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he “Prof” at the Department of Machine Intelligence and Perception at the University

of Edinburgh, H. C. Longuet-Higgins, had just returned from a trip to the States

where he had learned of a fascinating experiment carried out by the physicist Erich

Harth. The year was 1968, and I had just completed a doctorate studying the statis-

tical mechanics of liquids, trying to apply my craft to
the study of the brain. At the time, I did not realize that the
experiment would have strong impact on the rest of my
career.

The experiment was so simple that even a theoretician
could do it. Take a blank piece of paper. Place this on a
photocopy machine and make a copy of it. Now make a
copy of the copy. This procedure is then iterated, always
making a copy of the most recent copy.

Although the naive guess might be that all copies would
be blank, this was not at all the case. Small imperfections
in the paper and dust on the optics of the Xerox machine
introduced “noise” that arose initially as tiny specks. As the
process was iterated, these tiny specks grew up—they got
bigger. They did not grow to be very big, but just achieved
the size of a small dot, Figure 1. The reason for this is that
the optics of the photocopy machine led to a slight blur-
ring of each dot, so that each dot grew. On the other hand,
local inhibitory fields introduced by the charge transfer un-
derlying the Xerography process limited the growth. These
local fields also inhibited the initiation of new dots near an
already existing dot; so that after a while (about 15 itera-
tions), there was a pretty stable pattern of dots.

This analogue system mimicked lateral inhibitory fields
that play a role in developmental biology and visual per-
ception, and I thought it would be a fine idea to study the
spatial pattern of the dots. To do this, I decided to make a
transparency of the dot patterns so that I could project the

dot patterns on a target pattern of concentric circles. By
placing one dot at the center of the target pattern, I could
count the number of dots lying in annuli a given distance
away, this would give me an estimate of the spatial auto-
correlation function of the dots.

But when I did this, I made a surprising finding. Super-
imposing the transparency of the dots upon the photocopy
of the dots with a slight rotation, one obtained an image
with an appearance of concentric circles (Figure 2). I de-
scribed this effect and proposed a way that the visual sys-
tem could process the images [1].

In 1982, David Marr called these images Glass patterns
in his classic text in visual perception [2]. The effect is now
well-known among visual scientists, who continue to un-
ravel the visual mechanisms underlying the perception of
these images. But despite the underlying mathematical
structure of these images and the potential utility of this
effect to teach mathematics, the effect is not known at all
by mathematicians, as witnessed by an early rediscovery
of the effect [3] and also by the description of the effect in
the Spring 2000 Mathematical Intelligencer [4]. Let me try
here to give a glimpse into the mathematical underpinnings,
and to describe some of the recent psychological studies
of the perception of these images.

Perceiving Vector Fields

Imagine a two-dimensional flow or vector field. We ran-
domly sprinkle dots on the plane. Next we plot the loca-
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Figure 1. Original images generated in the late 1960s by making a photocopy of a blank page and then iterating the process, always taking
a photocopy of the most recent copy. Images represent the output after the 5th and 15th iterations.

Figure 2. The image generated by superimposing a copy of the 15th
iterate on itself in a rotated position.

38  THE MATHEMATICAL INTELLIGENCER

tions of the original set of dots, and also the locations of
the dots a bit later, after they have moved under the action
of the flow. Provided the time interval is not too long, then
when we look at the positions of both sets of dots simul-
taneously, we see the geometry of the vector field.

Figure 2 shows an example in which a set of dots is su-
perimposed on itself in a rotated position to yield a circu-
lar image. But other geometries can be handled [5]. First
assume that the origin is fixed, and the transformation
maps each dot to a new location by a scaling of the x-
coordinate by an amount a, a scaling of the y-coordinate
by an amount b, and a rotation of the image about the ori-
gin by an angle 6. Then (x,y) will be transported to the po-
sition (x',y"), where

7

x' = ax cos 6 — by sin 0
y' = ax sin 6 + by cos ¢

Equation (1) is a linear map. The properties of such maps
are well understood [6], [7].

