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Excitable media, such as nerve, heart, and the Belousov-Zhabotinsky reaction, exhibit a large excursion from
equilibrium in response to a small but finite perturbation. Assuming a one-dimensional ring geometry of
sufficient length, excitable media support a periodic wave of circulation. In analogy with earlier results found
from the periodic stimulation of oscillations in ordinary differential equations, the effects of periodic stimula-
tion of the periodically circulating wave can be described by a one-dimensional map called the Poincare´ map.
Depending on the period and intensity of the stimulation as well as its initial phase, either entrainment or
termination of the original circulating wave is observed. These phenomena are directly related to clinical
observations concerning periodic stimulation of a class of cardiac arrhythmias caused by reentrant wave
propagation in the human heart.@S1063-651X~96!08606-0#

PACS number~s!: 87.22.2q, 03.40.Kf, 87.10.1e

I. INTRODUCTION

Cardiac tachycardias are abnormal cardiac rhythms in
which the heartbeat is too rapid@1,2#. It is believed that some
tachycardias are caused by circulating excitation waves in
the heart. Such waves are often called reentrant. In cardiol-
ogy, it is common to imagine a reentrant wave as circulating
on a one-dimensional ring@3–7#. This is the simple model of
reentrant tachycardias that we adopt, though other geom-
etries may prevail in some circumstances@8–11#. The pre-
vention of the occurrence of tachycardia is a key objective in
cardiology. A secondary objective is termination of tachycar-
dias when and if they arise. A generation of implantable
medical devices called ‘‘antitachycardia pacers’’ delivers a
sequence of periodic electrical pulses directly to the hearts of
patients who suffer from tachycardias. The effect of the im-
plantable pacemaker depends on the location of the stimulat-
ing electrode in the heart, the number of pulses, the current
in each pulse, the frequency of the periodic pulses, the initial
phase of the first stimulus, and whether or not the rate of
pulse delivery changes during the sequence@6,12#. Despite
the importance of these questions to human health, the vast
majority of clinical studies in this area are based on empiri-
cal evaluation of pacing algorithms, rather than an analysis
of the fundamental theory.

We place this clinical problem in a more general context.
The current paper deals with single and periodic stimulation
of oscillations in nonlinear partial differential equations that
can be used to model excitable media. Excitable media are
defined by the following two properties@13–16#: ~1! A small
but finite perturbation away from a steady state will lead to a
large excursion~an excitation or an action potential! before
the steady state is reestablished;~2! following the onset of
the excitation, there is an interval during which a perturba-
tion does not induce a new excitation. The interval is called

the refractory period. A consequence of the refractory period
is that colliding waves annihilate each other.

Examples of excitable media include chemical media
such as the Belousov-Zhabotinsky reaction@8,17#, nerve
@13–16#, and heart@5,8,9,18#. We consider one of the sim-
plest theoretical models for excitable media, the FitzHugh-
Nagumo equation, which supports a periodically circulating
wave of excitation if the excitable medium is in the form of
a one-dimensional ring@15,16,18–20#. Although we could
have selected a theoretical model that is more realistic for
some particular setting@5,21#, there should be broad similari-
ties between dynamics in excitable media under single and
periodic stimulation, independent of the details of the equa-
tions.

Analysis of the effects of single and periodic stimulation
on spontaneously oscillating systems has played an impor-
tant role in the development of modern dynamics@22#. Peri-
odic stimulation of spontaneously oscillating systems can of-
ten be approximated by low-dimensional maps. For example,
maps of the circle into itselff : S1→S1 often arise in the
context of periodic stimulation of oscillating systems de-
scribed by ordinary differential equations if the oscillating
system displays a stable limit cycle that is strongly attracting.
Extensive studies of periodic forcing of oscillations in bio-
logical and physical systems and in models formulated as
ordinary differential equations demonstrated a variety of dy-
namical phenomena including entrainment, quasiperiodicity,
and chaos@23–27#.

