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Summary. Oscillations in a class of piecewise linear (PL) equations which have 
been proposed to model biological control systems are considered. The flows in 
phase space determined by the PL equations can be classified by a directed graph, 
called a state transition diagram, on an N-cube. Each vertex of the N-cube corres- 
ponds to an orthant in phase space and each edge corresponds to an open 
boundary between neighboring orthants. If the state transition diagram contains 
a certain configuration called a cyclic attractor, then we prove that for the 
associated PL equation, all trajectories in the regions of phase space correspond- 
ing to the cyclic attractor either (i) approach a unique stable limit cycle attractor, 
or (ii) approach the origin, in the limit t --* oo. An algebraic criterion is given to 
distinguish the two eases. Equations which can be used to model feedback 
inhibition are introduced to illustrate the techniques. 
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1. Introduction 

Biological oscillations have recently attracted widespread interest from both 
mathematicians and biologists. In the following we explicitly demonstrate stability 
and uniqueness properties of limit cycle oscillations in a class of differential equa- 
tions which have been proposed to represent the interactions which occur in 
biological control systems (Glass, 1975a). 

A fundamental observation underlying this work is that control elements in 
biological systems are often analogous to switches so that their activities depend on 
input variables in a non-linear switchlike fashion. In bacteria, regulation of 
metabolic pathways often occurs by modulation of catalytic activity of enzymes by 
metabolites which are not themselves substrates of the enzymes. In the phenomena 
of end-product inhibition or feedback inhibition, the last product of a synthetic 
sequence inhibits in a non-linear switchlike fashion the catalytic activity of an early 
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allosteric enzyme in the synthetic sequence (Monod, Wyman and Changeux, 1965; 
Lehninger, 1970). Not only are the activities of enzymes subject to control, but in 
bacteria the synthesis of the enzymes is also often controlled by the presence or 
absence of critical metabolites in the growth medium. For example, in E. coil, 
lactose stimulates or induces the production of the enzyme/~-galactosidase, and this 
induction shows an increasing sigmoidal dependence on lactose concentration 
(Bourgeois and Monod, 1970; Yagil and Yagil, 1971 ; Yagil, 1975). Repression of 
enzyme synthesis by end-products of synthetic sequences in which those enzymes 
participate is also well known (Lehningen, 1970; Yagil and Yagil, 1971; Yagil, 
1975). 

Many biological control systems are composed of two or more non-linear control 
elements, where the outputs from one element act as input stimuli elsewhere in the 
network. Several authors have described ways-in which simple control elements 
can be used to synthesize networks which can regulate diverse phenomena such as 
biological oscillations and differentiation (Monod and Jacob, 1961; Sugita, 1963; 
Simon, 1965; Kauffman, 1969; Glass and Kauffman, 1973; R6ssler, 1974; Othmer, 
1976). 

As a result of their particularly simple structure and their biological importance, 
feedback inhibition networks, represented schematically by 

§ 4- + 

-'-~ xx --+xa + . . -  ---~ x~, (1.I) 
t ) 

have attracted widespread interest. Since x~t inhibits the production of xx, the 
concentration of x~r may be regulated at a constant level. However, in many 
circumstances, the resulting system is liable to oscillations (Goodwin, 1965; 
Griffith, 1968; Walter, 1971; Hunding, 1974; Tyson, 1975; Glass, 1975a, 1975b, 
1977a; Othmer, 1976; Hastings, 1977; Hastings, Tyson and Webster, 1977). 

In what follows, the non-linearities in biological control systems are represented in 
an extreme way by  discontinuities in differential equations. This transforms the 
non-linear equations to piecewise linear (PL) equations. A PL equation will arise 
for example, if a steep sigmoidal control function is approximated by a step func- 
tion. The study of the PL equations is motivated by an attempt to model biological 
systems within the framework of a tractable mathematical structure. We believe 
that these discontinuous systems can serve as mathematical models for real 
biological systems, and as approximations of continuous models (Glass, 1975a; 
Glass and Pasternack, 1978). 

In Section 2 we derive a class of PL equations. In Section 3, we give a technique to 
classify the PL equations using directed graphs on N-cubes, N-dimensional hyper- 
cubes. The N-cube classification can be used to identify PL equations in N >i 2 
dimensions, which can display stable, limit cycle oscillations, as described by the 
theorem, Section 4. In Section 5, three special cases of the theorem are given. In 
Section 6, the results are discussed. The theorem stated in Section 4 is proved in the 
Appendix. 
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2. The PL Equations 

