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Ordinary differential equations are often used to model the dynamics and interactions in genetic
networks. In one particularly simple class of models, the model genes control the production rates
of products of other genes by a logical function, resulting in piecewise linear differential equations.
In this article, we construct and analyze an electronic circuit that models this class of piecewise
linear equations. This circuit combines CMOS logic &@ circuits to model the logical control of

the increase and decay of protein concentrations in genetic networks. We use these electronic
networks to study the evolution of limit cycle dynamics. By mutating the truth tables giving the
logical functions for these networks, we evolve the networks to obtain limit cycle oscillations of
desired period. We also investigate the fithess landscapes of our networks to determine the optimal
mutation rate for evolution. €004 American Institute of Physic§DOI: 10.1063/1.1786683

Networks giving rise to complex dynamics exist in a wide tivities of genes. They discovered that specialized protein
range of physical, biological, and engineered systems. Re- molecules, called transcription factors, could bind directly to
cent studies have focused on the structure of such net- DNA thereby regulating the activity of regions of DNA
works, and examined how the structure is linked to func-  proximate to the binding site of the protein. Since the DNA
tional properties such as robustness and error tolerance. carries the code for the structure of proteins, products from
In general, however, a theory to predict the dynamics one DNA site could affect the activity at another DNA site,
based on network structure is lacking, and consequently, thereby leading to a network of genes interacting through
it is often unclear what structural architecture is needed protein intermediaries. In an early paper, Jacob and Monod
to produce desired dynamics. Here we show that net- outlined simple genetic control circuits that they imagined
works with desired complex dynamics can be obtained by could underlie biological processes associated with multista-
evolving their structure rather than by designing it from bility and oscillation® Shortly after this seminal work, math-
the outset. We construct and experimentally analyze an ematical models of genetic control networks were developed
electronic circuit that is based on a class of ordinary dif-  in which the “on—off” dynamics of genes could be modeled
ferential equations that model genetic networks. Net- by networks of Boolean logical devices that updated at dis-
works in this system can display a variety of dynamics, crete time$®
including steady states, limit cycles, and chaos. Here we The notion that the regulation of gene activity can be
focus on limit cycles and show that it is possible to evolve modeled using logical functions has persisted to the
networks that display stable oscillations of a specified present."*! Further developing these ideas, recent work has
cycle length. By analyzing the fitness landscape, we dem- demonstrated that different logical functions can be combi-
onstrate that there is an optimal evolution rate for ob-  natorially synthesized in bacterfadirected evolution can be
taining such dynamics. This work shows how mutations used to generate a genetic circuit that acts as an invérter,
in model gene networks can lead to the evolution of dy- and that the binding of transcription factors to DNA is ide-
namic behaviors. ally suited to generate modular and evolvable transcriptional
control* Finally, following up on Jacob and Monod’s early
proposals, genetic circuits in bacteria have now been de-
I. INTRODUCTION signed and synthesized that show simple dynamic behaviors
_ _ including bistability®>~1” and oscillationg?

Research carried out by Jacob and Monod in the early  the ahove papers provide a rationale for studying net-
1960s provided early insights into the regulation of the acyyorks of genes that display switchlike behavior. However,
since there is no evidence of clocking devices that update
¥Electronic mail: glass@cnd.mcgill.ca states of networks at discrete times in genetic networks, we
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believe it is more appropriate to study dynamics in differen-ll. A DIFFERENTIAL EQUATION MODEL FOR GENE
tial equations representing networks in which time is conNETWORKS
tinuous but the aCt'V_'t'eS of th? ele_rzr;ents O_f R netwqus ar® " The class of piecewise linear differential equations that
regulated using logical fU“Ct'Oﬁg_- In this formulation,  ngerlie the design of the circuit has been proposed as a
the concentrations of the protein transcription factors inghly simplified model of genetic network;2
crease or decrease exponentially, but the target genes that are
. P X
under.contr_ol switch be_tween two states._ln the “on stqte, a T R Bi(Xi, (1), X (1),... X (1)),
gene is activated leading to the synthesis of the protein for
which it codes, and in the “off” state, the gene is inactive i=1,...N, (1)
and the protein for which it codes decays towards zero con- . : : : . .
. . . . where x; is a continuous variableX; is a discrete binary
centration. A given gene is turned on or off, depending on the