Theoretical analysis of the effects of single and periodic
stimulation of spatially distributed systems is much less de-
veloped. However, one important result is that a single
stimulus delivered to a reentrant excitation on a one-
dimensional ring will either reset or annihilate the excitation
depending on the phase and amplitude of the stimulus
@5,9,18#. In recent work, we used continuity arguments to
show that annihilation of a reentrant wave in a one-
dimensional ring by an appropriate single stimulus should be
a general phenomenon, independent of the particular details
of the nonlinear partial differential equation or physical or
biological system supporting the excitation@20#. The current
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paper shows how these earlier results can be used to predict
the effects of periodic stimulation.

The plan of this paper is as follows. In Sec. II, we discuss
the mathematical foundation for this work. We discuss reset-
ting of nonlinear oscillations using isolated stimuli, and the
prediction of the effects of periodic stimulation using one-
dimensional maps. In Sec. III, we study the resetting and
annihilation of reentrant excitation in a one-dimensional ring
by a single pulse. In Sec. IV we use these results to predict
the effects of multiple stimuli. We compare the results found
from iteration of one-dimensional maps to the results found
from numerical integration of the appropriate nonlinear par-
tial differential equation. The results are discussed in Sec. V.

II. MATHEMATICAL BACKGROUND

Single and periodic stimuli delivered to oscillating non-
linear systems have a range of effects. Most studies focus on
perturbation of finite-dimensional systems that can be de-
scribed by low-dimensional maps. In this section we review
the basic theory and discuss its extension to reentrant waves
in one-dimensional rings of excitable media. More detailed
discussions of the theory as applied to ordinary differential
equations are in@23–30#.

A. Resetting of oscillations

Following a single perturbation of relatively short dura-
tion delivered to an oscillating system, the oscillation is often
reestablished with the same period as before, but with altered
timing of subsequent oscillations. This shift in the phase of
the oscillation is called phase resetting or simply resetting.

Assume a dynamical system with a stable limit cycleg
with periodT0 . We choose a marker event on the cycle. The
phase at the marker event is taken as 0. The phase at any
subsequent time 0,t,T0 is defined to bef5t/T0 . If a
stimulus is delivered at a timed following a marker event,
the phase of the stimulus isd/T0 .

The basin of attraction ofg corresponds to all states that
approachg in the limit t→`. Each pointxPg has a stable
setWs(x) defined as the set$y:ix2C(y,t)i→0% as t→`,
where i•i represents some metric defined on the solution
space, andC represents a flow of the system. For a state
y0PWs(x), we can construct a sequence$y0 ,y1 ,...,yn ,...%
as yn5C(y0 ,nT0). All the states are onWs(x), and the
sequence converges tox asn→`. The latent phase for all
yPWs(x) is f where the phase ofx is f. The stable sets
Ws(x) are called isochrons. In finite-dimensional systems,
Guckenheimer has proven that the stable setWs(x) of each
xPg is a cross section ofg and a manifold diffeomorphic to
Euclidean space. Moreover, the union of the stable manifolds
Ws(x) for xPg is an open neighborhood ofg and the stable
manifold ofg @28#.

An example may be useful in visualizing these ideas.
Consider a two-dimensional ordinary differential equation
with a single unstable steady state and stable limit cycle that
is globally attracting for all points except the steady state.
The isochrons are line segments that cut transversely across
the limit cycle. The steady state is a singular point. All iso-
chrons approach the neighborhood of the steady state.

In the current setting, the state of the system is associated
with functions that give the values of the variables in the

partial differential equation at all points along the ring. Nev-
ertheless, we conjecture that the basic concepts from the
finite-dimensional systems described above should still pre-
vail.

The effect of a perturbation delivered during the course of
the cycle is to shift the state offxPg on isochronWs(x) to
a perturbed state. If the perturbed state is in the basin of
attraction ofg, the effects of the perturbation can be repre-
sented by a phase transition curve,g(f), wheref is the
phase of the initial statex at which the stimulus is presented,
andg(f) is the latent phase at the termination of the stimu-
lus. If the differential equations for the perturbed system sat-
isfy certain regularity conditions, and if all perturbed states
for all xPg are in the basin of attraction ofg, g(f) is a
continuous circle mapg: S1→S1 @28,29#. In some circum-
stances, the effect of a single stimulus is to shift the system
outside the basin of attraction ofg. Although, in principle,
stimulation may lead to a different periodic or aperiodic
rhythm, the most usual finding is that if the oscillation is
annihilated, and the system approaches a stable steady state.
The phase transition curveg(f) is not defined for those
phases which lead to shifting an oscillation outside of its
basin of attraction.

