
LEON GLASS 

Looking at 
Dots 

he "Prof' at the Department of Machine Intelligence and Perception at the University 

of Edinburgh, H. C. Longuet-Higgins, had jus t  returned f rom a trip to the States 

where he had learned of a fascinat ing experiment carried out by the physicist  Erich 

Harth. The year was 1968, and I had jus t  completed a doctorate studying the statis- 

t ical  mechanics  of  liquids, trying to apply  my  craf t  to 

t~e s tudy  of  the  brain. At the  t ime, I did not  realize tha t  the  
expe r imen t  would  have s t rong impac t  on the res t  of  my  

career .  
The exper iment  was so s imple  that  even a theore t ic ian  

could  do it. Take a b lank p iece  of  paper .  Place this  on a 
p h o t o c o p y  machine  and make  a copy of  it. Now make  a 

copy  of  the copy. This p r o c e d u r e  is then i terated,  a lways  
making  a copy of  the mos t  r ecen t  copy. 

Al though the naive guess  might  be that  all copies  would  
be blank,  this was not  a t  all the  case. Small imperfec t ions  
in the  pape r  and dust  on the  opt ics  of  the  Xerox mach ine  
in t roduced  "noise" that  a rose  init ially as  t iny specks.  As the  

p r oc e s s  was i terated,  these  t iny specks  grew u p - - t h e y  got  
bigger. They did not  grow to be  very  big, but  jus t  ach ieved  
the size of  a small  dot, F igure  1. The reason  for this  is tha t  
the  opt ics  of  the pho tocopy  machine  led to a sl ight  blur- 
r ing of  each  dot, so that  each  dot  grew. On the o ther  hand,  
local  inhibi tory fields in t roduced  by  the charge t ransfer  un- 
der lying the Xerography p roce s s  l imited the  growth. These  
local  fields also inhibited the  ini t iat ion of  new dots  nea r  an 
a l ready  exist ing dot; so that  af ter  a while (about  15 i tera-  

t ions),  there  was a pre t ty  s tab le  pa t te rn  of  dots. 
This analogue sys tem mimicked  lateral  inhibi tory fields 

that  p lay  a role in deve lopmenta l  biology and visual  per-  

ception,  and  I thought  it wou ld  be  a fine idea  to s tudy the 
spat ia l  pa t t e rn  of  the  dots.  To do this, I dec ided  to make  a 
t r anspa rency  of  the  dot  pa t t e rns  so that  I could  p ro jec t  the 

dot  pa t te rns  on a target  pa t t e rn  of  concent r ic  circles. By 
placing one dot  a t  the cen te r  of  the ta rge t  pat tern,  I could  
count  the number  of  dots  lying in annul i  a given dis tance  
away, this  would  give me an es t imate  of  the spat ial  auto-  

corre la t ion  funct ion of  the  dots. 
But when I did  this, I made  a surpr is ing  f inding.  Super- 

imposing the t r anspa rency  of  the dots  upon  the  pho tocopy  
of  the dots  wi th  a slight rotat ion,  one ob ta ined  an image 
with an a ppe a ra nc e  of  concentr ic  c i rc les  (Figure 2). I de- 
sc r ibed  this effect  and p r o p o s e d  a way  that  the  visual  sys- 

tem could p roces s  the im&ges [1]. 
In 1982, David Marr  ca l led  these images  Glass pa t te rns  

in his classic  tex t  in visual pe rcep t ion  [2]. The effect is now 
wel l -known among visual  scientists,  who  cont inue to un- 
ravel the  visual  mechan i sms  underlying the pe rcep t ion  of  
these  images. But despi te  the under lying mathemat ica l  
s t ructure  of  these  images  and the poten t ia l  uti l i ty of  this  
effect to t each  mathemat ics ,  the effect  is not  known at  all 
by  mathemat ic ians ,  as wi tnessed  by  an ear ly red iscovery  
of  the effect [3] and  also by  the descr ip t ion  of  the  effect in 
the Spring 2000 Mathematical InteUigencer [4]. Let me try 
here  to give a g l impse into the  mathemat ica l  underpinnings,  
and to descr ibe  some  of  the  recent  psychologica l  s tudies  

of  the pe rcep t ion  of  these  images. 