logical function that controls it. and whether the t ot variable,X;=1 if x;=6; andX;=0 if x;<6;, whereg; is a
ogical function that controls it, and whether the transcriptiony, o1y v, is a decay constant, and

factors that regulate_ it are above _or below threshold IevelS'Bi(Xil(t),Xiz(t),---,XiK(t)) is a function that depends only
. The ways in which real genetic control networks evolygon the logical values of itk inputs,X; (t),X;_(t),...X; (t).
is not understood. The current work shows how the modifi; . ot 2 K

. . . . e assume that there is no self-input, so that the inpuis to
cations in the' rules controlllng gene expression can be use\é}g not include variablé. In some situations, and in particu-
to seek a desired dynamics, even though there is no theory {9, in the current paper, we may assume Bais a Boolean
predict what structural architecture is needed to produce th@ariaple that only assumes two valugehich through rescal-
desired dynamics. Many recent papers have analyzed evoling can be set to be 0 and.1n the biological context, we
tion in a variety of systems including electronic can think ofx; as a class of proteins, called transcription
networks?®?’ mathematical models of gen#&s.computer factors, that regulate the production of other transcription
models of gene® 3! computer models of gene networks, factors, e.g., se€8). Given that the circuit elements act as
complex networks®**and genetic circuits in bactetdOur ~ simple integrators, the dynamics of any particular network
work is complementary to these studies in that we use &€ governed completely by the truth table and initial condi-
localized random search method to find and explore noveions: o
dynamical behaviors, and to study how the properties of Letting {t;,t,,....ti} denote the switch times when any

. . element of the network crosses its threshold, we can obtain
these behaviors change as a network becomes progressively. | tion of Eq(1) for each variable for t;<t<t,,:
i j j+i-

modified.
In this work, rather than analyze dynamics in a theoret-  Xi(t)=X;(tj) e "W +B;(X;1(t),Xia(t), ... Xi (1))
ical model, we have chosen to study dynamics in a hybrid X(1—e (1), )

digital-analog system that models the differential equations. o ) ) o )
We have two main reasons for doing this. First, in the eIec—ThUS’ *?’y piecing toggther the tra@ctones, it is possible to
. i ._determine the dynamics for future times. As we show below,
tronic system there are necessarily small amounts of n0|s?h. . ) . . )
is differential equation can be implemented by a hybrid

and consequently all observed dynamics will be robust tOdigital—analog circuit in which different elements are chang-

small perturbations in the circuit. Second, we believe that the, siate at different times. Consequently, it differs signifi-
class of circuits we consider has intrinsic interest, and atantly from synchronous Boolean switching networks, such
some stage might lead to novel ways to build oscillatorsys those proposed by Kauffm&fijn which the logical states
displaying robust dynamically different nonlinear oscilla- of all network elements are updated simultaneously.

tions. Our emphasis on the design of real circuits, also places Because of their simple structure, these equations are
the current work in the area of evolutionary electrorft¥.  amenable to theoretical analysis. The equations can display
However, most of the work in evolutionary electronics is fixed points, stable limit oscillations, and chaotic dynamics.
concerned with the design of circuits that compute functiong=urther, as the number of variables in the networks increases,

of input data, rather than the evolution of circuits that havethere is a combinatorial explosion in the number of possible
novel dynamic behaviors, networks. We are interested in constructing an electronic net-

