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Dynamical properties of model gene networks
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Abstract

We study the inverse problem, or the “reverse-engineering” problem, for two abstract models of gene expression dynamics,
discrete-time Boolean networks and continuous-time switching networks. Formally, the inverse problem is similar for both types of
networks. For each gene, its regulators and its Boolean dynamics function must be identified. However, differences in the dynamical
properties of these two types of networks affect the amount of data that is necessary for solving the inverse problem. We derive
estimates for the average amounts of time series data required to solve the inverse problem for randomly generated Boolean and
continuous-time switching networks. We also derive a lower bound on the amount of data needed that holds for both types of
networks. We find that the amount of data required is logarithmic in the number of genes for Boolean networks, matching the
general lower bound and previous theory, but are superlinear in the number of genes for continuous-time switching networks. We
also find that the amount of data needed scales as 2K, where K is the number of regulators per gene, rather than 22K, as previous
theory suggests.
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. Introduction

Abstract models of genetic networks, such as Boolean
etworks and continuous-time switching networks, have
een proposed as conceptual models for helping us
nderstand the behavior of real genetic networks (Glass,
975; Kauffman, 1969, 1993). These formalisms, or gen-
ralizations of them, have been used to model such sys-
ems as the sporulation network in Bacillus subtilis (de
ong et al., 2004a), the gap gene network of Drosophila
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melanogaster (Sanchez and Thieffry, 2001), and the seg-
ment polarity network in the same organism (Albert and
Othmer, 2003). Although these models omit many of
the details of the real chemical interactions, they serve
as useful syntheses of the often-distributed biological
knowledge about these networks, they allow testing of
hypotheses about network behavior, and they sometimes
lead to new biological hypotheses.

General properties of model networks, particularly
randomly generated networks, have been studied in an
effort to understand basic principles behind the function-
ing of real networks. For example, Kauffman has equated
different cell types in real organisms with different fixed
points or cycles in the dynamics of model networks
(Kauffman, 1969, 1993). He and others have studied
how the number and period of attractors in random net-
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works depends on network size, topology, and how the
dynamics functions are chosen (Bagley and Glass, 1996;
Bastolla and Parisi, 1997; Bilke and Sjunnesson, 2001;
Glass and Hill, 1998; Kauffman, 1969, 1993; Kauffman
et al., 2003; Raeymaekers, 2002; Samuelsson and Troein,
2003; Shmulevich and Kauffman, 2004; Socolar and
Kauffman, 2003).

The increasing availability of quantitative gene
expression data has kindled the hope of automatically
inferring regulatory relationships in real gene networks.
There have been some successes (e.g. Jaeger et al.,
2004a,b; Reinitz and Sharp, 1995), but there is not yet
a standard methodology for doing so. Much remains to
be understood about the problem. What is the compu-
tational complexity of the problem? What algorithms
work best? How much data is needed? How should data
be collected? Are there fundamental limits on what can
be inferred from expression data alone?

Analyses of the inverse problem for Boolean and
continuous-time switching networks have begun to pro-
vide theoretical answers to these questions. Liang et
al. (1998) were the first to propose a solution to the
inverse problem for Boolean networks. Later, Akutsu
et al. (1999) and Ideker et al. (2000) described alterna-
tive solutions. Perkins et al. (2004) described solutions to
the inverse problem for continuous-time switching net-
works. The approaches proposed for Boolean networks
can also be applied to continuous-time switching net-
works, though the methods of Liang et al. (1998) and
Akutsu et al. (1999) in particular require significantly

works or continuous-time switching networks requires at
least 1

2 (2K + K(log2(N − K) − log2 K)) samples. We
then derive new estimates for the expected amount of
data required. It turns out that differences in the dynam-
ical properties of these networks, examined in Section
4, have a significant impact. In Section 5, we estimate
the expected sample complexity for Boolean networks
as O(K2K log N) and for continuous-time switching net-
works as O(2KN log N). These estimates are supported
by simulation experiments, reported in Section 6.