Although we believe the PL equations are of broad general interest, we confine our 
discussion of the derivation of the PL equations to biochemical systems. The 
variables Yt,)'2 . . . . .  y~ which represent chemical concentrations are real non- 
negative variables. The rate of synthesis of Yt called gl is assumed to depend on the 
concentrations of the other chemical constituents, whereas the rate of degradation 
of yt is proportional to its own concentration. The network can be represented 

ay, 
"~ = gt(Yt, Ya . . . . .  Yl-l, Y~+I . . . .  , Ys) -- Y~Yi i = 1, 2, . . . .  N; N + 1 = 1, 

(2.I) 

where y~ is the decay constant for the ith variable. A number of mathematical 
models of biochemical control systems can be written this way (Goodwin, 1965; 
Simon, 1965; Griffith, 1968; Walter, 1971; Hunding, 1974; Tyson, 1975; Glass, 
1975a, 1977a; Othmer, 1976; Hastings, 1977; Hsfi, 1977; Hastings, Tyson and 
Webster, 1977; Glass and Pasternack, 1978). 

Of particular interest have been mathematical models of feedback inhibition. The 
systems of equations which have been proposed for feedback inhibition can be 
written in the form of (2.1) with the following restrictions on the  g~ (Hastings, 
Tyson and Webster, 1977) (cf. (1.1)), 

agl Og, Og~ 
~ys < 0, ~yj_l > 0 for i = 2 . . . . .  N, G -- 0 otherwise. (2.2) 

It has recently been proven for equations of the form (2.1), which satisfy (2.2) plus 
certain additional conditions, that a periodic solution exists (Hastings, Tyson and 
Webster, 1977). In addition, extensive numerical simulations and analysis of Hopf 
bifurcation phenomena in feedback inhibition schemes have been reported (Good- 
win, 1965; Griffith, 1968; Walter, 1971; Hunding, 1974; Othmer, 1976; Glass, 
1977a; Glass and Pasternack, 1978). Proof of~ttable limit cycle oscillations for a 
special case in three dimensions has been repoJii[ed (Hastings, 1977). 

In biochemical systems, synthetic rates are often empirically described by the Hill 
function (Monod, Wyman and Changeux, 1965; Yagil and Yagil, 1971; Yagil, 
1975) 

g(y) = 0.~+Y~f (2.3a) 

g(Y) = 0" + ~ '  (2.3b) 

where ,~, called the production constant, represents the maximal value ofg(y), m is a 
positive real number called the Hill coefficient, and 0 is a positive real number. In 
the particular case where m - -  1, (2.3a) represents Michaelis-Menten kinetics 
(Lehninger, 1970). Using the Hill functions (2.3) for the terms giving synthetic rates 
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in (2.1), in combination with the criteria in (2.2), we derive as a mathematical model 
of feedback inhibition 

dy__.tl = ~10~1 
dt 0i~a + y~x -- 7xYx, 

(2.4) 
me dy, )~, Y, - 1 

" ~  = 0'~' + Y~21 7,Y,. i = 2, 3 . . . . .  N .  

where A,, 0 ,  m ,  i = 1, 2 . . . . .  N are positive reals. 

The PL equations which we consider, emerge as extreme limits of non-linear 
equations such as (2.4). A variable whose possible values are only 0 and 1 is called a 
Boolean variable, and a function whose possible values are only 0 and 1 is called a 
Boolean function. Suppose positive constants "01, 02 . . . . .  0~. are given. For each 
i = 1, 2 . . . . .  N associate to y,  a Boolean variable .~, defined by 

33,=  1 i f y t >  O, (2.5) 

3 3 , = 0  if y , <  0,. 

In order to model non-linear biochemical control networks, Glass (1975a) has 
proposed the PL equations 

dr, 
=  B,(331, . . . . .  . . . . .  33.)  - y , y ,  i =  1,2, . . . .  N ; N +  1--  1, 

(2.6) 

where the B, are Boolean functions, and )q, 7, are once again positive real constants. 
For example, if we consider in (2.4) the case in which 

y, = 1, ,X, = 1, 0, = 0.5, mt = m for i --- 1 . . . . .  iV, (2.7) 

and consider the limit m --> oo, Equation (2.4) can be written, 

dr1 
= 1 - HC33N) -- Yt, 

(2.8) 
dy, 

= H ( 3 3 , - 1 ) - Y , ,  i = 2 , 3  . . . . .  N, 

where H is the Boolean function 

H(1) = 1, H(0) -- 0. (2.9) 

Stable limit cycle oscillations in (2.8) are demonstrated in Section 5. 

