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In June 2008, the editors of Chaos decided to institute a new section to appear from time to time
that addresses timely and controversial topics related to nonlinear science. The first of these deals
with the dynamical characterization of human heart rate variability. We asked authors to respond to
the following questions: Is the normal heart rate chaotic? If the normal heart rate is not chaotic, is
there some more appropriate term to characterize the fluctuations �e.g., scaling, fractal, multifrac-
tal�? How does the analysis of heart rate variability elucidate the underlying mechanisms control-
ling the heart rate? Do any analyses of heart rate variability provide clinical information that can be
useful in medical assessment �e.g., in helping to assess the risk of sudden cardiac death�? If so,
please indicate what additional clinical studies would be useful for measures of heart rate variability
to be more broadly accepted by the medical community. In addition, as a challenge for analysis
methods, PhysioNet �A. L. Goldberger et al., “PhysioBank, PhysioToolkit, and PhysioNet: Com-
ponents of a new research resource for complex physiologic signals,” Circulation 101, e215–e220
�2000�� provided data sets from 15 patients of whom five were normal, five had heart failure, and
five had atrial fibrillation �http://www.physionet.org/challenge/chaos/�. This introductory essay
summarizes the main issues and introduces the essays that respond to these questions. © 2009
American Institute of Physics. �DOI: 10.1063/1.3156832�

I provide a history of this controversial topic and a short
summary of the main conclusions. Several different op-
erational definitions of chaos are offered. Of the articles
that comment on the question, “Is the normal heart rate
chaotic?”, most conclude that the evidence was inconclu-
sive or negative, and several do not think the question
itself is the right question to pursue. Several articles de-
scribe the application of new methods of time series
analysis to help elucidate the complex dynamical features
of heart rate variability. Many identify physiological
mechanisms underlying heart rate variability which in-
clude stochastic processes at the cellular level, influence
of respiration on the heart rate, and the interactions of
the multiple feedback loops regulating the cardiovascular
system. Several show that time series analysis can distin-
guish normals, heart failure patients, and patients with
atrial fibrillation, and there is some discussion about the
use of the time series analysis to assist in the diagnosis or
treatment of patients.

Although, a small number of mathematicians and physi-
cists had been aware that deterministic dynamical systems
could display irregular dynamics since the time of Poincaré,
only in the 1970s did recognition of these phenomena be-
come widespread. Li and Yorke33 used the term chaos to
characterize some technical mathematical properties that
were present in continuous one-dimensional difference equa-
tions that have a period-3 orbit, May35 studied complex dy-
namics in ecological models and reviewed complex dynamic
phenomena in simple one-dimensional difference equations,
and Feigenbaum13 demonstrated remarkable scaling proper-

ties present in quadratic maps. The rapid explosion of re-
search was captured in the 1984 collection of technical pa-
pers in Universality in Chaos11 and popularized by Gleick.19

A prevailing view was that the concept of chaos could help
us understand the irregular dynamics present in natural and
man-made systems ranging from the weather to the stock
market to the heart.

Now, chaos is generally accepted to correspond to ape-
riodic dynamics in deterministic systems with bounded dy-
namics and sensitive dependence to initial conditions. The
sensitive dependence to initial conditions means that starting
from any two arbitrarily close initial conditions, as time pro-
ceeds the trajectories will diverge and it is impossible to
make predictions about exact dynamics other than some sta-
tistical characterization of the behavior.

But this deceptively simple definition contains a trap that
makes it difficult to apply to real systems. Since real systems
will necessarily always contain noise in both the measure-
ments and in the dynamics of the system, real systems are
not deterministic and, therefore, cannot satisfy the definition
above. Nevertheless, in Cvitanović’s collection,11 12 of the
41 papers describe complex “chaotic” dynamics in experi-
mental systems, although not all papers made the claim for
chaos! I was a coauthor on the only paper in this collection
dealing with experimental studies on a biological system,
which analyzed the effects of periodic stimulation on spon-
taneously beating chick heart cell aggregates.24 Because the
stochastic nature of real systems precluded a strict notion of
determinism, we avoided calling the “irregular” rhythms ob-
served at some stimulation frequencies chaotic. Yet in a
probing review relevant to the current controversy, the math-

CHAOS 19, 028501 �2009�

1054-1500/2009/19�2�/028501/4/$25.00 © 2009 American Institute of Physics19, 028501-1

Downloaded 06 Dec 2009 to 132.216.138.7. Redistribution subject to AIP license or copyright; see http://chaos.aip.org/chaos/copyright.jsp

http://dx.doi.org/10.1063/1.3156832
http://dx.doi.org/10.1063/1.3156832
http://www.physionet.org/challenge/chaos/
http://dx.doi.org/10.1063/1.3156832


ematical physicist, David Ruelle, observed “when stimulated
by a periodic signal, such aggregates produced a variety of
types of dynamical behavior, including chaos. This is one of
the rare cases of a biological system with well-understood
nontrivial dynamics.”40 Although I think many other biologi-
cal systems show “nontrivial” dynamics going back to clas-
sic studies by Hodgkin and Huxley on the nerve membrane,
I also believe that the periodically stimulated heart cell ag-
gregates do display chaotic dynamics.

