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Dynamics of pure parasystole. Am. J. Physiol. 251 (Heart Circ. 
Physiol. 20): H841-H847, 1986.-A mathematical model is 
proposed for ventricular parasystole. In this model, there are 
two separate rhythms, a sinus rhythm and a ventricular ectopic 
rhythm. An ectopic beat will occur if the ectopic depolarization 
falls during a time interval when the ventricles are not refrac- 
tory. Following an ectopic beat there is a compensatory pause. 
Analysis of this model, utilizing numerical simulation and 
techniques in number theory, demonstrates several new rules 
for parasystole.7 Specifically, for any set of fixed values for the 
sinus and ectopic frequencies and the ventricular refractory 
time, there are at most three different values for the number 
of sinus beats between ectopic beats. One and only one of these 
values is odd, and the sum of the two smaller values is one less 
than the larger value. The variation in the allowed values of 
the number of sinus beats between ectopic beats, as a function 
of the parameters of the model, is classified. Clinical cases 
found in the literature display certain aspects of the predictions 
of the theoretical model. Theoretical analysis of this kind 
provides new approaches to assessing the mechanism of com- 
plex ventricular arrhythmias. 

ventricular cardiac arrhythmia; number theory; cardiac oscil- 
lator 

VENTRICULAR ARRHYTHMIAS are of major clinical impor- 
tance because of their role in the pathogenesis of the 
sudden cardiac death syndrome. Ventricular ectopic 
beats may be due to at least one of the two following 
major mechanisms (4): abnormalities in cardiac conduc- 
tion (e.g., reentry) and abnormalities in impulse forma- 
tion (e.g., enhanced automaticity). Perhaps theobest char- 
acterized example of abnormal automaticity is ventricu- 
lar parasystole. 

Ventricular parasystole is a cardiac arrhythmia char- 
acterized by three distinctive features on the electrocar- 
diogram (19, 22) 1) variable coupling intervals between 
the sinus and the ventricular ectopic rhythm; 2) inter- 
ectopic intervals that are multiples of a common divisor; 
and 3) the presence of fusion beats. The postulated 
mechanism for ventricular parasystole is the presence of 
an autonomous ectopic focus generating beats at a fixed 
rate. Because of entrance block, this automatic focus is 

not affected by the normal sinus rhythm. The ectopic 
focus generates a propagated action potential if the ec- 
topic depolarization falls outside of the normal refractory 
period of the myocardium. 

The concept of ventricular parasystole was formulated 
over 70 yr ago (5, 13). Subsequent research has shown 
that there can be complex interactions between the par- 
asystolic focus and the sinus rhythm. For example, Levy 
et al. (17) demonstrated in experiments in dogs that 
ectopic beats lead to alterations in blood pressure which 
in turn affect the sinus rhythm via baroreceptor and 
other reflexes. More recently, Jalife, Moe, and co-work- 
ers (g-11,20) have argued that a parasystolic focus might 
be influenced by the underlying normal sinus rhythm via 
electrotonic coupling. The sinus rhythm impulse would 
lead to a phase-resetting of the ectopic rhythm. The 
resulting rhythm, termed “modulated” parasystole would 
show deviation from the dynamics expected in “pure” 
parasystole. A number of previously reported clinical 
studies were shown to be consistent with modulated 
parasystole (9). Recent studies have shown that phase 
resetting curves can be derived from electrocardiogram 
(ECG) records in favorable situations (3,9,21). Further- 
more, arrhythmias usually ascribed to reentry (such as 
ventricular bigeminy or trigeminy with fixed coupling 
between sinus and ectopic beats) may also result from a 
modulated parasystolic mechanism (9, 10). 