What is amazing is that by looking at the images of the
original set of dots combined with the superimposed dots,
it is possible to perceive the underlying geometry of the
transformation defined by the map. The particular geome-
try that results is defined by the eigenvalues of the linear
transformation defined in Equation (1). The eigenvalues are
the solutions of the determinant
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Figure 3. (a) A random pattern of 400 dots. (b) The same pattern in which the x and y coordinates are multiplied by 1.05. (c) The same pat-

tern in which the x coordinate is multiplied by 1.05 and the y coordinate is multiplied by 0.95.

A simple computation gives those eigenvalues as of one eigenvalue is greater than 1 and the absolute value of

(@a+b)cos 0+ NV (a—b)— (a+b)sin2 0

the other eigenvalue is between 0 and 1). A saddle (Figure

Ar = €)) 4c), can be generated by the superposition of Figures 3(a)

2 . . .

and 3(c). Because these geometries can be easily appreci-

These effects can be beautifully illustrated using trans- ated without using the formulae, I always use these corre-
parencies of random dot patterns, and superimposing these lated dot images to teach about the geometry of vector fields.
on an overhead projector. In Figure 3a I show a random pat- These geometries may even be preserved when one set of

tern of 400 dots. The x and y coordinates of each point are dots is one color, and the second set of dots is another color
multiplied by 1.05 in Figure 3(b). In Figure 3(c), the x coor- (Fig. 5a). Stan Wagon has incorporated this observation to
dinates of each point are multiplied by 1.05 and the y coor- generate colorful images of vector fields in which local flows
dinates of each point are multiplied by 0.95. The rotation of are represented by “tear drops.” The visual system integrates
the photocopied patterns yielding circles in Figure 2 is one the local tear drop flows to give a good representation of the
of the classic geometries (pure imaginary eigenvalues). An- geometry of the vector field [8] (Fig. 5b).

Qther geometry is provided by setting the center of the im-

age as fixed, and then expanding the x and ¥ coordinates by Neurophysiology of Perception
the same constant amount (real eigenvalues greater than 1). Manipulation of visual images, combined with measurement
This yields an expanding pattern, called a “node,” which is of perception, or recording of electrical activity of nerve cells
illustrated in Figure 4(a) by superimposing Figure 3(a) and in the brain, provides powerful techniques to probe the func-
3(b). Combining expansion with rotation gives a spiral im- tioning of the visual system. Because of the simple structure
age, called a “focus,” as shown in Figure 4(b), formed by su- of the random dot images, visual scientists have often used
perimposing Figures 3(a) and 3(b) in a rotated orientation them as a starting point for their investigations. I cannot sum-
(complex eigenvalues). Finally, if there is expansion in the marize the many studies that have been carried out, but I will
x coordinate and contraction in the y coordinate, then there describe a couple and invite the reader to invent new visual
is a hyperbolic geometry called a “saddle” (the absolute value effects that can be a probe of visual system function.

(@) (b)
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Figure 4. (a) Superposition of Figure 2(a) on Figure 2(b) to generate a node geometry. (b} Superposition of Figure 2(a) and Figure 2(b) in a ro-
tated position to generate a focus geometry. (c) Superposition of Figure 2(a) on Figure 2(c) to generate a saddle geometry.
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Figure 5 (a) A random pattern of dots generated by
tossing ink on paper is superimposed on itself in a ro-
tated position, but the two sets of dots are different
colors. From a photo silkscreen print made by the au-
thor in the 1970s. (b) A colorful “tear drop” represen-
tation of vector fields from VisualDSolve (Wagon and
Schwalbe [8]). Reproduced with permission from
Wagon and Schwalbe [8].

(b)
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In order to think about how the visual system might
process the information in the dot patterns, it is useful to
consider first the structure of the images. For each dot, there
is a second dot that is correlated with the first dot. For ex-
ample, for the circular images, the two dots always lie on
the circumference of a circle eentered at the point of rota-
tion. However, in addition, there are other dots that are also
in the vicinity of the first dot that lie in random directions
from it. In order to detect the pattern, two steps are essen-
tial: (1) to detect the locally correlated dots and (2) to inte-
grate the local correlations to form the global percept.