B. Periodic stimulation of oscillations

The phase transition curve can be used to predict the ef-
fects of periodic stimulation provided the following two con-
ditions hold@23–27#: ~1! The stimulation does not affect the
parameters of the underlying system or the equation which
may model it; and~2! the period of the stimulation is suffi-
ciently long that following stimulation there is a return to the
limit cycle.

We use the intrinsic cycle lengthT0 to set the scale of
time. Lett be the normalized period of stimulation,d be the
normalized duration of the stimulation, andI be the stimula-
tion intensity. Suppose the first stimulation is applied at
phasef. The stimulus shifts the phase tog(f) at the end of
the stimulation. After an additional time (t2d), the second
stimulation is applied at phasef8. Thenf8 is

f85g~f!1t2d~mod 1![ f I~f;t!. ~2.1!

f I : S
1→S1 is a one-dimensional Poincare´ map under the two

assumptions above. We usually abbreviatef I(f;t) as f (f).
For any given initial phasef0, we define inductively the

sequence$f i% using the mapf (f):

f i5 f ~f i21!5 f 2~f i22!5•••5 f n~f0!.

The sequencef i is well defined, provided no stimulus falls
in the range of values of~f! that leads to annihilation of the
oscillation. Iffn5f0 andf iÞf0 for 1< i,n with i andn
being positive integers,f i is a periodic cycle of periodn.
We also say that the rhythm is entrained or phase-locked
with periodn. A periodic point of periodn is stable if

U] f n~f0!

]f U5 )
i50

n21 U ] f

]fU
f i

U,1. ~2.2!
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III. RESETTING AND ANNIHILATION
OF REENTRANT EXCITATIONS

OF REENTRANT WAVES BY A SINGLE STIMULUS

In this section we consider the effects of a single stimulus
on a reentrant wave. We consider the FitzHugh-Nagumo
equations@13#

]v
]t

52v~v20.139!~v21!2w1I1D
]2v
]x2

,

~3.1!
]w

]t
50.008~v22.54w!,

whereD is a diffusion coefficient,I is a time- and space-
dependent injected current, and the parameters are from@15#.
The FitzHugh-Nagumo equation is a generic model of excit-
able media. We choose parameters consistent with values
appropriate for cardiac conduction. We assume the circum-
ference isL523A5 cm,D51 cm2/sec, and cyclic bound-
ary equations@20#. The equations are integrated using the
Euler method withDt50.1 msec andDx50.005L. We ini-
tiate a reentrant rhythm in which a single wave propagates
by appropriate choice of initial conditions@20#. Figure 1
shows the numerically computed solutions of~3.1!. In the
left-hand panels,v andw are shown as a function of ring
position x. In the biological context,v is analogous to the
membrane voltage, andw is a variable that determines the
refractory time. The projection of the solution into the (v,w)
plane is shown in the right-hand panel. Because of the cir-
cular symmetry the projection in the (v,w) plane remains
invariant over time. Asx increases the projection in the
(v,w) plane traces out a closed curve that is traversed once
in the counterclockwise direction. As time evolves, the wave
propagates from right to left in the left-hand panels. This
direction of propagation is called the anterograde direction
and the opposite direction of propagation is called the retro-
grade direction. The intrinsic cycle length of the reentrant
excitation, isT05356.1 msec@20#.

Let xrec be a specific position in the ring. Since the ring
has circular symmetry,xrecPS1 is arbitrary. We choose
xrec50.5. We define the phase as follows. Suppose the re-
entrant rhythm is stably circulating on the ring. Then we
associatet50, f50 with the time whenv(xrec ,t) increases

through 0.5. This is the case shown in Fig. 1. Subsequent
times t.0 are identified with phasef5t/T0 ~mod 1! of the
reentrant rhythm.