Although several theoretical analyses of the dynamics 
of modulated parasystole have appeared (8, 20, 26), a 
careful theoretical analysis of pure parasystole has not 
yet been made. At first inspection, pure parasystole 
appears to present a straightforward situation devoid of 
dynamical subtleties. Detailed analysis, however, reveals 
that pure parasystole generates a surprising richness of 
dynamical behavior, including striking regularities and 
structure that have not been previously described. In the 
main body of this paper, directed toward physiologists 
and cardiologists, we present the model for ventricular 
parasystole, describe the dynamics of this model, and 
discuss the results in the context of clinical cardiology. 
In the APPENDIX, we give derivations of many of the 
theoretical results. This work shows how techniques in 
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number theory (25) can be used in the analysis of cardiac 
arrhythmias. 

Theoretical Model of Pure Parasystole 

We assume the mechanism for pure parasystole pro- 
posed by Fleming (5) and Kaufman and Rothberger (13), 
illustrated in Fig. 1. Assume that there is a normal sinus 
rhythm of period ts and an ectopic rhythm with period 
tE with tE 2 ts. After each sinus beat there is a refractory 
period, 8. If the ectopic rhythm generates an impulse 
during the refractory period, then it is blocked. If the 
ectopic rhythm generates an impulse outside of the re- 
fractory period it leads to an ectopic beat. After each 
ectopic beat, the next sinus beat is assumed to be blocked, 
resulting in a “compensatory pause”. 

To simulate this on a digital computer it is essential 
to choose ts, tE, 8, and the initial phase of the ectopic 
beat in the sinus cycle. For each different set of four 
parameters, a time sequence giving the number of sinus 
beats between ectopic beats is generated. Analysis of the 
dynamics as a function of the four parameters is ob- 
viously unwieldy. However, consideration of the mathe- 
matical structure of the model for parasystole leads to a 
simplification that eliminates two parameters. The fol- 
lowing considerations simplify the numerical simula- 
tions: 1) Independent variation of both ts and tE is not 
needed, since we can use ts to set the scale of time and 
measure tE relative to ts. This reduces the number of 
parameters by 1. 2) Two numbers, x1 and x2, are said to 
be rationally related if it is possible to find two integers, 
p and 4, such that pxl equals qx2. In this case, the ratio, 
xJ;xz equals 4/p, which is a rational number. In the 
situation that t, and tE are rationally related, the dynam- 
ics may be sensitive to the initial condition. This is 
illustrated in Fig. 2, in which we show the dynamics for 
two initial conditions with t&s = 1.5 and O/ts = 0.4. In 
one case there is a periodic pattern in which there are 
two sinus beats between each ectopic beat (Fig. ZA), and 
in the second case there is a periodic pattern in which 
there are alternately no sinus beats and one sinus beat 
between ectopic beats (Fig. 2B). For the situation in 
which ts and tE are not rationally related (i.e., t&s is 
irrational), the asymptotic properties of the dynamics 
are insensitive to the initial condition. In practice, it is 
impossible either to represent the ratio t&s by an irra- 
tional number, in numerical simulation, or to perform a 
finitely precise measurement of t&s that would give an 
irrational result. However, in the simulations, we incre- 
ment the ratio t&s by 0.01 X r where r equals 3.141592 

and iterate for 1,000 sinus cycles. By choosing ratios for 
which @E equals qts only for large values of p and 4, we 
minimize the effects of the initial condition, and conse- 
quently simulations are carried out only from one initial 
condition. It would also be possible to choose values of 
tE and ts so that ptE equals #s for small values for p and 
4, but doing so would require averaging the results over 
several initial conditions. The rules given in the next 
section are alSO valid for t&s rational (Smt? APPENDIX). 

In summary, in the mathematical model we system- 
atically vary the refractory period and the ratio t&s and 
determine the resulting dynamics. 

Dynamics 

One way to characterize cardiac rhythms such as par- 
asystole in which there are frequent extrasystoles is to 
count the number of normal sinus beats intervening 
between ectopic beats. Studies have shown that occa- 
sionally the number of normal beats between ectopic 
beats follows some simple arithmetic laws as in the 
situations in which all intervals are composed of odd 
numbers (“concealed bigeminy”), or all intervals assume 
a value (3N-1) (“concealed trigeminy”; 22-24). Variants 
of these rhythms have also been described (16). Although 
the sequences giving the number of sinus beats between 
ectopic events and histograms of these values can be 
readily determined from ECG data, and readily computed 
in mathematical models, a systematic analysis of such 
distributions has not yet appeared. 