2. Boolean networks and continuous-time
switching networks

Boolean networks, as introduced by Kauffman (1969,
1993), are a discrete-time model of gene expression
dynamics. Each of N genes has a Boolean level of expres-
sion as a function of time, denoted by Xi(t)∈{0,1}, where
i∈{1, 2, . . ., N} and t∈{0, 1, 2, . . .}. Each gene i has Ki

regulators, denoted r1
i , . . . , r

Ki
i . Each gene also has a reg-

ulation function, or dynamics function, fi : {0, 1}Ki �→
{0, 1}. The dynamics of gene i is given by

Xi(t + 1) = fi(Xr1
i
(t), . . . , XrKi

i
(t)). (1)

Our analysis and simulations focus on randomly gener-
ated Boolean networks in which each gene has the same
number of regulators, K. The regulators of each gene
are chosen uniformly at random, with autoregulation
allowed. Usually the fi are chosen uniformly randomly

K

more computation than the method described in Perkins
et al. (2004).

We focus on the sample complexity of the inverse
problem—that is, how much data is needed to iden-
tify the network? In particular, we study the problem
for Boolean and continuous-time switching networks of
N genes in which each gene has precisely K regulators.
Akutsu et al. (1999) studied this problem for Boolean
networks under the assumption that the data comprises
uniformly randomly sampled states of the network. They
proved that the amount of data needed scales as log N
and as 22K. The 22K term is disheartening, because it
suggests that it will take enormous amounts of data to
identify densely connected networks. However, the log N
dependence is encouraging because it suggests that net-
work size per se is not a very important factor.

We consider solving the inverse problem based on
time series data, although, as we argue in Section 4, time
series data from randomly generated Boolean networks
behave in many respects as randomly sampled data. In
Section 5, we show that, regardless of how the data is
generated, solving the inverse problem for Boolean net-
from all 22 Boolean functions of K inputs. The ran-
dom selection of a particular fi can be implemented by
constructing a truth table on K inputs and randomly
assigning each of the 2K rows of the table to an output
value of 0 or 1 with equal probability. We use this notion
of randomly choosing the fi for most of our analyses.
However, this method of choosing the fi can be prob-
lematic when we study the inverse problem. It is possible
that this procedure would choose, for example, an fi that
always outputs 1 regardless of the regulator states. In
such a case, the “regulators” do not really regulate the
target gene, and there is no way that a procedure for solv-
ing the inverse problem could detect these “regulators”
from simulated expression data. For our simulations, we
restrict attention to dynamics functions fi, which truly
depend on all inputs, in the sense that for any regulator
r
j
i , there is an assignment of Boolean states to the other

regulators such that changing the value of X
r
j

i

changes

the value of fi.
Continuous-time switching networks, introduced by

Glass (1975), are a differential equation model of gene
expression dynamics. Each gene i has a real-valued
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expression level as a function of time, denoted xi(t)∈[0,1]
for t∈[0,∞). Based on its real-valued expression, each
gene is also associated with a Boolean “state”

Xi(t) =

⎧⎪⎨
⎪⎩

1 if xi(t) ≥ 1

2

0 if xi(t) <
1

2

.

As in Boolean networks, each gene i has Ki regula-
tors, r1

i , . . . , r
Ki
i and a Boolean regulation function fi :

{0, 1}Ki �→ {0, 1}. The dynamics of gene i is given by

dxi(t)

dt
= fi

(
Xr1

i
(t), . . . , XrKi

i
(t)
)

− xi(t). (2)

Because Eq. (2) has the form of a production-decay
differential equation, fi(t) is sometimes called the pro-
duction rate of gene i at time t, and fi is referred to as the
production rate function.

Fig. 1 shows an example of a continuous-time switch-
ing network time series. Whenever fi = 1, xi decays expo-
nentially towards 1, and whenever fi = 0, xi decays expo-
nentially towards 0. The “corners” in the curve for xi(t)
correspond to times at which fi changes. A change in fi,
of course, is due to a change in the Boolean state of one of
the regulators of gene i. A time at which the Boolean state
of any gene changes is called a switching time. Between
switching times, all Xi(t), and thus all fi(t), are constant.

Solutions to Eq. (2) are not always well defined
because the (Boolean) production rates are a discontin-
uous function of the state of the system. In general, the
m
(

F
c
p
g
p

however, in randomly generated networks if autoregu-
lation is ruled out. In our analyses based on randomly
generated continuous-time switching networks, we will
assume each gene has the same number of regulators, K,
chosen uniformly at random from the other N − 1 genes.
Regulation functions are chosen as described above for
Boolean networks.