Other control networks in addition to the feedback inhibition networks can be 
represented by continuous equations of the form (2.1). For example, in neuro- 
biology it has been proposed tha t '  sequential disinhibition' may underlie oscillatory 
mechanisms (Kling and Szekely, 1968; Friesen, Poon and Stent, 1976). Continuous 
and PL equations analogous to those given here for feedback inhibition, have 
been proposed for networks displaying 'sequential disinhibition' (Glass and 
Pasternack, 1978). 
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3. State Transition Diagrams for the PL Equations 

Our theorem is applicable to (2.6) with the following two modifications. 

i) The production constants ~ can depend on the Boolean vector .17. 
ii) 71 = y2 . . . . .  ys. 

For convenience, we translate the coordinate system so that the intersection of  the 
N threshold hyperplanes, defined by y~ --- 0, i = 1, 2 . . . . .  N, is defined as the 
origin of N-dimensional Euclidean space in the transformed variables. For each i, 
let 

x ,  = y ,  - e, ( 3 . 0  

and define the corresponding Boolean variable by 

& =  1 i f x l > 0 ,  & = 0  i f x ~ < 0 .  (3.2) 

The PL differential equations of  present interest are given by 

& ,  
-~- = & ( ~ l ,  ~ . . . .  , ~,,) - x , ,  i = l ,  2 ,  . . . .  N ,  ( 3 . 3 )  

where As is nowhere zero and for each i the sign of  &(*l, $2, �9 �9 $~) is independent 
ofx~. 

A curve in N-dimensional phase space (xx(t), x2(t) . . . .  , xN(t)) is a solution to (3.3) 
provided that the x~(t) are continuous, piecewise differentiable and satisfy 1(3.3) 
whenever all xi ~ O. A non-singular solution is one in which for each i, x~(t) = 0 
only at isolated values of  t. A non-singular solution defines an oriented curve in 
N-dimensional phase space called a trajectory. We are only concerned with non- 
singular solutions. 

A local solution of (3.3) originating at a point (cl, c2 . . . . .  cs) not on a coordinate 
hyperplane is given by 

x,( t)  -- ~ + (c, -- )h) e-t, i ---- 1, 2 . . . . .  N, (3.4) 

where 

x, = a,Cel, e ~ , . . . , e ~ ) ,  i =  1 ,2  . . . .  , N  (3.5) 

with #f being the Boolean variable associated to c~ by (3.2). The solution given by 
(3.4) is a straight line originating at (cl, c2 . . . . .  c~) and directed toward 
(al, aa . . . .  , a,v). All the local solutions to (3.3) in a given orthant are straight lines 
directed to the same point, called a focal point. 

Equation (3.4) defines the solution portrait in N-space off the coordinate hyper- 
planes. To extend the solution portrait to the coordinate hyperplanes maximally 
extend the local solutions given by (3.4). In general, the solutions will have 
'corners '  (i.e., be non-differentiable) at the coordinate hyperplanes. 

Using the assumption that the sign of A,(xl,  x2 . . . . .  x~) is independent of x,, it will 
now be shown that the trajectories are well defined at points of the coordinate 
hyperplanes where only one coordinate is zero. Each of  the 2 ~ orthants of  N-space 
can be labelled by a Boolean N-tuple $(al, a2 . . . . .  aar with as - 1 if the ith variable 
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is positive and at = 0 if it is negative. Let S(a: . . . .  , a t - l ,  *, at+x . . . . .  a~) be the 
open subset of  the hyperplane x, = 0 given by 

xx = al, x2 = a2 . . . .  , x,-x = al-1, xt+l = at+x . . . . .  ~ r  = aN. (3.6) 

We will refer to S(ax , . . . , a t - x , * ,a t+x  . . . . .  aN) as the 'open common boun- 
dary" between the neighboring orthants ~ ( a l , . . . ,  at-x, 0, at+: . . . . .  aN) and 
r . . . .  , at-x, 1, at+x . . . . .  aN). Since At is nowhere zero solution curves approach 
an open common boundary transversely. Trajectories from the same orthant 
cannot intersect at an open common boundary point and thus, to show that two 
trajectories from different orthants can be patched together at an open common 
boundary point it is sufficient to show that at the boundary point, an orientation 
for the trajectory can be defined. This is guaranteed by the assumption that the 
sign of  At(s ~z . . . .  , ~N) is independent of  gt. tn fact, if the sign of  At is positive in 
r . . . . .  at-x, 0, at+x . . . . .  a~r) and r . . . . .  at-x, 1, at+x . . . . .  aN) the trajectories 
flow across S(al . . . .  , a~-l, *, ai+l . . . . .  an) from 0(ax . . . . .  at-x, 0, a~+x . . . . .  aN) to 
d~(a~ . . . .  , a~-x, 1, a~+x . . . .  , aN), and flow is in the opposite direction if  the sign of  
At is negative in both orthants. 