We computed the histograms showing the number of 
sinus beats between ectopic events over a range of ratios 
of ts and tE and for several values of 8. The results of the 
simulations can be presented graphically. Let p(a), p(b), 
p(c) be the probability that there are a, b, or c, respec- 
tively, sinus beats between two given ectopic events. Note 
that p(a) + p(b) + p(c) equals 1. We now plot p(a), p(b), 
and p(c) as a function of t&s for e/ts equals 0.4 in Fig. 
3A, and for O/t, = 0.6 in Fig. 3B. The values of a, b, and 
c are given on the curves. It is also possible to show the 
allowed values of a, b, and c in the (O/ts, t&s) plane. 
This is done in Fig. 4, which is based on numerical 
calculations and a theoretical construction described in 
the APPENDIX. The labeled regions show the values for 
the number of sinus beats between ectopic events. In the 
unlabeled regions, it is also possible to determine the 
number of sinus beats between ectopic events using the 
construction in the APPENDIX, but the zones become so 
small they are not easily presented on the scale of the 
figure. The following rules summarize the calculations. 

FIG. 1. Schematic of the model for parasystole. Sinus rhythm (S) and ectopic rhythm (E) are shown. Refractory 
time is represented as a shaded region. Any ectopic beat that falls outside refractory time is conducted (filled arrows) 
and leads to a blocking of the subsequent sinus beat (dashed lines). Ectopic beats falling during refractory time are 
blocked (open arrows). In the illustration O/t, = 0.4, t&S = 1.65 and there are either 1, 2, or 4 sinus beats between 
ectopic events. 
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E 0 t 8 1) Q t Q t 0 FIG. 2. Illustration showing depend- 
ence of parasystolic rhythm on initial 
condition when 0/t, = 0.4, tE/tS = 1.5. 

8 See Fig. 1 for explanation of symbols. 
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’ three different values for the intervals. One and only one 

3 
of these values can succeed itself. 

DISCUSSION 

The .proposed mechanism for parasystole can be traced 
at least back to 1912, when Fleming (5) described two 

_ cases in which he hypothesized “the ventricles are follow- 
ing a rhythm set by two pacemakers, one at the sinoau- 
ricular node, producing physiological beats, and another 
at an irritable focus in the ventricle, which is rhythmi- 
cally discharging stimuli at the customary rate of ven- 
tricular stimulus production, thus giving rise to extra- 

2 3 4 
systoles.” Despite this early recognition of a plausible 
mechanism for parasystole and reconsideration of the 

I I 
B 

rhythm innumerable times by many investigators in 

1 intervening years, a detailed study of the dynamics of 
parasystole has apparently not previously appeared. 

Examination of the literature reveals clinical studies 

I 2 3 4 

tE ‘+S 
FIG. 3. Histograms showing relative numbers of sinus beats between 

ectopic events as a function of t&s. A: t9/ts = 0.4; B: O/ts = 0.6. In the 
neighborhood of the integers in A and B and the half-integers in B 
there is an infinite cascade of peaks that is too fine to be clearly 
represented by this graph. We give dotted Lines to indicate this. 

Rule 1. For any ratio of t&s there are at most three 
different values for the number of sinus beats between 
ectopic events. 

RuZe 2. One and only one of these three different values 
is odd. 

Rule 3. For any value of t&s at which there are three 
different values for the number of sinus beats between 
ectopic events, the sum of the two smaller values is one 
less than the larger value. 

The sequences of the number of sinus beats between 
ectopic events also show regularities, which at the mo- 
ment are not yet completely understood. However, some 
simple properties of the sequences can be readily deter- 
mined. The following simple and useful result can be 
easily derived (see APPENDIX). 