3. The inverse problem

Given one or more time series generated by a Boolean
network or a continuous-time switching network, the
inverse problem is to identify the network generating
the data. For simplicity of exposition we assume, in the
Boolean network case, a single time series of length
T + 1. Thus, the data is a sequence, {X(0), X(1), . . .,
X(T)}, where X(t) is a vector of the Boolean states of
the genes at time t. We say this sequence comprises T
samples of the network dynamics, because it includes T
transitions from one network state to the next.

For continuous-time switching networks, we assume
a single continuous-time time series, x(t) for t∈[0,T]. For
solving the inverse problem, all we need to know is the
Boolean states and production rates of the genes as a
function of time, X(t) and f(t). These can be deduced
from x(t). Furthermore, because switching times divide
the time series into intervals of constant X(t) and f(t),
it suffices to know the sequence of Boolean network
states and production rates. Suppose there are Z inter-
ethod of Fillipov can be used to solve this problem
de Jong et al., 2004b). Such problems are uncommon,

ig. 1. Time series of genes one through five in a randomly generated
ontinuous-time switching network of 20 genes with five regulators
er gene. Each row corresponds to a different gene. The black curve
ives xi(t) and the dotted line indicates xi = 1

2 . Dark shading indicates
eriods of time when Xi(t) = 0.
vals between switching times in the data x(t). Then the
data for the inverse problem is the sequence {(X(1), f(1)),
(X(2), f(2)), . . ., (X(Z), f(Z))}, where X(z) and f(z), respec-
tively, denote the Boolean state of the network and the
vector of production rates during the zth interval of time
between switching times. We say this time series has Z
samples of the network dynamics.

The inverse problem cannot be solved with certainty
unless all 2N possible Boolean network states appear in
the data. For large N, this would be an unrealistic amount
of data, hence we can give up on identifying the network
with certainty. Instead, we seek the most parsimonious
hypothesis that explains the data. Specifically, for each
gene i we seek a minimal-size set of candidate regulators,
r̂1
i , . . . , r̂

K̂i
i , and a candidate regulation function, f̂ i, that

are consistent with the data. For Boolean networks, a
candidate solution is consistent if for all i∈{1, 2, . . ., N}
and all t∈{0, 1, . . ., T − 1},

Xi(t + 1) = f̂ i

(
Xr̂1

i
(t), . . . , Xr̂K̂i

i
(t)
)

.

For continuous-time switching networks, a candidate
solution is consistent if for all i∈{1, 2, . . ., N} and all
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z∈{1, 2, . . ., Z},

fi(z) = f̂ i

(
Xr̂1

i
(z), . . . , Xr̂K̂i

i
(z)
)

.

A time series generated by a Boolean or continuous-time
switching network is sufficient for solving the inverse
problem if, for every gene, (1) there is a unique minimal-
size set of candidate regulators and a unique candidate
regulator function that are consistent with the data, and
(2) the candidate regulators and regulation function are
correct. If all 2N possible Boolean states appear in the
time series, then it is sufficient for solving the inverse
problem. But it is possible for much shorter time series
to be sufficient. In the next section, we study statis-
tical properties of time series generated by Boolean
and continuous-time switching networks, and in the fol-
lowing section, we use these properties to estimate the
expected length that a time series must be to be sufficient
for solving the inverse problem.

4. Dynamical properties of Boolean networks
and continuous-time switching networks

Consider a Boolean network of N genes and K regula-
tors per gene, generated randomly as described in Section
2. A Boolean network is a deterministic dynamical model
with a finite number of possible states. Thus, the asymp-
totic behavior of the network is to reach a fixed point
of the dynamics or to reach a repeating cycle of states,
where a cycle can be between 2 and 2N states long. It

state, fi may not change. Assuming that fi is chosen
randomly from all 22K

Boolean functions of K inputs,
a change in the state of the regulators has a 1

2 chance
of changing the output value of fi. So the probability
that a gene changes on every time step, p, should satisfy
p = 1

2 (1 − (1 − p)k), or (1 − p)K + 2p − 1 = 0. For any
K, p = 0 is a solution to this equation and corresponds to
a network at a fixed point—no genes change state. For
K ≥ 3, there is another root, less than 1

2 and approach-
ing 1

2 for increasing K. For K = 5, for example, the root
is approximately 0.48121. This analysis suggests that
genes in randomly generated networks should change
state on each time step with a probability that is inde-
pendent of N and that approaches 1