Perceiving Vector Fields 
Imagine a two-dimensional  f low or  vec to r  field. We ran- 
domly spr inkle  dots  on the  plane. Next  we p lo t  the loca- 
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Figure 1. Original images generated in the late 1960s by making a photocopy of a blank page and then iterating the process, always taking 

a photocopy of the most recent copy. Images represent the output after the 5th and 15th iterations. 

Figure 2. The image generated by superimposing a copy of the 15th 

iterate on itself in a rotated position. 

t ions of  the  original set  of  dots,  and  also the  locat ions  of  
the do t s  a bi t  later, af ter  they  have moved  under  the ac t ion  
of  the  flow. Provided the t ime interval  is not  too  long, then  
when  we  look at the  pos i t ions  of  bo th  sets  of  dots  simul- 

taneously,  we see the geomet ry  of  the  vec tor  field. 
Figure 2 shows an example  in which  a set  of  dots  is su- 

pe r imposed  on i tself  in a ro ta ted  pos i t ion  to yield a circu- 
lar image. But o ther  geometr ies  can  be handled  [5]. F i r s t  
assume tha t  the origin is fLxed, and the t ransformat ion  
maps  each  dot  to a new loca t ion  by  a scal ing of  the  x- 
coord ina te  by an amount  a, a scal ing of the y-coord ina te  

by  an amoun t  b, and  a ro ta t ion of  the  image about  the ori- 
gin by  an angle 0. Then (x,y) will  be  t r anspor ted  to the po-  
s i t ion (x',y'), where  

x ' = a x c o s 0 - b y s i n 0  
y '  = a x  sin 0 + by cos  0 (1) 

Equat ion (1) is a l inear  map. The p roper t i e s  of  such maps  

are  well  under s tood  [6], [7]. 
What  is amazing is that  by  looking at  the  images of  the  

original se t  of  dots  combined  with  the super imposed  dots,  

it is poss ib le  to perceive  the under lying geomet ry  of  the  
t rans format ion  defined by  the map.  The par t icu lar  geome-  
try that  resul ts  is defined by  the eigenvalues of  the l inear  
t rans format ion  defmed in Equat ion (1). The eigenvalues are  

the so lu t ions  of  the de te rminant  

a c o s 0 - A  - b s i n 0  I 
a sin 0 b cos  0 - All = 0. (2) 
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Figure 3. (a) A random pattern of 400 dots. (b) The same pattern in which the x and y coordinates are multiplied by 1.05. (c) The same pat- 

tern in which the x coordinate is multiplied by 1,05 and the y coordinate is multiplied by 0,95. 

A simple computation gives those eigenvalues as 

( a + b )  cos 0-+ N / ( a  - b) 2 - ( a + b )  2sin 20.  
A§ (3) 

- 2 

These effects can be beautifully illustrated using trans- 
parencies of random dot patterns, and superimposing these 
on an overhead projector. In Figure 3a I show a random pat- 
tern of 400 dots. The x and y coordinates of each point are 
multiplied by 1.05 in Figure 3(b). In Figure 3(c), the x coor- 
dinates of each point are multiplied by 1.05 and the y coor- 
dinates of each point are multiplied by 0.95. The rotation of 
the photocopied patterns yielding circles in Figure 2 is one 
of the classic geometries (pure imaginary eigenvalues). An- 
Qther geometry is provided by setting the center of the im- 
age as fixed, and then expanding the x and y coordinates by 
the same constant amount (real eigenvalues greater than 1). 
This yields an expanding pattern, called a "node," which is 
illustrated in Figure 4(a) by superimposing Figure 3(a) and 
3(b). Combining expansion with rotation gives a spiral im- 
age, called a "focus," as shown in Figure 4(b), formed by su- 
perimposing Figures 3(a) and 3(b) in a rotated orientation 
(complex eigenvalues). Finally, ff there is expansion in the 
x coordinate and contraction in the y coordinate, then there 
is a hyperbolic geometry called a"saddle" (the absolute value 