RuZe 4. Consider the sequence giving the number of 
sinus beats between ectopic events in which there are 

of parasystole displaying some of the features displayed 
in Fig. 3. For example, Kinoshita (14) (case 7, Fig. 5, 
strips 2-4) describes a case in which tE = 1.65 s, t, = 1.00 
s, 8 = 0.4 s, 0/ts = 0.4, t&s = 1.65. Examination of the 
histograms shows that p(l) = 0.43,p(2) N 0.47,p(4) = 
0.10. In the tracing presented by Kinoshita the sequence 
for the number of sinus beats intervening between ec- 
topic beats is 1, 4, 2, 2, 4, 4, 2, 1, 4. Although the only 
intervals which are observed are 1,2, and 4, as predicted, 
the relative ratios of these intervals are not as theoreti- 
cally predicted. Furthermore, the values 2 and 4 both 
appear as doublets, and thus rule 4 above is not obeyed. 
A similar case is in Schamroth (22) (case 79) in which tE 
= 1.5 s, ts = 0.92 s, 8 = 0.55 s, 8/t, = 0.6, t& = 1.65. 
For this case we theoretically predict p( 1) = 0.14, p(2) = 
0.20, p(4) = 0.66. Here, the sequence giving the number 
of sinus beats between ectopic beats is 1, 2, 2, 2, 2, 2, 1, 
1, 4, 2, 2, 2, 2. Once again the intervals but not their 
relative ratios are as predicted, and ruZe 4 is not satisfied. 

The two above cases are of interest when considered 
in light of a description of a variant of concealed bigem- 
iny (16). In this variant the number of sinus beats 
between ectopic events is restricted such that there is 
only one sinus beat or else there is an even number of 
sinus beats between ectopic events. Examination of the 
(O/ts, t&s) plane of Fig. 4 shows that all points in the 
triangular region in which vertices are at (0, I), (0, 3), 
and (1, 2) would be classified as belonging to such a 
variant. However, in the two cases reported in (16), the 
interectopic intervals are not all multiples of a common 
divisor, thus excluding a pure parasystolic mechanism. 
We propose that even with modulation of the ectopic 
rhythm by the sinus rhythm, large regions of parameter 
space will display the variant described above. We have 
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FIG. 4. Allowed values for number of sinus beats between ectopic events in the (e/t,, t&s) plane. Allowed values 
in unla beled regions can be determined using the construction in the APPENDIX. In the triangular region with vertices 
at (0, 1 ), (0,3), (1, 2) th ere is either only 1 or an even number of sinus beats between ectopic events. 
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found this variant in unpublished numerical studies of 
modulated parasystole. Thus, even in cases in which 
there is modulated parasystole, some of the features of 
pure parasystole will still be present (at least in some 
regions of parameter space). 

As a final example, a fascinating case was reported by 
Lightfoot (18). A careful reanalysis of the data reported 
by Lightfoot shows that the record displays modulation, 
albeit of a comparatively weak nature (9). The case 
reported by Lightfoot is consistent with the variant 
described above at one time (tE = 2.0 s, ts = 0.94 s, 8 = 
0.36 s, t&S = 2.1, e/t, = 0.38). Two hours later the 
parameters had changed (tE = 2.39 s, ts = 0.92 s, 0 = 0.38 
s, t&S = 2.60, e/ts = 0.41). At this later time only 2, 4, 
or 7 sinus beats were present between ectopic events. 
Examination of Fig. 4 offers a clear interpretation of this 
puzzling finding, since there is a shift from the region 
consistent with the variant described above to the 2,4,7 
region over the 2-h period. 

Although detailed analysis of longer consecutive rec- 
ords is needed, these reported examples show that some 
aspects of the dynamics of parasystole observed clinically 
can be explained by the simple model considered here. 
However, the mathematical model does not account for 
the detailed sequence of sinus beats observed in those 
examples or for the relative ratios of the number of 
intervening sinus beats. Although at the moment, the 
source of these discrepancies is not understood, there are 
several factors that this model does not incorporate 
which may account for its limitations. 