2 with increasing K.
We tested this prediction with simulation studies

using 50 randomly generated networks for each N∈{25,
50, 100, 200} and K∈{3, 4, . . ., 10}. We simulated each

ated Boolean network with 20 genes and 10 regulators per gene. Each
row corresponds to a gene, with a white box representing the high
state and a shaded box representing the low state. (B) The sequence of
Boolean gene states for a time series from a continuous-time switch-
ing network with the same regulators, regulation functions, and initial
condition.
has been observed that when K = 1or 2, a typical net-
work rapidly reaches a fixed point or short-period cycle
(Kauffman, 1969, 1993). However, when K ≥ 3 and N
is “not too small”, typical time series are “complex”
and cycles can be very long (Bastolla and Parisi, 1997;
Kauffman, 1969, 1993; Raeymaekers, 2002). For exam-
ple, Fig. 2(A) displays the first 100 steps of a time series
from a randomly generated network of 20 genes, each
having 10 regulators.

The simplest possible model of such a time series is
to assume that the state of each gene is independently
randomly zero or one on every time step, and this is the
model we assume for the expected sample complexity
analysis in Section 5. To justify this model, first con-
sider a more general model in which we assume every
gene changes state independently randomly with some
probability p on each step. Does p depend on N and K,
and if so, how?

For a gene to change state, one of its regulators must
change state on the previous time step. The probability
that at least one of the K regulators of the gene changes
state is 1−(1 − p)K. But even if a regulator changes
Fig. 2. (A) The first 100 steps of a time series from a randomly gener-
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network from a random initial condition for 200 time
steps and computed the mean switching probability over
all genes during the second 100 steps. We discarded runs
that ended at a fixed point, as these correspond to the root
p = 0. We averaged the mean switching probabilities for
the remaining runs. The results are plotted in Fig. 3. At
N = 25 and K = 3, the predicted and empirical switching
probabilities differ less than 0.03; at higher values of N
and/or K, they match more closely. Contrary to the pre-
diction, N does appear to have an effect on the switching
probability, though its effect is smaller than that of K.
According to predictions and simulations, as N and K
grow large, the switching probability goes to 1

2 . That is,
Xi(t) and Xi(t + 1) can be considered independent random
variables.

Continuous-time switching networks are also deter-
ministic dynamical models, but they have infinite state
spaces. Their dynamics can have fixed points and stable
periodic orbits, but they can also have aperiodic orbits
and can be chaotic (Glass and Hill, 1998; Mestl et al.,
1997). Like Boolean networks, convergence to a fixed
point or short-period attractor is common when N or K
are “small”, but when N and K are “not too small”, com-
plex long-period or aperiodic time series are typical.

Because switches in the Boolean states of genes occur
at isolated real-valued times, we generally do not expect
any two genes to switch at the exact same time. It is
possible to construct networks and initial conditions for
which this happens, but it is not likely for randomly gen-
erated networks. As a result, we expect that changes in
t
g
l
B
1

F
o

by a continuous-time switching network. The regulators,
regulation functions, and initial condition are the same as
for the Boolean network whose time series appears in the
figure. It is certainly not the case that Xi(z) and Xi(z + 1)
can be considered independent random variables. Genes
typically keep the same Boolean state through many
switching times.

In the next section, the model we assume for
continuous-time switching networks is that the identity
of the zth gene to switch is independently random and
uniform over all genes for all z. In other words, at each
switching time, a single gene changes Boolean state and
each gene has chance 1

N
of being the gene to change.

This assumption has been examined in detail by Mestl et
al. (1997), who found some deviations between theoret-
ical predictions based on the assumption and the results
of simulation studies. Nevertheless, it is a simple and
convenient assumption, which we make for the sake of
our sample complexity analysis.

5. The amount of data needed to solve the
inverse problem

How much data is needed to solve the inverse problem
for a Boolean or continuous-time switching network of N
genes, each having K regulators? A simple lower bound
can be derived based on the number of possible networks.
There are(

N
)

he Boolean state of the network involve only a single
ene and that the sequence of Boolean network states
ooks significantly different than the state sequence for a
oolean network. For example, Fig. 2(B) shows the first
00 Boolean network states in a time series generated

ig. 3. Predicted and empirical probability that a gene changes state
n each time step.
K

possible sets of regulators for each gene in a Boolean
network, and(

N − 1

K

)

for a continuous-time switching network. In either case,

this is more than
(

N−K
K

)K
. There are also 22K

possible
dynamics functions for each gene. Thus, the total number
of networks on N genes with K regulators per gene is at
least(

22K

(
N − K

K

)K
)N

.