The paper is organized as follows: In Sec. II, we intro_work with a comparatively small number of elements that

duce differential equations that have been used to model gé:-an have rich dynamic behavior. We choose to construct a

i works. Section il d ibes the desi f | System of five variables in which each receives four inputs.
tne '(_: ne. wo.rt Sth tec '03 | tﬁscz,;s ? IeS|gnt9 an eeg'Since there are 2logical states of four variables, there are
ronic circui m ifferenti ion n . . . .

onic circult that modets the difterential equations, and,z*_ 51 yigterent logic functions of four variables. Conse-

shows the dynamics for circuits of three and five elementsquemly’ the total number of networks i€% Using group

respectively. Section IV describes the evolution algorithm Weheoretic arguments based on the symmetries of the truth
employ to search for novel dynamic behaviors. In Sec. V, W&ables, the number of distinct networks 4s3.14x 102,22
provide theoretical insight into the optimal mutation rate byThese different networks are generated by designating the 80
analyzing the fitness landscape of the model system. Finallgntries in the five truth tables of the five elements of the
in Sec. VI, we discuss the significance and implications ofnetwork. Edwards gives a comprehensive review of the prop-
the presented work. erties of these equatiors.
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FIG. 1. Schematic diagram of element 5 in the electronic cir@itand the output at three points in this circ(B). The output of the circuit is controlled

by inputs fromXy,X,,X3,X, and the truth tablg,,,,...,815. The AND functions and OR functions are realized using CMOS chips. The waveforms at
points I, Il, and Il in the circuit are indicated in panel B. The output of the truth table at | is converted to an exponentially increasing or decnstsitiy

at Il by passing the voltage at | into dRC circuit. The sawtooth is then converted to a step function using two inverter chips in series. An inverter chip
converts an input voltage that is less than a threshold of approximately 2.1V, to a “high” output, and an input voltage that is greater thamotedraesh
“low” output. The output at Ill from this circuit is fed into the inputs of the other elements. The circuits for the other elements are constructthingous

fashion. The bar over a variable indicates negation,Te.lChnd_l=O.

IIl. A HYBRID DIGITAL-ANALOG CIRCUIT logical function, theg; are combined in an AND function
with all possible logical states of the four model genes that

are inputs to gene 5. For example, sett®g=1 andB;=0
We constructed a hybrid digital-analog circuit that mod-for =2 .. 16, only produces a value “true” or “1” ifX,

els networks of five genes described by the above equations. X,=X3=X,=1 at the same time.
Since this system is subjected to intrinsic noise and time Tpe operation of the network can be appreciated by con-
delays associated with its operation, and since its parametegﬁjering the voltage relative to ground that would be re-
depend on the a(_:tugl values of capacitances and resistona)rded at three different places in the cirdisiee Fig. 18)].
any observed oscllllatlons_mu.st b,e ro.bust. L The voltage at | corresponds to the Boolean functznin

The construction of this circuit relies dRC circuits and Eq. (2). This voltage would be 5 V if the logical switch at

(I:Eo_mbmat_(()jrlzl tSW'tC.h mgtClr_f[:# Its. In_ E}ERC&?"CS'I’ a vo_I;[age that time was “true,” otherwise it would be 0 V. The voltage
IS provided to a Circult with a resistanteand capacltance ., point Il corresponds to the value &t in Eq. (2). As

C. In our system, the voltage arises from the logical con- follows from Eg.(3), if the voltage at | is 5V, then at point
troller as it switches back and forth between 5V and 0V, as, . N ; ; . .
| in the circuit, there will be an exponentially increasing

determined by the dynamics of the network described belo S . 4 )
. . . - unction; if the voltage at | is 0 V, then at point Il in the
[Fig. 1(A)]. Following a change in the value Bfatt=0, we L . . ) .
circuit, there will be an exponentially decreasing function.

find that the voltage across the capacitor is Finally, the voltage at Il corresponds to the valueXafin
V(H)=E+(V(0)-E)e” VRO, (3)  Eq.(2). By passing the signal at Il through two inverters, we