We will apply stimulation~injected current! at a single
grid point of the discretized equations with a magnitudeI for
10 iteration steps~1 msec!. Let xstim50.5 be the locus where
current is injected.

If a stimulation is delivered at phasef and if the reentrant
rhythm is reestablished after the stimulation, successive ex-
citations are observed atxrec at times T1(f),
T2(f),...,Tj (f). If there is no resetting, we haveTj5 jT0 .
If there is resetting, thenTj2Tj21 should converge toT0 for
sufficiently largej since the reentrant rhythm is stable. For
sufficiently large values ofj , we define the phase transition
curve based on the sequenceTj . We find

g~f!5f2
Tj

T0
~mod 1!. ~3.2!

This means that the phase of the reentrant rhythm is shifted
from f to g(f) when the stimulation is applied atf
@20,29,30#; see Sec. II. If the reentrant rhythm is reestab-
lished following stimulation at any phase, the curveg(f) is
continuous. If the reentrant rhythm is annihilated for some
stimulus phases,g(f) is not defined for those phases leading
to discontinuities ing(f).

In excitable media, if stimulation is delivered when the
system is at its steady state there will be an excitation in-
duced if the stimulation is suprathreshold. If the stimulation
intensity is decreased, a critical magnitude will be reached
that will fail to generate a new excitation. Such a stimulus is
called subthreshold. During the course of stimulation, the
threshold separating subthreshold and suprathreshold stimuli,
depends on the past history of the excitation. A medium that
has recently been excited usually has a higher threshold than
a fully recovered medium.

A. Suprathreshold stimulation

In a previous paper@20#, we considered the effects of a
single suprathreshold stimulus. Since these results form the
foundation for this paper, we briefly review them here.

The effect of a stimulus depends on its phase in the cycle.
If the stimulus is applied during the action potential it has
negligible effect. The excitation continues to circulate and is
not reset by the stimulus.

Suprathreshold stimuli delivered after the medium has
fully recovered from a wave of excitation lead to two waves,
one propagating in the anterograde direction and the other
propagating in the retrograde direction. The dynamics in this
case is illustrated in Fig. 2~a! which shows a series of traces
at successive times following a stimulation at phasef50.70.
At t545, there is a collision between the retrogradely propa-
gating wave and the original wave. The collision leads to an
annihilation of the original wave and the retrogradely propa-
gating wave, leaving only the anterogradely propagating
wave initiated by the stimulus. The projections in the (v,w)
plane~right panels! show a complex progression eventually
leaving only a single wave. The timing of the reentrant ex-
citation is reset.

A stimulus that occurs in a narrow interval of phases fol-
lowing the action potential leads to annihilation of the reen-

FIG. 1. ~left panel! Numerically computed solution of the
FitzHugh-Nagumo equation~3.1! as a function of ring positionx
~normalized to unit length!. A single pulse propagates from right to
left. We assume parameters in the text and cyclic boundary condi-
tions. This representsf50 ~right panel!. The projection of the so-
lution into the (v,w) plane~right panel!. As x increases, the coor-
dinates ofv andw as a function ofx trace out a closed loop that is
traversed in a counterclockwise direction. By rotational symmetry
of the ring, this loop is invariant over time provided the wave is
rotating stably.

53 6355ENTRAINMENT AND TERMINATION OF REENTRANT WAVE . . .



trant excitation@Fig. 2~b!#. A stimulus delivered at phase
f50.25 induces a wave that propagates only in the retro-
grade direction. When the retrograde wave collides with the
original wave att5120, the two waves annihilate each other
and the medium returns to a resting statet5160. The pro-
jection of the dynamics to the (v,w) plane, Fig. 2~b! ~right
panels!, gives insight into this process. The projection at
t535 shows a small gap opened up just above the origin.
The curve is nevertheless continuous. As time progresses,
the projection smooths out due to collisions of the waves, but
the whole curve shrinks to a point. For analytic approaches
to the phenomena described above see@16,18#.