1) The sinus and ectopic rhythms are assumed to be 
constant with a fixed ratio between them. More realisti- 
cally, fluctuations in sinus rhythm (for example, by res- 
piratory sinus arrhythmia) and ectopic rhythm may oc- 
cur. 

2) The sinus rhythm may act to modulate the parasys- 
tolic focus (3, 9-11, 20, 21). 

3) Ectopic beats may lead to fluctuations in the blood 
pressure, which, in turn, lead to variation in the sinus 
rate (17). 

4) There may be variations in the refractory time. For 
example, such fluctuations are normally expected as a 

consequence of variation of the sinus rate (12). 
A consideration of the above points shows that it is 

unrealistic to consider parameters to be constant, as we 
have done, but rather parameters should be allowed to 
fluctuate and vary as determined by the physiological 
situation. We expect that one of the effects of parameter 
fluctuation will be to “blend together” the results from 
several zones which span the range of parameter fluctua- 
tion. Thus, as t&s normally fluctuates over a range of 
values (both rational and irrational), and the refractory 
time varies, the values for the number of sinus beats 
observed between ectopic beats may span several of the 
zones observed in Fig. 4. Further, the sequences for the 
number of sinus beats observed between ectopic beats 
will deviate from those observed with constant param- 
eters. However, novel values (i.e., values that are not 
expected in that region of parameter space) for the 
number of sinus beats between ectopic beats may also 
occur, and this will confuse the interpretation and make 
identification of a parasystolic mechanism more difficult. 
Analyzing the effects of parameter fluctuation is a chal- 
lenging theoretical problem requiring closer analysis. 

Although we have only considered ventricular parasys- 
tole resulting from sinus and ventricular ectopic 
rhythms, it is important to recognize that interactions 
of other autonomous pacemakers can lead to other types 
of parasystolic rhythm. For example, atria1 parasystole 
results from interaction of sinus and atria1 ectopic pace- 
makers (19). Parasystolic rhythms can also be set up 
between junctional escape rhythms and a ventricular 
ectopic focus (15). Interpretation of these rhythms is 
often complicated by the modulation of the basic rhythm, 
set by the sinus or junctional pacemakers, by the ectopic 
pacemaker (15, 19). 

From a clinical viewpoint, the results of the present 
investigation may be of future relevance. Lengthy records 
of cardiac rhythms are routinely obtained in evaluating 
patients with frequent ectopic beats. Conventional anal- 
ysis of such records has focused primarily on the fre- 
quency of the ectopic beats and the coupling intervals 
between the sinus and ectopic beats. The present study 
suggests that such analysis is incomplete and must be 
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extended to include the distribution of the number of 
sinus beats between ectopic beats and the sequence in 
which the number of sinus beats between ectopic beats 
occur. Efforts should be directed to determine histograms 
of the number of sinus beats between ectopic events as a 
function of sinus rate. On the basis of the analysis here 
(Fig. 4) we expect that such data will show regularities if 
the rhythm is generated by a parasystolic mechanism. 
However, further investigation is needed to determine if 
such measures will be useful in concrete situations. 

In summary, we have shown that an analysis of the 
properties of a simple model of pure parasystole reveals 
richer dynamics than has been recognized. Extension of 
the present results may be useful in developing more 
realistic models of parasystole, including the effects of 
fluctuations in parameters and pacemaker interaction. 

APPENDIX 

To theoretically analyze the mathematical model for pure parasys- 
tole described in the text it is convenient to make several modifications. 
Specifically we shall take the unit. of time to be the sinus period. In the 
renormalized time frame the refractory time, CY, = O/t, and the inter- 
ectopic period, T, = t&s. Also, we shall assume that the beat following 
an ectopic event is not suppressed. Finally we take 0 < T < 1 and 
extend the result outside this range subsequently. Starting at some 
initial time, to, 0 < to < 1 generate the sequence (tj ), where tj = to + jT. 
Alternately, we can consider the dynamics modulo 1 and take & = ti 
(mod 1) representing the dynamics as points on the circumference of a 
circle. The model thus corresponds to a rigid rotation, 4 + 4 + T, on 
the unit circle, S1, where a continuous portion of the circle is distin- 
guished from the remainder of the circle. This problem has been 
considered previously in the context of symbolic dynamics (7). In 
addition, in the final stages of preparation of this manuscript, we 
learned that several of our main results had been previously derived by 
number theorists (25) who used somewhat different methods. 