It  is a consequence of  this discussion that the flow defined by (3.3) can be repre- 
sented by an N-cube with directed edges. To each orthant ~(aa . . . . .  aN) is associated 
the vertex (a~ . . . . .  as) of an N-cube and to each open common boundary of  two 
orthants is associated the connecting edge on the N-cube; the edge is directed 
according to the direction of  flow across the boundary. The N-cube with directed 
edges is called the state transition diagram for the system (3.3). 

For  example, the following equation models a simple feedback inhibition system, 

dx---2: = ( - 1  + 2~N) -- XN, 
dt 

dxt 
- ~  = ( - 1  + 2 ~ t - 1 )  - x , ,  

where • = 1 anti 
(3.7) with N = 3, 

(3.7) 

i = 2 , 3  . . . . .  N, 

i = 0 (compare with (2.8)). The state transition diagrams for 
4 are shown in Figure 1. 

4. Limit Cycles in the PL Equations 

In the theory of  ordinary differential equation, a stable limit cycle is a periodic 
solution to a differential equation which has the property that the trajectory 
through every point in phase space sufficiently close to the closed curve defined by 
the periodic solution approaches that closed curve asymptotically as t - + o o  
(Hirsch and Smale, 1974). The analogue of a stable limit cycle is now defined for a 
cycle on an N-cube with directed edges. 

Definitions 
i) A cycle on an N-cube with directed edges is a finite sequence of  vertices, each 

vertex sharing a common edge with the preceding and succeeding vertex in 
sequence and no vertex appears more than once in the sequence except the first 
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Fig. l a  and b. The state transition diagrams for Eq. (3.7) with a) N = 3, b) N -- 4. The cyclic 
attractor is indicated by heavy edges 

and last vertices are identical. The edge between successive vertices is directed 
from one to the next in sequence. 

ii) A vertex, not on a given cycle, which shares a common edge with a vertex of the 
cycle is adjacent to the cycle. 

iii) A cyclic attractor is a cycle for which there are (N - 2) vertices adjacent to each 
vertex of the cycle and the edge(s) from each adjacent vertex to the cycle is 
(are) directed toward the cycle. 

iv) An N-dimensional cyclic attractor is a cyclic attractor on an N-cube which is not 
contained on any lower dimensional sub-cube. 

The main result of  this paper is the following theorem which gives a complete 
classification of the topological features of the flow defined by (3.3) through the 
orthants of phase space associated to an N-dimensional cyclic attractor in the state 
transition diagram. 

Theorem. Given an N-dimensional system of Equations (3.3) in which the state 
transition diagram has an N-dimensional cyclic attractor, then one of  the following 
two situations "holds: 

1) There is a stable limit cycle in phase space which passes through the orthants in the 
same sequence and order as the cyclic attractor in the state transition diagram. The 
trajectories through the points o f  orthants represented by vertices of  the cyclic 
attractor and the points of  boundaries represented by edges of  the cyclic attractor 
asymptotically approach the limit cycle as t --~ oo. 

2) The trajectories through the points o f  orthants and boundaries represented by the 
cyclic attractor asymptotically approach the origin as t ~ oo. 

The two cases can be distinguished by determining if the leading eigenvalue of a 
positive matrix associated with the PL equations is greater than 1. 
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The strategy of  the proof is as follows. Let S~ be any open common boundary 
represented by an edge of  the cyclic attractor. Then we will show that the PL 
equations define a map hi: St ~ S~. ht is called the Poinear~ map  or re turn map.  
A f i x e d  point  of the Poincar6 map, v* E Sl is defined by 

hi(v*) = v*. (4.1) 

Fixed points of  the Poincar6 map correspond to limit cycles in the PL equations 
(Hirsch and Smale, 1974). For a point z ~ S~, consider the sequence z, hi(z), h~(z) = 
hi(hi(z)) . . . . .  h'~(z) = ht(h'~-X(z)). Then the theorem can be proved once we show 
that for all z ~ Si either 

i) lira h~(z) = v*, 
R ' - *  tO 

or (4.2) 

ii) lim h~(z) = O. 
n - - ~  OD 

In the first case, all trajectories asymptotically approach a limit cycle which passes 
through v*e  Si. In the second ease, all trajectories asymptotically approach the 
origin. We prove the theorem by first explicitly computing the form of  the Poincar6 
map for the flows defined by the cyclic attractors in the PL equations, and then by 
demonstrating that the properties of  the Poincar6 map under iteration are as given 
above. The details of  the proof  are given in the Appendix. 

5. Examples . . . . . . . . . .  

In this section we present three examples to show that stable limit cycle oscillations 
exist in all dimensions N I> 2, and to explicitly compute the limit cycle in selected 
cases. As we shown in the Appendix for (3.3) with an N-dimensional cyclic attractor, 
the Poincarr map for the flow in regions of  phase space corresponding to the cyclic 
attractor contains an (N - I) x (N - 1) positive matrix, A. If  the leading eigen- 
value, p, of  A is greater than 1, stable limit cycles are found. We omit most com- 
putations. 