Figure 3~a! shows the resetting curve and Fig. 3~b! illus-
trates the associated phase transition curve for a suprathresh-
old stimulation intensity (I55.0) based on Eq.~3.2!. The
curve has been shifted up by 0.5 to improve clarity. The
curve is discontinuous, with the critical window around the

phase 0.25. The reentrant rhythm is terminated by stimula-
tion applied at phases within the window. In@20# we argued
that for suprathreshold stimuli, the same basic shape of the
phase transition curve should be observed for a broad class
of excitable media even though the detailed kinetics will
differ from case to case.

B. Subthreshold stimulation

The situation is different for a subthreshold stimulation,
I52.0. For subthreshold stimulation, there is little effect for
stimuli delivered over most of the cycle. However, a stimu-
lus delivered in the time interval preceding the invasion of
the reentrant wave will lead to its termination; see Fig. 4.
The membrane potential in the neighborhood of the stimula-
tion site is increased by the stimulation. Following the stimu-
lation, the membrane potential decreases since the stimula-
tion intensity is subthreshold. In parallel with this process,w
at the stimulation site also increases; see the left-hand panels
for t59.5, t529.5. This makes the tissue less excitable and
the wave fails to propagate. In the right-hand panels, we see

FIG. 2. Dynamics of phase resetting and annihilation using su-
prathreshold stimuli~I55.0; duration of the stimulus is always 1
msec or 10 iteration steps!. The panels are presented using the same
format as in Fig. 1. The time following the onset of the stimulus is
given at the left side of the figure.~a! Resetting with a pulse deliv-
ered at phasef50.70. ~b! Annihilation by a pulse delivered at
phasef50.25.

FIG. 3. ~a! The normalized times of successive occurrences of
action potentialsTj as a function of the phase of the stimuli with a
suprathreshold stimulus (I55). The wave circulation is annihilated
if a stimulus is delivered within a critical window of phases.~b!
Phase transition curve defined by Eq.~3.2!. The curve has been
shifted up by 0.5 to clarify presentation.

FIG. 4. Dynamics of annihilation using subthreshold stimulus
(I52.0) applied at the phasef50.90. The same format as in Fig. 2
is used.
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that the projections in the (v,w) plane develop a small kink
near the origin, and the continuous curve is shifted slightly
above the origin. The projection in the (v,w) plane shrinks
to a point at the origin as time proceeds. The associated
resetting curve is in Fig. 5~a!. There is again a critical win-
dow that leads to annihilation but this window is around
phase 0.9. Figure 5~b! illustrates the discontinuous phase
transition curve for a subthreshold stimulation intensity. For
clarity the curve is shifted up by 0.5.

IV. PERIODIC STIMULATION

In this section, we investigate the response of the reen-
trant wave in the FitzHugh-Nagumo equation to periodic
stimulation. Then we show how these results can be ac-
counted for using simple considerations based on iteration of
the phase transition curves.

Periodic stimulation with suprathreshold stimuli leads to
either leads to entrainment of the reentrant wave to the
stimulus or annihilation of the reentrant wave. If there is
entrainment of the reentrant wave there is a periodic rhythm
in which the ratio of the number of stimuli to the number of
rotations of the reentrant wave is a rational number.

A. Numerical studies of the FitzHugh-Nagumo equation

Stimulation is delivered at positionxstimwith suprathresh-
old stimuli. I is taken to be 5.0 since this gives a typical form
of the phase transition curve for suprathreshold stimulation
intensities. Figure 6 shows examples of several different
types of entrainment. Whent50.402 there is period 1 en-
trainment, whent50.285 there is period 3 entrainment, and
whent50.193 there is period 2 entrainment. The basic cycle
length of the reentrant wave is perturbed from the value it
would have had without the periodic stimulation. Following
cessation of the stimulation the original wave is reestablished
with propagation in the same~anterograde! direction and pe-
riod as before the stimulation. During the stimulation, the
local appearance of the waveforms will depend on the site at
which the activity is measured.

Stimulation can also lead to annihilation of the reentrant
wave. As described in Sec. III, the annihilation will always
be immediate if the initial stimulus falls in the critical win-
dow. However, if the first stimulus does not lie in the critical
window, it is possible that a subsequent stimulus will never-
theless lead to annihilation. In Fig. 7~a! we show stimulation
with a period of 1.293 with an initial phase of 0.9. Two
stimuli ~left panel! do not annihilate the reentrant wave,

whereas three stimuli do annihilate it~right panel!. In Fig.
7~b!, using a stimulus period of 0.293@which is the same
period as in panel~a! if the period is taken modulo 1#, it also
takes three stimuli to annihilate the oscillation.