Thus, the voltage across the capacitor is an exponential fundind @ voltage of 5V at point Il if the voltage is above the
tion that approache& with a time constant equal ®C. In threshold, or we find a voltage of_ ov |f.the voItage_ls less
this sense, the voltagé(t) is analogous to the concentration than the threshold. The fe_edback is provided by feeding back
of a protein transcription factog(t). Moreover, we can pass Xs, and its complemenkXs, into the combinatorial logic
the voltage through a threshold element to provide a logicafunctions for the other elements. By selectiRg- 100 K2,
variable analogous to the logical variabig(t). C=0.1 uF, we set the time constant to be 10 ms.

Figure XA) shows a schematic diagram of the circuit for The circuit was modified and data were analyzed under
element 5. To model the regulation of genes, we apply methkabview (National Instruments, Austin, TX, USAwith a
ods of combinatorial switching circuit desifrusing CMOS  digital I/O card to initialize the control functions and an ana-
logic. This allows us to model in a programmable way, thelog data acquisition card to collect the output. All modifica-
logical functions that control the regulation of the “on—off” tions involved only making changes in the set @f that
states the genes. Any of thé®ogic functions of four vari-  define the truth tables for the network. We analyzed the re-
ables can be synthesized by an appropriate combination sulting dynamics for stable periodic oscillations. The analy-
the control linesB,,85,...,816.- In order to generate any ses were carried out for time series of 3.5 s length sampled at

A. Design of the circuit
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2 kHz. Each time a circuit element switched from high to A
low, or low to high, we recorded the element that switched. Input 1 Input2 Input 3
The resulting sequence of integers was then analyzed for the 0
shortest repeating sequence, of at least three integers, in

which each integer appears an even number of times. Peri-

odic switching sequences in the solutions of E?).are as-

sociated with stable limit cycle oscillatioRf the identified 3
sequence repeated at least 15 times, we determined the pe-
riod of the resulting cycle. This analysis procedure was
checked in a large number of cases, and in all cases, it iden- Period = 29.5 msec
tified stable large-amplitude periodic solutions. Since these 4= L 2 A
networks can also display switching at a rapid rate set by the
time delays of the circuit that are associated with a stable
focus in the differential equations, and since we are inter-
ested in stable limit cycle oscillations with long periods, we
only consider cycles whose period was greater than 10 ms.
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B. The repressilator: Oscillations in a three-gene 042 M s 0.48 030

network

. . . . FIG. 2. (Color (A) Schematic diagram of the repressilatd@) Truth table
In order to illustrate the operation of the circuit, we Showfor the repressilatorC) Dynamics of the digital—analog repressilator cir-

the dynamics for a simple circuit with three genes that hasuit. There is a stable oscillation with period 29.5 ms.
been designed to oscillate. One mechanism for generating
oscillations involves feedback circuits composed of a ring of
elements, each of which either inhibits or activates the nexyvay: all combinations of four inputs for any individual net-
element in the ring. Situations in which there are an oddvork element are given on the left, and the logic functions
number of inhibitory interactions often display stable limit represented by the five elements are given in columns
cycle oscillations. Elowitz and Leibl& implemented this Bi—Bs on the right. Recalling that each element receives
type of circuit in bacteria by constructing an inhibitory ring input from the other four elements with no self-input, the
of three genes. Each gene coded for a transcription factdPur inputs on the right correspond to inputs from elements
that in turn inhibited the synthesis of the next gene in thel, 2, 3, 4, and 5, minus the element in question. In other
ring, Fig. AA). The network was constructed using plasmidswords, for element 1, inputs 1-4 come from elements 2-5,
in E. coli, and the dynamics were monitored using greenfespectively. For element 2, inputs 1-4 come from elements
fluorescent proteiiGFP that was under control of the tran- 1, 3, 4, and 5, respectively, and so on. As seen in Fig. 3, it
scriptional circuit. The resulting network, called the repressi-would be difficult to predict these dynamics based on the
lator, exhibited oscillations in the expression of GFP. A dif-logic of the network.
ferential equation of the form in Eq2) shows stable limit
cycle oscillations with period 2.887... whep=1 IV. SEARCHING FOR COMPLEX OSCILLATIONS IN