Each sample of a Boolean or continuous-time switching
network’s dynamics contains 2N bits—X(t) and X(t + 1)
for a Boolean network, and X(z) and f(z) for a continuous-
time switching network. To solve the inverse problem,
the data must contain at least enough bits to distinguish
among all possible networks of the same N and K. Thus,
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the minimal number of samples needed to solve the
inverse problem is

log2

(
22K(N−K

K

)K)N

2N

= 1

2
(2K + K(log2(N − K) − log2 K)). (3)

Next, we derive estimates for the expected amount of
data needed. Our analyses rely repeatedly on the follow-
ing Lemma, which is proved in Appendix A.

Lemma 1. If there are A different events, each of which
occurs with probability at least p in any block of τ time
steps, then the expected number of time steps until all A

events have occurred is O
(

τ
p

log A
)

.

Consider Boolean networks first. Following Section
4, we assume that the data is a single time series {X(0),
X(1), . . ., X(T)} which can be treated as if each X(t) is an
independent random Boolean vector. Two things must
happen for the network to be identified. First, the correct
regulators for each gene must be identified. Second, the
regulation functions must be identified. To identify the
correct regulators, all incorrect regulator sets must be
ruled out. There are(

N

K

)
− 1

O(K2K log N). (4)

Next, we consider continuous-time switching networks.
Following Section 4, we assume that the data is a single
time series {(X(1), f(1)), (X(2), f(2)), . . ., (X(Z), f(Z))}
which can be treated as if each X(z + 1) differs from X(z)
in one uniformly randomly chosen position. Again, to
solve the inverse problem, the regulators and regulation
functions of every gene must be determined. There are
NK regulatory relationships to be uncovered. Suppose
gene j regulates gene i. One way this can be determined
is if, for some z, Xj(z) �= Xj(z + 1) and fi(z) �= fi(z + 1); the
observed change in i’s production rate must be attributed
to a change in the Boolean state of some regulator, and j
is the only gene whose Boolean state changes. Gene j has
chance 1

N
of being the one that changes Boolean state

at any particular switching time. Assuming fi is chosen
randomly, there is a 1

2 chance that a change in the state
of a regulator changes the output value of fi. Thus, there
is chance 1

2N
that a sample reveals that j regulates i.

By Lemma 1, the expected number of samples until all
regulators are identified is O(2N log(NK)) = O(N log N).

To identify the regulation functions, all 2K Boolean
regulator state combinations must occur for all N genes.
Consider a particular gene i and its K regulators. For each
successive sample in the data, there is chance K

N
that pre-

cisely one of the regulators changes Boolean state, and
otherwise none of them change. The sequence of changes
in the Boolean state of i’s regulators can be viewed as
a random walk on a K-dimensional hypercube. For an
incorrect regulator sets of size K for each gene, or no
more than NK+1 incorrect regulator sets total. One way
that an incorrect regulator set can be ruled out is if, from
one time step to the next, none of the regulators change
Boolean state but, on the following time step, the target
gene does change Boolean state. The probability of the
former on any time step is, by assumption, 2−K, and the
probability of the latter is 2−1. Thus, there is probability
at least 2−(K+1) on any time step of ruling out an incor-
rect regulator set. By Lemma 1, the expected number of
samples until all incorrect regulator sets is ruled out is
O(2K+1 log NK+1) or O(K2K log N).

To identify the regulation functions, every combina-
tion of regulator states for every gene must occur in
the time series, along with the next network state to
which it leads. There are 2K combinations for each of
N genes, and each occurs with probability 2−K on each
time step. Thus, the total number of samples until all have
appeared is O(2K log N2K) = O(2K(K + log N)). This is of
lower order than the number of samples needed to iden-
tify the correct regulators, so the expected number of
samples needed for Boolean network identification is
ordinary walk on the hypercube, the expected number of
steps for all states to be visited is no more than cK2K for
some constant c and all K. The present case is slightly dif-
ferent, because there is only probability K

N
of moving to

an adjacent vertex of the hypercube on each step. But that
just means there is expected time N

K
between steps on the

hypercube, so the expected number of steps for all states
to be visited is no more than N