For stimulation frequencies that lead to entrainment, some
initial phases will nevertheless lead to annihilation of the
reentrant wave. This annihilation can occur after either one
stimulus or multiple stimuli. For example, in Fig. 6~b!, we
showed an entrainment rhythm with three stimuli for each
circulating wave where the initial phase of stimulation was
0.9 and the period of stimulation was 0.285. However, had
we selected the initial phase as 0.298, with the same period
of stimulation, there would have been annihilation after two
stimuli, Fig. 7~c!.

FIG. 5. Representation of resetting by a single stimulus using a
subthreshold stimulus (I52). The same format as in Fig. 4.

FIG. 6. Entrained reentrant waves by periodic stimuli. For each
trace, the stimulus is suprathreshold (I55.0), and the first stimulus
is applied atf50.9. When the periodic stimuli are terminated, the
original reentrant wave is reestablished.~a! t50.402. Period 1 en-
trainment.~b! t50.285. Period 3 entrainment.~c! t50.193. Period
2 entrainment. Time units are in sec.

FIG. 7. Annihilation of reentrant waves using several stimuli. In
the left-hand columns the periodic stimuli do not terminate the re-
entry. Adding an additional pulse~right-hand columns! leads to
annihilation of the excitation.~a! t51.293,f050.9. ~b! t50.293,
f050.9. ~c! t50.285,f050.298. Time units are in sec.
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Although annihilation of the reentrant wave almost al-
ways led to the quiescent steady state, the theory does not
exclude the possibility of initiation of a different oscillation
@20#. This behavior was observed in the simulations but only
rarely. In Fig. 8~a! we show the effects of 20 stimuli with
period 0.084. The successive traces show the value ofv
along the ring at equal time intervals~the earliest time is at
the top of the figure!. Initially the wave is travelling from
right to left ~this is the anterograde direction!. Stimulation is
initiated between the sixth and seventh traces. Following ces-
sation of stimulation, there is again a single reentrant wave
on the ring—but it is traveling in the opposite~retrograde!
direction to the initial wave. This case arose as a conse-
quence of a complex sequence, in which the initial wave was
first annihilated~ceasing stimulation after 10 stimuli leads to
cessation of all activity!, but then a new wave traveling in
the opposite direction is initiated as a consequence of the
interaction of the stimuli with the medium. In Fig. 8~b!, 20
stimuli are again delivered with the same parameters as in
Fig. 8~a!, but with slightly different initial phase. In this case
double wave reentry, in which two pulses are on the ring at
the same time, is initiated by the stimuli. We show these
traces because they pose interesting theoretical questions,
and similar phenomena are observed in experimental and
clinical settings. Experimental studies have demonstrated re-
versal of rotation of reentrant waves and initiation of double
wave reentry following rapid periodic stimulation of reen-
trant waves@7#.

Finally, using subthreshold stimuli, it is difficult to obtain
entrainment. Rather, the usual circumstance is that there will
be annihilation following some number of stimuli.

B. Analysis using the Poincare´ map

The Poincare´ map, Eq.~2.1!, provides a basis for under-
standing the results presented above. The following two rules
summarize the effects of periodic stimulation.

~1! If there is a stable periodic point in the Poincare´ map,
there will be stable entrainment of the periodically stimu-
lated reentrant wave. All initial phases which approach the
steady state of the map will lead to entrainment. The period
of the entrainment is associated with the period of the steady
state in the map.

~2! If the iterates of the Poincare´ map land in the critical
window after j iterates, then the reentrant wave will be an-
nihilated afterj stimuli.