As a first test for our circuit, we implemented a network THE ELECTRONIC CIRCUIT
that had the same logical structure as the repressffaidre o )
truth table for this corresponding network is shown in Fig. e set a search task of finding networks that display
2(B). The network has a stable oscillation, shown in Fig_complex osc.|llat|onsf which occur mfrequentl.y by chance. To
2(C). Taking into account the time constant for our circuit, do Fh|s, we first carried out a survey of the d|§tr|but|on of the
we compute that the period of the limit cycle oscillation in Periods of randomly generated networks. Figure 4 shows a
the circuit would be 28.87 ms, provided all the time con-histogram displaying the periods found in the circuit for 300
stants are equal, and the thresholds of all switches are exacfighdomly generated networks. There are a comparatively
2.5 V. In the current case, measurement of the time constanf§nall number of networks with periods greater than 60 ms.
show that they differ from the rated 10 ms by up to 6%, angBased on this observation, we selected a target period, de-
that the thresholds are approximately 2.1 V. These small diffoted T*, of 80 ms (=5 ms) as the target period for our
ferences lead to a period of the digital—analog repressilatof€arch procedure. _ _
circuit of approximately 29.5 ms. The pattern of oscillation ~ Evolution was implemented in the following manner.
in the circuit is similar to that observed in the repressilator?@ndom networks were generated until a network displayed

and in differential equation models of the repressil&té? periodic dynamics. Then a random local search was initiated.
For each element in the truth table, a random number was

generated. If this random number was less than the mutation
rate, calledp, then a random 1 or O replaced that element in
A five-gene network is capable of an extremely rich va-the truth table. This led to truth table mutations at an average
riety of oscillatory behaviors. Examples of two truth tablesrate of p/2. In each generation, there was only one “prog-
and their corresponding dynamics are shown in Fig. 3. Foeny.” If the progeny had a limit cycle oscillation whose pe-
compactness, the truth tables are written in the followingriod was the same as the period of the parent or closer to the

C. More complex oscillations in a five-gene network
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Period = 39.5 ms A

Input 1 Input 2 Input 3 Input4|B1 B2 B3 B4 B5

0 0 0 0 T 11 01

0 0 0 1 101 00

0 0 1 0 000 11

0 0 1 1 1T 10 11

0 1 0 0 1T 11 10

0 1 0 1 10010 5
0 1 1 0 1T 11 10 :
0 1 1 1 o010 11 o
1 0 0 0 1T 10 01 %
1 0 0 1 001 01 >
1 0 1 0 1 01 00O

1 0 1 1 0 00 00O

1 1 0 0 0O 11 10

1 1 0 1 000 11
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1 1 1 1 1T 10 11
Input 1 Input 2 Input 3 Input4B1 B2 B3 B4 B5

0 0 0 0 00 110

0 0 0 1 T 1 01 1

0 0 1 0 11 00 1

0 0 1 1 T 1 00 1

0 1 0 0 1T 1 11 0

0 1 0 1 o1 01 0

0 1 1 0 01000 &
0 1 1 1 0000 1 7
1 0 0 0 1T 111 0 2
1 0 0 1 10101 3
1 0 1 0 10 00 0 >
1 0 1 1 00 00 O

1 1 0 0 T 1 111

1 1 0 1 00 100

1 1 1 0 01 01 0

1 1 1 1 1T 1 01 0

1.40 1.45 1.50
Time (s)

FIG. 3. (Color) The truth tables and data for two different networks. To read the truth tables, recall that each element receives féonénfsata each other
element, with no self inplit For each element, then, inputs 1-4 represent inputs from the five elements minus itself. For example, for element 3, inputs 1-5
come from elements 1, 2, 4, and 5, respectively. The logic function defined for each element in the circuit, 1-5, is BivémrdyghB5 on the right side

of the truth table.