K
cK2K = cN2K (Chandra

et al., 1997). By the Markov inequality, there is proba-
bility at least 1

2 that all states are visited in any period of
2cN2K time. By Lemma 1, the expected number of sam-
ples until all combinations of regulators states appear for
every gene is thus O(4cN2K log N) = O(2KN log N). The
expected number of samples needed for continuous-time
switching network identification is thus

O(2KN log N). (5)

6. Simulation experiments

We performed simulation experiments to test the
bound and estimates of the previous section. In the
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first experiment, we tested the sample complexity of
the inverse problem for Boolean and continuous-time
switching networks with K = 5 regulators per gene and
number of genes N∈{10, 15, 20, . . ., 50}. For each choice
of N we randomly generated 10 networks, each compris-
ing regulator sets and regulation functions for each gene.
Each network was simulated as a Boolean network and
as a continuous-time switching network. We simulated
the networks to produce time series data until the data
was sufficient to solve the inverse problem. (Because we
generated the networks, we can check if a particular data
set uniquely identifies the network.) Both Boolean and
continuous-time switching networks are prone to reach-
ing fixed points in the dynamics or periodic attractors.
To protect against this, the data we use is actually a set of
time series. Each time series began from a random ini-
tial state and was ended whenever it reached any Boolean
network state for a second time.

F
t
i

Fig. 4(A) shows the results of the experiment. The
sample complexity for continuous-time switching net-
works appears to grow more than linearly with N, con-
sistent with the N log N behavior predicted by Eq. (5).
Surprisingly, the sample complexity for Boolean net-
works appears independent of N over the range tested,
except for a slight rise at the lowest values of N. The rise
is easy to explain. For such small networks, the approx-
imation that the time series is an independent random
sequence is poor. Often, such networks contain short
periodic cycles, and trajectories from different initial
conditions quickly reach the same cycle. Thus, after the
first few trajectories, it takes longer to reach new Boolean
states than the theory predicts. The flatness of the sam-
ple complexity curve for larger values of N is harder to
explain. It may be that the approximation of independent
randomness continues to improve with larger N, offset-
ting the expected rise in sample complexity, which is
only proportional to log N.

In a second experiment, we held N constant at 20,
while varying K between 1 and 8. Fig. 4(B) presents
the results. At least for K ≥ 5, the sample complexity
is approximately doubling for each increase in K, as
predicted both by the lower bound of Eq. (3) and the
estimates for expected sample complexity in Eqs. (4)
and (5).

7. Discussion

We have observed that the dynamics of randomly gen-
ig. 4. Mean and quartiles of the empirical number of samples needed
o solve the inverse problem for Boolean and continuous-time switch-
ng networks. (A) K = 5 and N varies. (B) N = 20 and K varies.
erated Boolean and continuous-time switching networks
have much different statistical characteristics, which lead
to different estimates for the amount of data needed to
solve the inverse problem. As did Akutsu et al. (1999), we
observed that the number of samples needed for Boolean
network identification scales as log N, where N is the
number of genes in the network. The log N dependence
comes from the assumption that the data is indepen-
dently randomly sampled, which, we have argued, is a
good model of time series data from randomly generated
Boolean networks. However, independent random sam-
pling is not a good description of real gene expression
time series, as has been noted by others (e.g. Szallasi and
Liang, 1998). Thus, it is unclear how well these results
will apply to real genetic network inference problems.
For continuous-time switching networks, we estimated
an N log N dependence, which may be more realistic.

We also studied how the number of regulators per
gene, K, affects the amount of data needed to solve the
inverse problem. In our lower bound, Eq. (3), and in our
estimates for both Boolean and continuous-time switch-
ing networks, we found that the amount of data needed
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scales exponentially with K. Specifically, it scales as 2K

or K2K. This is significantly smaller than the 22K bound
produced by Akutsu et al. (1999), but still suggests that
inferring networks in which there are many regulators per
gene will require large amounts of data. However, even
the 2K estimate may be pessimistic, because it is based
on the assumption that the expression level or rate of pro-
duction of a gene can be an arbitrary Boolean function of
the states of its regulators. If there are biological reasons
why certain types of dynamics functions are more likely,
such as “canalyzing” functions (Kauffman et al., 2003),
then the sample complexity may be yet lower.