E x a m p l e  1. The 2-dimensional cyclic attractor. 

This is the system found for feedback inhibition in 2 dimensions. A verbal descrip- 
tion of  this system is xx stimulates the production of  x2 and x2 inhibits the produc- 
tion of  xl. Thus, the system is analogous to a predator-prey system where xl is the 
prey and x2 is the predator. A 2-dimensional vector field is shown in Figure 2. 
Assume the A~ in the four quadrants are assigned the values 

xl x2 A1 A2 
I 1 a~ b, 
1 0 a3 ba 
0 I ax bl 
0 0 a2 b2 

Then it can be easily shown that the positive Xl axis is mapped into itself by the map 

pxx , (5.1) 
ha(xa) = 1 + r x  I 
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{al, bl ) l xz 
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\ 

(a : ,  b:) ) 

Fig. 2. A geometrical construction of the flow for the two dimensional cyclic attractor of Eq. 
(3.3). For this case all trajectories tend to a stable limit cycle oscillation (see Example 1, Section 5) 

where 

a4b3a2bl (5.2) 
P = b~a3b2a----~l' 

1 bl bla2 bla2ba 
r = - - +  + + 

al ~ ~ albaaab4 

It is well known (May, 1975) and also follows from the results in the Appendix, that 

l imh](x~)=0 ,  forp~< 1, 
R--~  s 

(5.3) 
] i m h l ( x l ) = O -  1, f o r p >  1, 
n co r 

for all xl > 0. Thus the number (a4b3a2b~)/(b~a3b2a~) can be used to classify the 
flow into two topologically distinct phase portraits. This result is reminiscent of 
results found in many other studies of non-linear oscillations in two dimensions 
(May, 1972; Hirsch and Smale, 1974). 

Example 2. A choice of focal points generating limit cycles for N/> 3. 

Assume all the focal points for the flows in (3.3) lie on the "unit N-cube' of side 
length 2 whose vertices are at the coordinates (w~, w2 . . . .  , ws), where wj = + 1 
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for i = I, 2 . . . . .  N. Consider any system (3.3) with an N-dimensional cyclic 
attractor N/> 3. In this particular case, it is not difficult to show that each entry 
atj of the matrix A of the Poincar6 map (see Appendix, Equation (A.1)) is a positive 
integer. Define 

N - 1  

S~= ~ aik, s = m i n S ~ , S = m a x S i ;  (5.4) 
k = l  

then the dominant eigenvalue, p, satisfies (Gantmacher, 1959) 

s ~< p ~ S (5.5) 

so that p > 1. Consequently, from the theorem, for each case there is a stable limit 
cycle oscillation. This conclusion appeared as a conjecture in earlier publications 
(Glass, 1977a, 1977b; Glass and Pasternack, 1978). 

R e m a r k .  Counting only those cyclic attractors which are different under the 
symmetry of the N-cube there is one 3-dimensional cyclic attractor, three 4- 
dimensional cyclic attractors, and eighteen 5-dimensional cyclic attractors (Glass, 
1977b). The period for the limit cycle associated with each of these cyclic attractors 
for the set of focal points described in this section was numerically computed by 
Glass (1977b). 

Example  3. Equation (3.7) . . . .  

Here we consider the N-dimensional cyclic attractor for feedback inhibition systems 
with N-variables when the focal points are on the unit N-cube. The equation 
corresponding to this case is given in (3.7). From Example 2 we know that there is 
a unique stable limit cycle for N >/ 3. The focal points are located in the orthants 
(of. Figure 1) (1, 1, 1 . . . . .  1, 1)--->(0, 1, 1 . . . . .  1, 1)---> (0, 0, 1 , . . . ,  1, I)--->-..---> 
(0, 0, 0 . . . . .  0, 0)---> (I, 0, 0 . . . . .  0, 0)---> (I, I, 0 , . . . ,  0, 0 ) - > - . . - +  (I, l,  I . . . . .  I, I) 
-->.. . .  Equation (3.7) displays a 2N-fold symmetry generated by the map 

(xx, x2 . . . . .  x~)  ~ ( - x z r  Xl . . . . .  x1r 1)- (5.6) 

From (A.3) 

fx(xl, x2 . . . . .  XN-1, O) = (0, Xl + X2 . . . . .  Xl + Xxr Xx)/(I + Xl). (5.7) 

Using the' symmetry (5.6) a point (ul, u2 . . . . .  u~r 1, 0) satisfying 

f l (Ul ,  u2 . . . . .  u , _ l ,  O) = (0, ux, Uz . . . .  , u ~ - l )  (5.8) 

is a fixed point of the return map hi. 