of one eigenvalue is greater than 1 and the absolute value of 
the other eigenvalue is between 0 and 1). A saddle (Figure 
4c), can be generated by the superposition of Figures 3(a) 
and 3(c). Because these geometries can be easily appreci- 
ated without using the formulae, I always use these corre- 
lated dot images to teach about the geometry of vector fields. 
These geometries may even be preserved when one set of 
dots is one color, and the second set of dots is another color 
(Fig. 5a). Start Wagon has incorporated this observation to 
generate colorful images of vector fields in which local flows 
are represented by "tear drops." The visual system integrates 
the local tear drop flows to give a good representation of the 
geometry of the vector field [8] (Fig. 5b). 

Neurophysiology of Perception 
Manipulation of visual images, combined with measurement 
of perception, or recording of electrical activity of nerve cells 
in the brain, provides powerful techniques to probe the func- 
tioning of the visual system. Because of the simple s t~cture 
of the random dot images, visual scientists have often used 
them as a starting point for their investigations. I cannot sum- 
marize the many studies that have been carried out, but I will 
describe a couple and invite the reader to invent new visual 
effects that can be a probe of visual system function. 

Figure 4. (a) Superposition of Figure 2(a) on Figure 2(b) to generate a node geometry. (b) Superposition of Figure 2(a) and Figure 2(b) in a ro- 

tated position to generate a focus geometry. (c) Superposition of Figure 2(a) on Figure 2(c) to generate a saddle geometry. 
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Figure 5 (a) A random pattern of dots generated by 

tossing ink on paper is superimposed on itself in a ro- 

tated position, but the two sets of dots are different 

colors. From a photo silkscreen print made by the au- 

thor in the 1970s. (b) A colorful "tear drop" represen- 

tation of vector fields from VisualDSolve (Wagon and 

Schwalbe [8]). Reproduced with permission from 

Wagon and Schwalbe [8]. 

4 0  THE MATHEMATICAL INTELLIGENCER 



In order to think about how the visual system might 
process the information in the dot patterns, it is useful to 
consider first the structure of the images. For each dot, there 
is a second dot that is correlated with the first dot. For ex- 
ample, for the circular images, the two dots always lie on 
the circumference of a circle uentered at the point of rota- 
tion. However, in addition, there are other dots that are also 
in the vicinity of the first dot that lie in random directions 
from it. In order to detect the pattern, two steps are essen- 
tial: (1) to detect the locally correlated dots and (2) to inte- 
grate the local correlations to form the global percept. 

Early Nobel-Prize-winning studies of the physiology of 
nerve cells in the visual system of the brain carried out by 
Hubel and Wiesel [9] provide a basis for hypothesizing a 
mechanism for early stages of the detection process. Hubel 

and Wiesel showed that some 
nerve cells, called "simple cells," 
can be excited by lines of a par- 
ticular orientation in a given re- 
gion of the visual field. Conse- 
quently, two dots should also be 
able to stimulate a simple cell if 
they lie in the appropriate orien- 
tation. In a local region, there are 
many correlated dot pairs ori- 
ented along the flow, so cells spe- 
cific for that orientation in that local region would be pref- 
erentially activated compared to cells specific for other 
orientations. Hubel and Wiesel also found that simple cells, 
specific for a certain orientation but with somewhat differ- 
Lng receptive fields all in the same general region of the vi- 
sual field, were located in vertical columns. Further, there 
were cells they called "complex cells" that appeared to re- 
ceive their input from simple cells lying in the same column 
[9]. Based on these observations, I hypothesized that the sim- 
ple and complex cells in a column in the visual cortex could 
provide the anatomical loci to compute the local autocorre- 
lation function of the dot patterns [ 1]. The integration of the 
outputs of the local columns to form the global percept 
would necessarily involve inter-columnar interactions. 