The application of these rules is illustrated in Fig. 9. Fig-
ure 9~a! shows a period 2 orbit following a transient re-
sponses~I55.0, t50.193,f050.9!. The parameters corre-
spond to those of Fig. 6~c!. In this case, the phase of the
stimuli alternate. Figure 9~b! corresponds to Fig. 7~b! ~I
55.0,t50.293, andf050.9!. The iterates land in the critical
window after three stimuli leading to termination of the re-
entry. In this map, periodic stimulation starting from differ-
ent initial phases will lead to different dynamics. Figure 9~c!
illustrates an example in whicht50.285. The parameters are
associated with those of Figs. 6~b! and 7~c!. Starting from
f050.9 we obtain stable entrainment with period 3, while
f050.298 leads to termination after two iterates.

For a fixed stimulus intensity (I55.0) the dynamics de-
pend on both the period and the initial phase of the periodic
stimuli. Figure 10 summarizes these dependencies found
from numerical iteration of the Poincare´ map. The horizontal
axis ist2d ~mod 1!, and the vertical axis is the initial phase
f0 of the iteration. The symbolsp1 andp2 designate period
1 and period 2 entrainment. Similarly, the numbers 1,...,5 in
the regions indicate the number of stimuli that are needed to
annihilate the reentrant rhythm. For example, the horizontal
band labeled with a 1 represents annihilation by a single
stimulus falling in the critical window. In the heavily shaded
region aroundt2d'0.27, period 3 entrainment regions and
terminations by different numbers of stimuli are mixed in a
complicated manner. The boundaries in this figure are simple
consequences of the iteration of the one-dimensional map.
For example, the region labeled 2 represents all combina-
tions of period and initial phase that map to the critical win-

FIG. 8. Transitions out of the basin of attraction of the reentrant
wave to basins of attraction of different attractors using high-
frequency stimulation and suprathreshold stimuli (I55.0). Succes-
sive traces shown showv as a function ofx. Earliest time is at the
top of the figure. Initially the wave is propagating from right to left.
20 stimuli of t '0.084 are applied to the ring with an initial phase
of f0'0.1 starting at a time between the sixth and seventh traces.
The initial phase of the simulations in the right- and left-hand pan-
els differed by'1/3561. ~a! The original leftward propagating
wave is annihilated and is replaced by a wave propagating to the
right. ~b! The original leftward propagating wave is replaced by a
wave with two action potentials propagating to the left.

FIG. 9. Numerical iteration of the one-dimensional Poincare´ de-
termined from the resetting experiments. The maps can be used to
predict the qualitative dynamics arising from periodic stimulation of
the FitzHugh-Nagumo equation (d'0.003).~a! t 50.193,f050.9.
This corresponds to the period 2 cycle in Fig. 6~c!. ~b! t 50.293,
f050.9. This corresponds to the annihilation in Fig. 7~b!. ~c!
t 50.285. Starting from a phase off050.9 the orbit converges to a
periodic orbit with period 3@compare with Fig. 6~b!#. Starting from
a phase off050.298 the orbit reaches the critical window after two
iterations and is annihilated; compare with Fig. 7~c!.
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dow in two iterations. Because of the simple structure of the
map, this and other regions can be readily computed.

The results in Fig. 10 are based on iteration of the Poin-
caré map. Although we have not carried out a systematic
analysis, these results also give an accurate representation of
the periodic stimulation of the partial differential equation
over a broad frequency range for which we have done
sample computations. However, for high-frequency stimula-
tion ~Fig. 8! the dynamics do not have time to relax to the
attractor between stimuli, and the predictions of the map are
not accurate.

Thus, periodic stimulation of a nonlinear partial differen-
tial equation supporting stable oscillations caused by a circu-
lating reentrant wave on a one-dimensional ring can be un-
derstood to a first approximation by the iteration of a one-
dimensional map based on the resetting of the reentrant wave
by a single pulse.

V. DISCUSSION

A ring of excitable medium can support a circulating re-
entrant wave which will either be reset or annihilated by a
single stimulus. In this paper we have shown that once we
know the effects of a single stimulus as a function of its
phase, we can predict the effects of multiple stimuli by itera-
tion of an appropriate one-dimensional map. In most circum-
stances, annihilation or entrainment will result depending on
the initial phase of the stimulus, the amplitude of the stimu-
lus, the number of stimuli, and the period of the stimuli.
There is close agreement between the numerical integration
of a nonlinear partial differential modeling excitable media,
and iteration of the associated Poincare´ map. These results
are interesting from a perspective of the underlying theory as
well as medical applications.

