learning how to interpret the re-
sulting sonifications and how to compose
music based on complex physiologic
datasets. The creation of music from bi-
ologic templates remains a fascinating
and incompletely explored composi-
tional challenge. Little, if any, music cre-
ated from real-world data approaches the
compelling beauty of the popular visual
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representations of fractal and chaotic
phenomena [31,32]. Future work could
evolve in two directions—one toward
new forms of “biometric music,” the
other toward new modalities of medical
diagnosis.
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