One basic problem is to start with an initial value, 406 [a, 11, and to 
determine the smallest integer, j, such that 4 + jT (mod 1) c [cu, 1). We 
can be sure that if &[cY, 1) there will be a subsequent iterate such that 
4 + jTt[Ly, 1). Assuming T to :be irrational (this will occur with 
probability one if T is chosen randomly in a finite interval), successive 
iterates &, &, . . . where & = & + jT (mod 1) will be dense in S1 and 
will come arbitrarily close to any predetermined point of the circle. In 
particular, some iterate will be in [a, 1). Furthermore this shows that 
the precise choice of the initial condition 40 is not fundamental in the 
following sense: given 6 > 0 and 4 # $&‘, there is an iterate $ + jT 
that is closer than 6 to 4. It is important to recognize that choosing T 
to be rational will still give the rules derived here, but somewhat 
different arguments must be employed (25). 

We adopt the following notation 

6 = Fj(to) = to + jT (1 ) a 

6-i = tj(mod 1) = f’(&) = 40 + jT(mod 1) (lb) 

Starting with initial values a! (or 1) we wish to find the smallest integers, 
m (or n), such that f”(o) [or f”(l)] ~(cY, 1). Alternately, we seek the 
smallest values of m and n that satisfy the inequalities. 

A, + a s F”(a) < A, + 1 

An + a G F”(1) < A, + 1 

where A, and A, are integers. Applying (Ea. 1) we derive 

W 

GW 

A 
---% Tc 

A,+l-CY 
(3 ) a 

m m 

An - l+LY A 
ST<” (3b) 

n n 

The basic picture showing the mapping of the interval [ar, l] on the 
unit circle to itself is shown in Fig. 5 where r = f-” (1) and s = f W-n (a). 
Since the map is length preserving, r - a! = 1 - f”(a), s - r = f m (a) - 

FIG. 5. Diagram showing 
itself (see text for details). 

f”(l), and 1 - s = n f( 1) - CY. Let u be any point 6 (r, s ) and let p be 
smallest integer such that fP(u)ria, 1). From Fig. 5 it is clear that 

the mapping of the [a, 1) interval into 

the 

cYx = fn(4, X4) 
frn(d = fP(4, 

from which we find (since T is irrational) 

P =m+n. 

Applying Eq. 2 we have 

F”(r) = 1 + Am, 

F”(S) = CY + An 

However from Fig. 5 we also have 

where 
obtain 

A, is an integer. Applying Eq. la and combining Eqs. 5-7 we 

(5) 

FPW =a,+l-r+AA, (7) 

4 = Am + An (8) 

It is also possible to give a complete description of the dependence 
of the ratios Am/m, An/n (and hence also A,/p) on the two parameters 
a! and T. To the best of our knowledge, this analysis has not been 
previously presented. To proceed it is useful to first briefly point out 
the properties of the Farey series (6). The Farey series of order N, FN 
is the ascending sequence of fractions between 0 and 1 in which the 
denominator does not exceed N. The following two properties of the 
Farey series are well known (6): 1) If P/Q and P’/Q‘ are successive 
terms in yN, then P’Q - Q’P = 1 and Q + Q’ > N. 2) If P/Q, P’/Q’, 
P”/Q” are three successive terms in FN and P’/Q’ is not in yN+, then 
P’ = P + P”, and Q’ = Q + Q”; P’/Q’ is called the mediant of P/Q 
and P”/Q”, and the latter are called its generators. In addition, the 
following property can be derived using a simple induction argument: 
3) If P/Q and P’/Q’ are successive terms in TN, then either P or P’ 
(or both) must be odd. Likewise, either Q or Q’ (or both) must be odd. 