The solution of (5.7) and (5.8) is 

Ul = (1 - R,~)/Rm, (5.9) 

( ) u~-- 1 - R~ (I - Rm)R2, l, i = 2 , 3  . . . . .  m -  1, 
1 = 1  

um = 1 - R~, 
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where m = N - 1 and R,  is the unique root of the equation 

m 

0 -  "ff~zJ- 1, 0 < z < l .  (5.10) 
/ f f i l  

Remark. This example is closely related to two classic applications of linear algebra. 
The matrix A of the linear fractional map defined by (5.7) (see Appendix) is related 
to the Leslie matrices of population biology (Leslie, 1945; Busher, 1972). In fact, 
for this ease the matrix A is the transpose of a Leslie matrix in which all non-zero 
elements are 1. In addition, R,  is related to the ratio of successive terms of a 
generalized Fibonacei series. If an ruth order Fibonacci series is defined recursively 
by the formula 

fl~ = fl~-~ + fl~-~ + . . .  + f ie- .  (5.11) 

then 

R ~  ffi lim fl~-*. ,-.| fl, (5.12) 

Using (5.9) and (5.12) the coordinates of a point on the stable limit cycle of (3.7) 
can be readily computed on a hand calculator. For example, for N = 3, the cycle 
passes through the point (0.618, 0.382, 0), and for N = 4, the cycle passes through 
the point (0.839, 0.704, 0.456, 0). These values were found numerically by direct 
integration of (3.7) well before the analytic results were available (Glass, 1977a, 
1977b). 

6. Discussion 

In the preceding sections we have demonstrated asymptotic stability over a well 
defined domain in phase space for limit cycle oscillations in PL equations (3.3). 
We believe these results are of interest, both from a mathematical and biological 
perspective. 

For small amplitude limit cycles, numerous results concerning existence and 
stability have been derived by bifurcation analysis (Marsden and McCracken, 
1977). However, there are only a few demonstrations of uniqueness and stability 
for large amplitude limit cycles in non-linear differential equations in more than 
two dimensiofis (Smale, 1974; May and Leonard, 1975; Glass, 1977a; Hastings, 
1977). Moreover, topological approaches using the Brouwer fixed point theorem 
have only succeeded in demonstrating existence of cyclic solutions (Tyson, 1975; 
Hastings, Tyson and Webster, 1977; Hsfi, 1977). As a result of our choice of the 
PL equations, we have been able to compute explicitly the form of the Poincar~ 
map, and this enabled us to prove our theorem. To our knowledge, this work 
constitutes the first proof of large amplitude stable limit cycles in a class of differen- 
tial equations in N-dimensions. The next step is to show stability and uniqueness 
of the limit cycle oscillations in continuous equations which approximate the PL 
equations (Glass and Pasternack, 1978). Generalizations of Perron's theorem (see 
Appendix) (Lee, 1972) may be valuable in extending our results. 
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We believe that it makes sense to try to classify dynamics of  complex biological 
systems, and further that the properties of the PL equations are sufficiently broad, 
that a great many biological systems can be identified with one or another of the 
classes of the PL equations (Glass and Kauffman, 1973; Glass, 1975b, Glass and 
Pasternack, 1978). Knowledge of the qualitative dynamics of  the PL equations is 
necessary to identify particular biological examples. Our proof of limit cycles in a 
broad class of the PL equations provides a context for detailed analysis of the 
interactions which lead to oscillations in complex biological control systems. 
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Appendix--Proof of  the Theorem 

The proof relies on our ability to compute the Poincar6 map for flows in PL 
equations whose state transition diagrams contain a cyclic attractor. As we will 
show, the Poincar6 map is of the form 

Az (A.1) 
f ( z )  = 1 + z> 

where A is an (N - 1) x (N - 1) matrix, ff is an (N - 1) vector, z is a point on an 
open common boundary, and the symbol ( , ) represents the inner product of 
two vectors. The map defined in (A.1) is called a linear fractional map. Linear 
fractional maps are commonly used in complex analysis (Marsden, 1973). The 
composition of two linear fractional maps is again a linear fractional map. 

In Proposition 1 we show that for the Poincar6 maps of interest herein, A can be 
taken to be a positive matrix (all elements of a positive matrix are positive real 
numbers) and the vector ff is a non-negative vector with at least one non-zero 
component. The Perron theorem states that for a positive matrix, the largest or 
dominant eigenvalue is positive, and associated to this eigenvalue is an eigenvector 
all of  whose components can be taken positively (Gantmacher, 1959; Bellman, 
1970). Furthermore, there is no other linearly independent eigenvector in the 
non-negative orthant. Proposition 2 utilizes the Perron theorem to establish the 
limiting behavior of  the Poincar~ maps. 