40 - target than the period of the parent, then future evolution was
I carried out from its truth table. Otherwise, evolution was
530+ carried out using the truth table of the parent.

%20_ Figure 5 shows the results of a typical evolution trial.

= The initial period of the circuit was 27.0 ms. The period
;g 104 increases through a series of plateaus of different heights and
durations, and at the end of 540 trials achieves a period of

0- — T 1 75.5 ms. The observed oscillation of the final network differs

0 20 40 60 80 100 considerably from that of the initial circuit. The course of

Period (ms) evolution in each run was different, and the final circuits

FIG. 4. Histogram showing the periods of stable limit cycle oscillations in obtained are also typ|caIIy different. I_Even thoth a small
the electronic circuit based on an analysis of 300 randomly generated nePercentaggabout 2%—3% of the possible networks show

works which display limit cycle oscillations. A period of oscillation for a stable oscillations, this is still a very |arge number of circuits
network in the differential equation literature must be multiplied by approxi- displaying stable limit cycles

mately 10 to find the comparable period in ms for the electronic circuit. The . .
percentage of randomly generated networks showing stable oscillations is Flgurg 6 compares the av_erage resu_lts of 25 t”_als for
approximately 2.8%. several different rates of evolution. Each trial was carried out
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_____________________________________________________________________ A Period = 27 0 ms
80 -

- N W bh

o
VANAN

70 4

1 1 1 || 1
100 200 300 400 500
Generation

FIG. 5. (Color Typical example of evolution of the limit cycle oscillation in the electronic circuit. The three traces in the left panel show the increases in
period of the network in three different runs as the network evolves towards the goal. Each run begins with the same initial network, whose dynamics are
displayed in panel A. Panels B and C show the dynamics of an intermediate network and the ending network, respectively, for one of these runsl The colore
traces in panels A, B, and C represent the output of the five network elements. Both the complexity of the oscillation and the period increaseutioring evol

and the dynamics of the final network differs dramatically from that of the initial network.

for 250 generations. These results demonstrate that the afie relative ability of the organism to compete with other
proach to the target is maximally fast for a mutation rate oforganisms. Higher fithesses are associated with organisms

=5%-10%. that tend to outcompete other organisms of the same species.
Various models of the fitness landscape have been proposed
V. DETERMINATION OF THE FITNESS LANDSCAPE and features such as the number of local maxima and the

mean path length from any state to its nearest local maxima

cvolation I biological Systoms and motil systoms ie o o2 been computed; for example, see Refs. 30, 3638, and
g Yy Yy references therein.

struct the fitness landscape, a graph in which the vertices For our circuit, the fitness landscape is an 80-

represent the different genetic makeup of organisms. A fit- imensional Boolean hypercube where each of #everti-
ness is associated with each vertex, where the fitness refle qgs represents a different truth table for the network. The

Hamming distance between two Boolean vectors of the same

length represents the number of loci in which the two vectors
60 7 differ. Consequently, in the Boolean hypercube, vertices that
=50 - share a common edge represent states with a Hamming dis-
E ~— tance of one, vertices separated by two edges represent states
A_40 o with a Hamming distance of two, and so forth. Networks that
= do not give rise to periodic dynamics have fithess 0. The
g 80 fitness of a given network with pericbland target period™
Y 20 is inversely proportional toT —T*|. We sampled the fitness
landscape in the neighborhood of many different periodic
10 I I I | networks. Random networks were generated until a network
100 150 200 250 displayed periodic dynamics.
Generation Once a network which displayed periodic dynamics was

randomly generated, the effects of flipping a fixed number of
sented in Fig. Lfor different mutation ratep. The average deviation of the truth ta_ble entrles were determined. All 80 truth tables with a
period from the target valug* =80 ms is plotted as a function of genera- Hamming distance of one from the parent network Were_
tion number. sampled. One thousand randomly selected networks that lie