The basic theory that is sketched out in Sec. II was devel-
oped specifically for the periodic forcing of limit cycle os-

cillators in finite-dimensional systems@23–30#. In ordinary
differential equations, it is often easy to get a complete pic-
ture of the flow in phase space. When the limit cycle is
strongly attracting and the stimulation does not affect the
properties of the limit cycle oscillation, the one-dimensional
map provides a good description of the dynamics under pe-
riodic stimulation.

For infinite-dimensional systems such as we have here,
the current state is defined by functions defined on the ring.
The ring can support many attractors. For example, the dif-
ferent attractors include the steady state, a single wave
propagating clockwise or counterclockwise around the ring,
and solutions with two or more propagating pulses traveling
simultaneously in the same direction. Each of the different
attractors has its own basin of attraction. The basins of at-
traction of the oscillating systems are foliated by isochrons.
The boundaries between the basins is of crucial importance
in determining the stability of oscillations and steady states
to perturbations. We conjecture that oscillating solutions can
be characterized by an index, e.g.,11, 22, which indicates
the number of propagating pulses in the ring at a given time
and their direction. The index would be an invariant of all
functions in the basin of attraction of a given attractor. Al-
though we have been unable to find an appropriate definition
of the index, we expect the projection of the functions on the
ring to the (v,w) plane, e.g., right-hand panels in Figs. 2 and
4 are a good place to start. We have tried to define an index
by computing the winding number of the projections in the
(v,w) plane about points slightly displaced from the origin,
but have been unable to come up with a suitable definition
that is appropriate for the many trials we have tested.

In medicine, it is well known that it is possible to termi-
nate and entrain reentrant tachycardias by single or periodic
stimulation and many of the simulations here are similar to
clinical recordings@1,2,4,6,7,11#. There is a family of im-
plantable cardiac devices that terminate tachycardias@12#.
Although some theoretical modeling of these phenomena has
been carried out@5,9,11# we are not aware of earlier studies
that use resetting of tachycardias to predict the effects of
multiple stimuli. Thus, although it is well known in cardiol-
ogy that a train of stimuli will lead to resetting, entrainment,
or annihilation of tachycardias, it is not recognized that this
range of phenomena can be captured by very simple iterative
models.

The current work therefore suggests quantitative cardio-
logical studies in which data from resetting experiments is
used to predict the effects of multiple stimuli. Such studies
might have practical utility if they could lead to better fine
tuning of medical devices since battery life is an important
factor in implantable devices. In this regard it is interesting
that low-amplitude–low-frequency stimulation should also
be able to annihilate reentrant excitation, since this might be
desirable in many settings. Also, better means of interpreting
clinical protocols that use resetting and entrainment, might
lead to better localization of anatomical sites involved in
tachycardia generation.

However, it is inevitable that quantitative tests of the
theoretical approach outlined here will lead to some discrep-
ancies with experimental and clinical studies. Since the real

FIG. 10. Summary of dynamics of the periodically stimulated
FitzHugh-Nagumo equation based on numerical iteration of the
Poincare´ map found for suprathreshold stimuliI55.0. The symbols
p1 andp2 designate periodic 1 and 2 entrainment. The numbers
1,...,5 in the regions designate the number of stimuli that are needed
to annihilate the reentrant rhythm. In the heavily shaded region
aroundt2d'0.27, period 3 entrainment region and terminations
by several different numbers of stimuli are mixed.

53 6359ENTRAINMENT AND TERMINATION OF REENTRANT WAVE . . .



heart is a complex three-dimensional structure with anatomi-
cal and physiological heterogeneity, it might seem preposter-
ous to believe that these methods will have any applicability.
However, the many correspondences between the theoretical
results and the clinical results invite further investigation. A
better understanding of the basic physics and mathematics of
resetting and entrainment of reentrant tachycardias in a one-
dimensional ring should help the cardiologist to understand

the mechanisms of tachycardia and to develop better thera-
pies for these dangerous rhythms.
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