The Form of the Poincar~ Map 

Let ~i, d72 . . . . .  d~L be the open orthants corresponding to the vertices of  a cyclic 
attractor in the state transition diagram (see p. 212). Each orthant has Nneighboring 
orthants and for each dT, j = 1, 2 . . . . .  L the flow is directed into the orthant from 
(N - 1) of its neighboring orthants and out of the orthant through its common 
boundary with d~j+x; the focal point for d~L is in $~. 
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Let Sx be the open common boundary of  r and r and Sj be the open common 
boundary of ~j-x and tgj. By relabelling the axes we may assume that the sequence 
OL, d~x, d~2 corresponds to the sequence of  vertices (1, I, I . . . .  ,1,0), (1, 1, 1 , . . . ,  I, 1), 
(0, 1, 1, . . . .  ,1,  1). From (3.4) it follows that a trajectory through (xx, x2, �9 �9 x , )  
01 intersects $2 at 

X a  ~ O ,  

�9 )hxx - )ixx~ for i = 2, 3 . . . .  , N, (A.2) 
X~----- Xx  - -  )ix 

where )i~ = A~(1, 1 , . . . ,  1) for i = 1, 2 . . . . .  N. Since ()i:,)i2 . . . . .  ~ )  ~ ~2, )ix < 0 
and ~ > 0 for i = 2, 3 . . . . .  N and (A.2) can be rewritten 

x ~ = 0  

, J.,V)id Ixd + Ix, l (A.3) 
x ,  ffi Ixd) id  + 1  " 

Equation (A.3) applies equally well for points (xx, x2 . . . . .  x~-x, 0) ~ S~. Thus all 
trajectories in ~1 and all trajectories passing through Sx intersect $2. 

The m a p l e :  Sx-..~S2 defined by (A.3) is of  the form shown in (A.1), where z = 
(xx, x ~ , . . . ,  x~r-x) is a (N - 1) vector giving the coordinates on the hyperplane 
x~r -- 0, A is a (N - 1) x (N - 1) matrix and ~ is a (N - 1) vector. A and ff are 

�9 given by  

c o ... i) 1~8/)ill 0 1 . . .  
a ~ ". " : , 

~ l ) i , , - d ) i l l  0 0 . . .  
/ 

\ I)i./)ill o o . . .  

= 0/I ) id ,  0, 0, . . . .  0). 

(A.4) 

The mapfx gives the coordinates offx(z) with respect to the basis (0, I, 0, 0 . . . . .  0), 
(0, 0, 1 , . . . ,  0) . . . . .  (0, 0, 0 . . . . .  1) of the coordinate hyperplane xl -- 0. 

In a similar manner, trajectories through $2 intersect So and so on with trajectories 
through SL intersecting S~. Let fx map $1 into $2 according to formula (A.2), let 
f j  map Ss to Sj+x analogously f o r j  = 2, 3 . . . . .  L - I andfL map SL to S~. The 
Poincar6 map hx is given by the composition of  the 

hx = fL o A - ~  o . . . .  A oA. (A.5) 

Each of  the maps f ,  j = 2, 3 . . . . .  L can also be written in the form of  (A.1) by 
suitable choice of bases for each of the common boundaries Sj. Since the composi- 
tion of  linear fractional maps is a linear fractional map, h~ is of the form shown in 
(A.I). 
Proposit ion 1. For a point z ~ S~, the Poincard map h~ is o f  the form shown in (A.I) 
where A is a positive (N - 1) x (N - 1) matrix and ~ is a non-negative non-zero 

vector. 
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Proof of  Proposition 1. First observe that each mapfL in (A.5) defines a linear frac- 
tional map with domain the (N - 1) dimensional coordinate hyperplane containing 
S,. Let el = (1, 0 . . . .  ,0), e2 = (0, 1 . . . . .  0) . . . . .  e~,-1 = (0, 0 , . . . ,  1, 0) be a basis 
for the hyperplane xn = 0. From (A.2), 

f~(el) = (0, lad, [Xsl,. . . ,  IA~l)/0 + lad), (A.6) 

fx(e,)=e~ f o r i = 2 , 3  . . . . .  N -  1. 

It is seen that fa(el) E $2 and sincef~ maps S, into S,+1 it follows from (A.5) that 
h~(ea) e Sx. This means that hx(e~) has positive coordinates with respect to the 
above basis for Sx. Thus the first column of the matrix A has only positive entries. 