Now, more than 30 years after these initial hypotheses, 
a large number of studies make it possible to refine and 
modify these ideas. Movshon and colleagues have recorded 
electrical activity from simple cells in the primary visual 
cortex (this is called area V1) of macaque monkeys while 
viewing dot patterns generated by superimposing a random 
set of dots on itself following a translation [10]. They also 
developed a mathematical model of the cortical cells, by 
assuming there were elongated excitatory and inhibitory 
regions of the receptive fields. A given cell would be ex- 
cited (or inhibited) by dots that fell in the excitatory (or in- 
hibitory) region of its receptive field. The good agreement 
between the experimentally recorded activity and the the- 
oretical model gives support to this conceptual model of 
the cortical cell. Moreover, by computing the expected ac- 
tivity using a theoretical model, and comparing these re- 
sults with the observed activity recorded experimentally, 

Because of the moire 
effect, these images 

can provide a powerful 
method to determine a 

point of rotation. 

this approach is making progress in linking the separations 
between dots in the images presented to the monkeys with 
the physiological properties of individual cells. 

What about the interactions between the simple cells? 
Zucker argues that excitatory interactions between indi- 
vidual cells in a given "clique,' of ceils, all of which have 
similar orientation specificity and are located in a given col- 
umn, might be playing an important role in contour detec- 
tion [12]. In this formulation, a "clique" of cells is carrying 
out the averaging operations that are necessary to compute 
the local autocorrelations. Thus, Zucker is hypothesizing 
that the columnar organization may play an important role 

in information processing. 
This work leaves open the important question of the na- 

ture of the interactions between columns that lead to global 
percept. Psychophysical studies 
carried out by Wilson and 
Wilkinson pose sharp questions 
about the nature of the inter- 
columnar information process- 
in~. By partially removing some 
regions of the correlated dot im- 
ages, they determined that the 
circular image, as fn Figure 2, is 
easier to perceive than the other 
types of correlated dot images. 

Because the local information was the same in the various 
images, the differences in ability to perceive the images 
must be due to the integration steps. At the moment, it ap- 
pears that these integration steps take place in a region of 

the brain called area V4 [11]. 

Practical Implications 
The random dot images may be useful in a variety of other 
applications. Because of the moir~ effect, these images can 
provide a powerful method to determine a point of rotation, 
and to align images. Following the description of this effect 
in the Scientific American, Edward B. Seldin of Harvard 
Medical School developed a method to use the moir~ effect 
to help plan maxillo-facial surgery in patients who did not 
have ideal alignment of the upper and lower jaws. He started 
out with two identical dot patterns, one fixed on the upper 
jaw and a second fixed on the lower jaw, initially in a su- 
perimposed orientation [14]. By manipulating images to give 
a better jaw alignment, it was possible to develop a plan for 
the surgery. More recently, Wade Schuette of Ann Arbor, 
Michigan demonstrated a variety of ways these effects could 
be used to help in alignment tasks [13]. 

Similar effects also arise in color printing. Colors are of- 
ten represented by dots of different colors and varying 
sizes. Problems in alignment of the different colors can lead 
to undesirable moir~ effects. One way to overcome these 
problems is for the color screens to be stochastic images. 
However, even when these images are stochastic, mis- 
alignment can lead to moir~ effects. Such problems are be- 
ing addressed by Lau [15], who recently rediscovered these 
phenomena in the context of commercial printing. 
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Figure 6. (a) Saddle geomet ry  generated f rom two  sets of  corre lated random dots  by  using the Mat lab program wi th  a = 1.05, b = 0 . 9 5 ,  

0 ~= 2.61 ~ (b) Focus geomet ry  generated wi th  a = 1 . 0 5 ,  b = 0 .95 ,  0 ~= 5 . 4 7  ~ F o r  a = 1 .05 ,  b = 0 . 9 5 ,  is there a Value of  0 in the range 2 .61  ~ 

< 0 < 5.47 ~ that  gives a node  geometry? 
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Now more than 30 years after I first observed these 
images composed of correlated random dots, it still 
seems we are just at the beginning of developing an un- 
derstanding of how the visual system processes the in- 
formation contained in these images. These images com- 
bine both local and global features, which can be varied 
independently. Observation of experimental subjects 
(men, monkeys, or even pigeons! [16]) looking at the dot 
patterns is providing a window into the physiological 
processes of vision. 
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