Our analysis is limited by the assumptions that each
gene is regulated by precisely K others and that the
regulation functions and inputs are chosen uniformly at
random from all 22K

Boolean functions on K inputs. Such
networks tend to exhibit complex long-period, aperiodic
or chaotic dynamics, which nevertheless have very reg-
ular statistical properties. These properties allow us to
derive predictions for the amount of data needed to solve
the inverse problem. Recent work has demonstrated that
many of the assumptions of our model do not accurately
reflect the structure of genetic networks. Thus, genetic
networks may exhibit scale free connectivity with a range
of different values of in degree (Lee et al., 2002), charac-
teristic network motifs of local connectivity (Shen-Orr et
al., 2002), and canalyzing, rather than random, Boolean
functions regulating genetic activity (Kauffman et al.,
2003). These factors can dramatically affect the dynam-
ical properties of the network (Aldana and Cluzel, 2003;
Glass and Hill, 1998; Kauffman et al., 2003; Oosawa and
Savageau, 2002). Consequently, the estimates for the
sample complexity in the current paper may not apply to
networks with different dynamical properties. However,
the general approach employed here, of first charac-
terizing the statistics of the time series arising from a
particular class of networks and then using these statis-
tics to derive sample complexity estimates, should still
apply.

In a similar vein, while we have derived different sam-
ple complexity estimates for Boolean and continuous-
time switching networks, and supported these differ-
ences with simulation experiments, it is important to
realize that these differences are not inherent to Boolean
and continuous-time switching networks. Rather, these
results stem from statistical differences in the dynam-
ics of randomly generated networks of these two types.
Looking at restricted classes of these networks or sam-
pling the data in a different way may change these
results. For example, if we restrict attention to the class
of Boolean networks in which only a single gene changes
state from one time step to the next, then we would

expect the sample complexity to be more similar to
that of randomly generated continuous-time switching
networks. Likewise, if we imagine sampling the dynam-
ics of a continuous-time switching network periodically,
with enough time passing in between samples that many
genes change Boolean state, then we would expect a
sample complexity more like that for Boolean networks.
We are presently investigating the sample complexity for
continuous-time switching networks as a function of the
sampling period.

In implementing algorithms to carry out the inverse
problem, it is often not necessary to specify K (Liang
et al., 1998; Ideker et al., 2000; Perkins et al., 2004) or
to have a fixed number of regulators for each gene, or
to require a particular type of dynamics—although, if K
is unknown, the algorithms cannot determine with cer-
tainty whether all regulators have been detected until
all 2N Boolean network states have appeared in the
data. However, it appears that the statistical properties
of the dynamics can have a profound affect on the com-
putational complexity of solving the inverse problem.
The algorithms of Liang et al. (1998) and Akutsu et
al. (1999) require O(NK) search effort to find minimal-
size candidate regulator sets for each gene. The algo-
rithms described in Perkins et al. (2004), tailored for
continuous-time switching networks, requires an amount
of computation that is only polynomial in the size of the
data. Thus, while the sample complexity of the inverse
problem may be better for Boolean networks than for
continuous-time switching networks, the computational

complexity may be worse. Formally establishing this
apparent “trade-off” between sample complexity and
computational complexity, and studying how other types
of dynamics affect the sample and computational com-
plexity of the inverse problem are important directions
for future work.
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Appendix A. Proof sketch for Lemma 1

Recall that there are A events, each of which occurs
with probability at least p in any block of τ time steps.
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Let ta be the random variable denoting the time at which
event a occurs. The expected time until all A events occur
is

E max
a

ta ≤
∞∑
i=1

τ Prob(at least one ta ≥ τi)

≤
∞∑
i=1

τ min(1, A Prob(a particular ta ≥ τi))

≤
∞∑
i=1

τ min(1, A(1 − p)i)

Let I be the smallest integer such that A(1 − p)I ≤ 1. Then
we have

E max
a

ta ≤ τ

(
I +

∞∑
i=I

A(1 − p)i
)

= t

(
I + A

(1 − p)I

p

)

Because A(1 − p)I ≤ 1, the second term inside the paren-
thesis is no more than 1

p
. Furthermore, A(1 − p)I ≤

1 ⇔ log A + I log(1 − p) ≤ 0 ⇔ I ≥ −log A
log(1−p) . It can

be shown that −log A
log(1−p) = O

(
log A

p

)
. Thus, the expected

time until all A events occur is O
(

τ
p

log A
)

.
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