How can experimental systems that obviously contain
stochastic terms controlling the dynamics be called chaotic?
All the experimental papers in Ref. 11 display irregular dy-
namics under controlled laboratory conditions and often as
parameters vary leading to bifurcations in the dynamics. One
or more of the following properties are observed: The dy-
namics follow bifurcations that are consistent with a transi-
tion to chaos in theoretical models; a deterministic model of
the system enables prediction of chaotic dynamics in the
absence of stochastic terms; embeddings of the time series in
two or more dimensions show evidence of organized struc-
ture consistent with a strange attractor; and it is possible to
derive an approximately one-dimensional return map consis-
tent with chaos from analysis of the experimental data. Sub-
sequent years have witnessed many other experimental dem-
onstrations of chaos using similar criteria.

In parallel with these early studies, various theoretical
measures were applied to characterize time series including
measures developed to characterize chaotic systems. Classic
measures include the power spectrum, the Lyapunov expo-
nent, the dimension, and the presence of nonlinear predict-
ability. Of these, the Lyapunov exponent is perhaps the most
important since in a bounded deterministic dynamical sys-
tem, the Lyapunov exponent gives a measure of the rate of
divergence of neighboring trajectories and a positive
Lyapunov exponent reflects sensitive dependence to initial
conditions and can be taken as a definition of a chaotic
system.40 Yet, computer algorithms for the Lyapunov expo-
nent have many subtleties that are not always appreciated.
For example, a small amount of noise in a limit cycle oscil-
lation could yield a positive Lyapunov exponent if the trajec-
tory has regions with large slopes. Other feature characteris-
tics of chaotic dynamics that may be revealed by time series
analysis include a broad power spectra, fractal dimension,
and short term predictability. However, these features may
also be present in nonchaotic systems, so positive identifica-
tion of chaos based on these measures is not possible.17

Nevertheless, identification of chaos in cardiac and neu-
ral systems using time series analysis methods attracted a
great deal of public attention. A short essay in Science sug-
gested that “chaos may provide a healthy flexibility to the
heart, brain, and other parts of the body” and quoted a num-
ber of research scientists including Ary Goldberger, Walter
Freeman, Agnes Babloyantz, Paul Rapp whose research sup-
ported that position.37 Similar points were made shortly af-
terward in high profile journals.21,44 However, if there was
chaotic dynamics, then it would naturally follow that deter-
ministic models elucidating the mechanisms of these
rhythms should be possible. Although deterministic models
of cardiac and neural dynamics in well controlled laboratory

settings did show chaotic dynamics that in a few cases were
confirmed by experiment,17 analysis of complex dynamics in
the more realistic settings did not yield similar insights. A
few years later, Rapp39 recounted some of this early history
concluding “it is now clear that many of the earlier demon-
strations of chaos in biological data are spurious.” Although
I expect it was rather hard to publish papers that declaimed
“the heart rate is not chaotic,” some papers did just that.10,27

But the controversy was far from over. From early stud-
ies, it has been clear that if a time series is generated by a
chaotic system, then it should be possible to predict the fu-
ture for short times.1,12,45 Indeed, since predicting the future
even for short times could be very lucrative if translated into
financial markets, some researchers from nonlinear dynamics
migrated to finance;6 others attempted to exploit these meth-
ods to analyze cardiac dynamics. Papers in this journal in-
vestigated determinism and predictability in heart rate time
series22,31 and argued for chaotic dynamics.23 This approach
has been significantly extended in recent years by Poon and
co-workers.5,38,47 Their basic method compares the ability of
linear and nonlinear regression models to predict the future
for short times without noise and with noise. If the nonlinear
predictor is better without the noise and is comparable after
some amount of noise is added, the dynamics are called cha-
otic. In some low dimensional deterministic dynamical sys-
tems, the amount of added noise in this noise titration
method varies in similar fashion to the Lyapunov exponent
of the associated deterministic process independent of small
amounts of noise that might corrupt the original signal. How-
ever, despite claims that these methods constitute a sufficient
condition for chaos, recent papers have demonstrated that the
“noise titration test” identifies chaotic dynamics in stochastic
systems which do not fulfill the property of determinism that
is intrinsic to most definitions of chaos.14,32 Perhaps more
importantly, the noise titration test can give a positive indi-
cator for chaos, even in systems in which there is not sensi-
tive dependence to initial conditions, see example in Fig. 1 in
Freitas et al.14 as reflected by a negative Lyapunov exponent.