To give the dependence of Am/m and An/n on cy and T, we use a 
constructive method originally employed by Allen (1) and Belair (2) in 
a somewhat different context. The basic idea is to determine values of 
Am/m and An/n that satisfy Eqs. 3a and 3b as a function of cy and T. 
First consider Eq. 3a. Since CY and T are between 0 and 1, we only need 
consider m > Am 3 0. For m = 1, only Am = 0 need be looked at, and 
the corresponding values of a! and tE satisfy 0 6 T < 1 - ar: this is the 
triangular region illustrated in Fig. 6A, with vertices in the ((u, T) plane 
at (0, 0), (0, l), and (1,O). For m = 2, Am = 0 or 1 and we have two sets 
of values satisfying Eq. 3a, namely 0 G T c (1 - cx)/2 and l/2 6 T < (2 
- (x)/2. For the first equation, it is clear that such values of a! and T 
already satisfy 0 6 T < 1 - cu; for the second one, we have values in 
another triangular region, with vertices at (%, VZ), (1, l/2), and (0, 1). 
For m = 3, only the values Am = 1 and 2 will lead to new sets of values 
of CY and T satisfying Eq. 3a; the regions will be based at the point (1, 
14 and (1, %), respectively, and are illustrated in Fig. 6A. The only 
new zones are the ones associated with irreducible fractions Am/m, that 
is, fractions with the numerator and the denominator relatively prime. 
The boundaries of the regions are also determined by the need for the 
successive fractions to be generated in increasing order of the denom- 
inators. It is in this context that the Farey series naturally occurs. The 
results of the construction showing all ratios up to the 4th-order Farey 
series are shown in Fig. 6A. The same procedure can also be applied 
with 4 = 1, using Eq. 3b and building the Farey series of An/n. This 
leads to Fig. 6B. 
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0 . . - . . could, in principle, be resolved to arbitrary precision. 
The symmetries in the zones can now be explicitly stated. 
1. Assume the point (ar, T) with 0 c T c 1 is associated with ratios 

A&a, A,/m, A,lp. Then for T’ = 1 - T, the point ((u, T’) is associated 
with ratios (n - A,)/n, (m - A,)/m and (p - AP)/p, respectively. 

2. Assume the point (ar, T) with 0 < T c 1 is associated with ratios 
A,.&, A,/m, A,/p. Then for T’ = T + J and with J, an integer, the 
point (a, T’) is associated with ratios (A, + nJ)/n, (A, + mJ)/m, (A, 
+ PJ)lP* 

Q l/2 

213 

3/r 

I 
0 L!. 1 5 13 43 3z I 0 II I 13 

3-s z 3a 
I 

1 T  

FIG. 6. Permitted values of the ratios A,/m (panel A) and A,/n 
(panel B) in the ((x, 2’) plane. Shows the construction described in the 
text up to order 4. Values for ratios in regions that are not labeled can 
be determined by extending the construction in the text to higher 
orders. 

The final step is to come back and make the connection with the 
model for parasystole. In the model we assumed tE > ts corresponding 
to T > 1. The numerators of the ratios for every value of T correspond 
to one more than the number of sinus beats between ectopic events 
(since we assume compensatory pauses). Thus there are at most three 
values for the number of sinus beats between ectopic events (rule 1). 
Calling AL = A, - 1, AA = A, - 1, and AL = AP - 1 we derive rule 3 
from Eq. 8 to obtain 

0 

4 =A:,+A(,+l (9) 

Furthermore, since at least one of the values of A, or A, is odd, exactly 
one of the values of Ah, AA, and AL will be odd (rule 2). Finally, there 
are two basically different geometrical arrangements for Fig. 5, which 
are shown in Fig. 8. In Fig. 8A, the doublets A&A;, ALA;, ALAL, AhAL, 
AhAL can occur. In Fig. 8B, the doublets A&AL, ALA;, ALA;, ALA;, 
AAA& can occur. This is consistent with and extends rule 4. 
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