FIG. 6. (Color) Evolution of the electronic circuifschematically repre-
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FIG. 8. The expected improvement per generati{p), as a function of the

77 mutation ratep.
557 The results are shown in Fig. 8. Based on the above compu-
=% tation, the search towards the target period is predicted to be
g3 most rapid forp~0.08. This is in agreement with the experi-
é - mental data in Fig. 6.
§1 | Figure 7 shows that while there is a small amount of
“gf’o | 9(k) variation of each data point fdr(k), there is considerably
2 | | ! : ; more variation in the values of the data pointsdgk). This

0 10 20 30 40 occurs since we only sample a small portion of the networks

Hamming Distance (k) a Hamming distanck away from a given network, and &s

. o . increases, the standard error also increases. Consequently,
FIG. 7. The fraction of periodic network$(k), and the average improve- diff tf ti | f id h b d to fit
ment in period of a periodic networky(k), as a function of the Hamming many_ | .eren unctional torms (?OU ave ee_n used ton
distancek of a network from its parent. The error bars show the standardd(K) in Fig. 7. However, choosing other functional forms
error and the solid curves represent fits to exponential functions. such as a second-order polynomial or Gaussia k) also
yield optimal mutation rates approximately the same as the
one found using the exponential fit.

Hamming distancek=2-10, 15, 20, and 25, from the par-
ent network were also sampled. We repeated this process fif- DISCUSSION
10 different periodic networks at each condition, and deter-  |n biological systems, stable oscillations are commonly
mined the mean fitness and fraction of periodic networks folexhibited, but it is unclear how these dynamics can arise and
each condition. evolve. The present work shows that robust physically real-
To study properties of the random local search in thesgzable oscillations can arise quite easily in model genetic
networks, we developed an approximate characterization qfetworks, and that such networks can be modified to produce
the fitness landscape. Lktrepresent the Hamming distance oscillations of different periods. Further, by analyzing the
of a network from another network displaying a stable peri-fitness landscape in the neighborhood of periodic networks,
odic cycle. The fitness landscape is characterized by tw@ve demonstrate that the search procedure is optimized for an
functions:f(k), which is the fraction of networks displaying intermediate mutation ratéig. 8).
periodicity, andy(k), the average improvement in the period | the evolution runs carried out in this work, the circuit
of a progeny network displaying a stable limit cycle towardsstarts each trial with with each element at a low voltage near
the target period. Ak increasesf(k) decreases and(k)  zero in the low logic state. Therefore, during all evolutionary
increases. These data are shown with standard errors in Figials, the period of a particular network was the period start-
7 and were fit to exponential functioitsolid lines. ing from this initial condition. As we demonstrate, we obtain
The probability that any given element of the truth tablean approach to the target period using this scheme. However,
will change given the mutation rageis p/2. Using the bino-  these networks can also display more than one attractor start-
mial theorem in a truth table di entries, the fraction of ing from different initial conditions. Consequently, it would
truth tables that are a Hamming distaricérom the initial e of interest to analyze the evolution rates, if at any trial we

network, ®(N,k, p) is selected the best period possible from some limited subset of
N[ p)¥ p\ Nk initial conditions.
d)(N,k,p):( k)(i) 1- 5) (4) We think that this system, in which there is a precisely

defined fitness landscape for a real physical system, poses an
Using this result, we can compute the expected mean iminteresting model for further theoretical analysis. In this sys-

provement per generatial(p) tem, there are a large number of good solutions that are
sparsely scattered through the space of all possible networks.

A(p)=2 f(K)g(K)D(N,k,p). (5) As_a consequence, in c_ontrast to rece_nt theoretical results in

K which there is an evolution through adjacent states to a local
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