Setting aside the difficulties in documenting chaotic dy-
namics in naturally occurring biological time series, re-
searchers have pursued other methods of time series analysis
in an effort to identify complex features of heart rate vari-
ability. In the current series of essays, most have focused on
developing new methods of time series analysis that address
other aspects of heart rate variability than those intimately
related to chaos and suggest that these other methods may
provide important insights about the underlying physiologi-
cal processes. Many of these other approaches can be traced
back to studies in the early 1980s that identified significant
peaks in the power spectra associated with different physi-
ological functions and found 1 / f scaling of the power spec-
trum at low frequencies.2,30 These observations stimulated a
large body of research into mechanisms of heart rate vari-
ability, as well as analyses directed toward the scaling prop-
erties of the normal heart rate. An early paper described a
technique called detrended fluctuation analysis in which the
mean square deviations of fluctuations around a trend line
were computed as the time scale of the trend line varies over
wide intervals. This work indicated the presence of different
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scaling exponents for different time scales.36 In the current
volume, these results are extended by introducing time lags
into the detrended fluctuation analysis with the goal of iden-
tifying physiological time delays present in the various car-
diac feedback control loops.3 Different methods of getting at
these multiple time scales associated with physiological
feedback have been further pursued by identifying multifrac-
tality in heart rate time series.26 In the current volume, two of
the papers develop the theme and carry out analyses of heart
rate variability that is consistent with the notion that the heart
rate is nonchaotic, nonlinear, and multifractal.4,42 Apart from
the current essays, Costa et al.9 presented a recent review of
these methods and extensions. Finally, there is interest in
extending the insights from the multifractal approach to tra-
ditional nonlinear measures. An earlier paper in this journal
documented scaling of the correlation sum �used to compute
the correlation dimension�.41 In the current volume, Hu
et al.25 utilized a scale-dependent Lyapunov exponent to ana-
lyze heart rate variability.

Many of the contributors to this issue come from fields
other than physiology or medicine and focused on technical
aspects of the time series methods rather than the physiologi-
cal implications. However, several of the papers deal with
physiological mechanisms. There are three main themes: sto-
chastic influences, respiratory influence, and multiple feed-
back loops. In a purely theoretical investigation of a model
for the modulation of the normal sinus rhythm, Zhang et al.48

demonstrated that stochastic release of the regulatory agent
acetylcholine in the neighborhood of the sinus node could
lead to an irregular rhythm that might be identified as chaotic
using some algorithms. It is widely known that respiration
influences the heart rhythm—the heart rate speeds up during
inspiration and slows down during expiration.43 Wessel
et al.46 used regression methods to investigate this coupling
and concluded that most of the variability of the heart
rhythm is directly caused by fluctuations of the respiratory
rhythm. Buchner et al.8 investigated the bidirectional cou-
pling between respiration and heart rate control using sto-
chastic methods. Finally, studies of the scaling properties
suggest that the multiple feedback loops operating over dif-
ferent time scales would lead to the observed scaling
properties.3,4,42 This is an important idea that I think needs
further theoretical and experimental investigation. An early
theoretical model of multiple negative feedback loops and
time delays showed chaotic dynamics over limited parameter
ranges,18 but not the rich fluctuations commonplace in nor-
mal heart rate variability documented in the volume.

In this volume several papers showed that time series
analysis could distinguish between the three groups of pa-
tients made available by PhysioNet20 and demonstrated ways
in which the methods could be used to derive insight into the
underlying physiological control.3,4,42,25,46,8,15 Although these
methods may be helpful clinically, the potential utility of
time series analysis methods was not a key focus of any of
the papers. However, several groups in the past have pre-
sented evidence that time series analysis could provide infor-
mation about risk stratification for sudden cardiac
death,7,28,34 or perhaps even be able to predict an imminent
sudden cardiac death.44 While time series analysis methods

have appeared to have great potential utility in assessing hu-
man health and the risk for sudden cardiac death, there is still
a need for sharp predictions based on understanding funda-
mental mechanisms that are translated into clinically useful
procedures. A promising direction that emerged from a non-
linear dynamics perspective is the assessment of the shape of
the T-wave on the electrocardiogram,29 rather than heart rate
variability per se.

The fascination of chaotic dynamics to me, and to many
in my generation, is the unexpected appearance of irregular
dynamics in very simple deterministic systems. The discov-
ery of universal routes to chaos in mathematical models and
then in the laboratory has been a triumph of scientific imagi-
nation, mathematics, and experiment. My conclusion is that
the normal heart rate variability does not display chaotic dy-
namics. The various claims to the contrary are based on op-
erational definitions that do not capture the defining proper-
ties of chaotic systems outlined at the start of this essay.
However, even though I have helped perpetuate it, I do not
believe the debate itself is of interest unless it leads to new
insights into mechanisms of heart rate control and the tran-
sitions that lead from health to disease.

In a 1990 essay, I concluded, “The real question is not,
‘Is cardiac chaos normal or abnormal?’ but rather, ‘What are
the mechanisms underlying complex cardiac rhythms and
how are they manifest in the laboratory and clinic?’ Nonlin-
ear dynamics offers powerful new mathematical tools to help
sort out these issues, and we are sure to see dramatic ad-
vances in the future.”16 Although there have been some spec-
tacular advances in understanding the nonlinear dynamics of
complex arrhythmias, the application of these insights into
clinically useful procedures and devices has been more dif-
ficult than I imagined.

Readers and authors are invited to continue the debate at
a website set up by Chaos �http://blogs.aip.org/
ControversiesInChaos�.
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