For some integer q = 2, 3 . . . . .  N - 1 Sa is contained in the coordinate hyper- 
plane xq = 0. It follows thatfz(fx(eq)) e Sa. Again, sincefj: Sj --~ Sj+ ~ it can be con- 
eluded from (A.5) that hx(eq) ~ St, and hx(eq) has positive coordinates with respect 
to the above basis for $I. Thus the qth column of A has only positive entries. 

Continuing in this way, it follows that all the columns of A have only positive entries 
because the cyclic attractor is N-dimensional and thus for each i = 1, 2 , . . . ,  N - 1, 
h~(e~) has positive coordinates with respect to the above basis for Sx. Further, since 
the formula for the maps f j  are analogous to (A.4), ~ is a non-zero, non-negative 
vector. (Q.E.D. Proposition 1.) 

Proposit ion 2. Consider the map in (A.1) where A is a positive.matrix and ~ is a 
non-negative vector with at least one non-zero component. Let p be the dominant 
eigenvalue of A with associated positive eigenvector v. Then, for all non-zero z in the 
non-negative orthant 

lim fn(z) = av (A.7) 

where 

i) ~ = 0  for p <~ 1, 

p - 1 for p > 1. (A.8) ii) a = ( ~ , v )  

Proof of  Proposition 2. By iterating the map f ,  one computes 

am(z) (A.9) 
f"(z)  = I + <~, z + A(z) + . . .  + A~-X(z)> ' 

It is an immediate consequence of Perron's Theorem that Alp is similar to a 
stochastic matrix (Gantmacher, 1959) and that consequently (Gantmacher, 1959; 
Bellman, 1970) 

A m 
M = lira m (A.IO) 

where M is a matrix all of whose columns are scalar multiples of the eigenvector v. 
From (A.1) we have 

A~(z)/Pn (A. l l) 
f~(z) = (1 + (~, z + A(z) + . . .  + A~-X(z)))[p "" 
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Case 1, p < 1 

The numerator of  (A.11) is finite and the denominator is infinite as n -+ oo. Thus 

lira f " ( z )  = O. (A.12) 

Case 2, p = 1 

Here <4, z + A(z)  + . . .  + A"-a(z)> is infinite as n --> oo and (A.12) holds in this 
case. 

Case 3, p > l 

Define S,(z) and a,(z) by the following, 

z a(z) A~(z) A"-~(z) 
S~(z) = 7; + - - :  + m :  + . . .  + ~ :  , (A.13) 

z g(z)  M(z) M(z) 
c%(z) = ~ + ~ + ~ + . . .  + , (A.14) 

p 

where M is defined in (A.10). Substituting (A.13) into (A.I 1) gives 

A"(z)/9" (A.15) 
/"(z) = p-" + <4, S.(z)>" 

From (,4,.10) for each z, 

tim A"( z ) / / '  M ( z )  O. 
n " ,  r  

Using (A.16) together with the fact that 

lim n , - . |  f o r p >  1, (A.17) 

it is not difficult to verify that 

lim S,(z)  - a,(z) = 0 for all z. (A.18) 
W,..., cO 

By factoring out M(z) and summing the geometric series 

lira ~,(z) = M(z) for all z. (A.19) 
,,-.| p -  1 

(A.18) and (A.19) imply that 

lim S,(z)  = M ( z )  for each z. (A.20) 
,-.| p -  1 

Taking the limit in (A.15) yields 

lira f " ( z )  = (p - 1)g(z)  ( A l l )  .-. | <~, M(z)> for each z. 

For z a non-negative vector, z # O, M(z )  = f l v  for some non-zero scalar 13. Thus 

lim f " ( z ) =  (p - l)v (A.22) 
- - |  <4, v> 

for all non-negative vectors z, z # 0. (Q.E.D. Proposition 2.) 

(A:I6) 
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F rom Proposit ion 2 it follows that  f ( z )  has a non-zero fixed point  if and only if 
p > 1. In this case, the iterates o f  f approach the non-zero fixed point. I f  f has no 
non-zero fixed point, the iterates o f f  approach zero. 

To complete the proof,  it is now observed that  if  v* is a non-zero  fixed point  of  the 
return map  hi, thenf~ ofj_~ . . . . .  f l (v*)  is a non-zero fixed point  o f  the return map  
hi. Similarly, if any hj has a non-zero fixed point  then hi has a non-zero fixed point. 
Thus,  all the return maps  hj, j = 1, 2 , . . . ,  L have a non-zero fixed point  or  none o f  
them do. In the former  case, the flow exhibits a cycle which passes through the 
fixed points o f  the return maps hi. 

The trajectories in each orthant  tVj, j = 1, 2 . . . . .  L are straight lines which intersect 
the boundary  Sj+ ~ in finite time and the theorem therefore follows f rom the limiting 
proper ty  o f  iterations o f  the return maps. (Q.E.D. Theorem.)  
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