Early Nobel-Prize-winning studies of the physiology of
nerve cells.in the visual system of the brain carried out by
Hubel and Wiesel [9] provide a basis for hypothesizing a
mechanism for early stages of the detection process. Hubel
and Wiesel showed that some
nerve cells, called “simple cells,”
can be excited by lines of a par-
ticular orientation in a given re-
gion of the visual field. Conse-
quently, two dots should also be
able to stimulate a simple cell if
they lie in the appropriate orien-
tation. In a local region, there are
many correlated dot pairs ori-
ented along the flow, so cells spe-
cific for that orientation in that local region would be pref-
erentially activated compared to cells specific for other
orientations. Hubel and Wiesel also found that simple cells,
specific for a certain orientation but with somewhat differ-
ing receptive fields all in the same general region of the vi-
sual field, were located in vertical columns. Further, there
were cells they called “complex cells” that appeared to re-
ceive their input from simple cells lying in the same column
[9]. Based on these observations, I hypothesized that the sim-
ple and complex cells in a column in the visual cortex could
provide the anatomical loci to compute the local autocorre-
lation function of the dot patterns [1]. The integration of the
outputs of the local columns to form the global percept
would necessarily involve inter-columnar interactions.

Now, more than 30 years after these initial hypotheses,
a large number of studies make it possible to refine and
modify these ideas. Movshon and colleagues have recorded
electrical activity from simple cells in the primary visual
cortex (this is called area V1) of macaque monkeys while
viewing dot patterns generated by superimposing a random
set of dots on itself following a translation [10]. They also
developed a mathematical model of the cortical cells, by
assuming there were elongated excitatory and inhibitory
regions of the receptive fields. A given cell would be ex-
cited (or inhibited) by dots that fell in the excitatory (or in-
hibitory) region of its receptive field. The good agreement
between the experimentally recorded activity and the the-
oretical model gives support to this conceptual model of
the cortical cell. Moreover, by computing the expected ac-
tivity using a theoretical model, and comparing these re-
sults with the observed activity recorded experimentally,

Because of the moiré
effect, these images
can provide a powerful
method to determine a
point of rotation.

this approach is making progress in linking the separations
between dots in the images presented to the monkeys with
the physiological properties of individual cells.

What about the interactions between the simple cells?
Zucker argues that excitatory interactions between indi-
vidual cells in a given “clique” of cells, all of which have
similar orientation specificity and are located in a given col-
umn, might be playing an important role in contour detec-
tion [12]. In this formulation, a “clique” of cells is carrying
out the averaging operations that are necessary to compute
the local autocorrelations. Thus, Zucker is hypothesizing
that the columnar organization may play an important role
in information processing.

This work leaves open the important question of the na-
ture of the interactions between columns that lead to global

percept. Psychophysical studies
carried out by Wilson and
Wilkinson pose sharp questions
about the nature of the inter-
columnar information process-
ing. By partially removing some
- regions of the correlated dot im-
ages, they determined that the
circular image, as in Figure 2, is
easier to perceive than the other
types of correlated dot images.
Because the local information was the same in the various
images, the differences in ability to perceive the images
must be due to the integration steps. At the moment, it ap-
pears that these integration steps take place in a region of
the brain called area V4 [11].

Practical Implications

The random dot images may be useful in a variety of other
applications. Because of the moiré effect, these images can
provide a powerful method to determine a point of rotation,
and to align images. Following the description of this effect
in the Scientific American, Edward B. Seldin of Harvard
Medical School developed a method to use the moiré effect
to help plan maxillo-facial surgery in patients who did not
have ideal alignment of the upper and lower jaws. He started
out with two identical dot patterns, one fixed on the upper
jaw and a second fixed on the lower jaw, initially in a su-
perimposed orientation [14]. By manipulating images to give
a better jaw alignment, it was possible to develop a plan for
the surgery. More recently, Wade Schuette of Ann Arbor,
Michigan demonstrated a variety of ways these effects could
be used to help in alignment tasks [13].

Similar effects also arise in color printing. Colors are of-
ten represented by dots of different colors and varying
sizes. Problems in alignment of the different colors can lead
to undesirable moiré effects. One way to overcome these
problems is for the color screens to be stochastic images.
However, even when these images are stochastic, mis-
alignment can lead to moiré effects. Such problems are be-
ing addressed by Lau [15], who recently rediscovered these
phenomena in the context of commercial printing.
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Figure 6. (a) Saddle geometry generated from two sets of correlated random dots by using the Matlab program with a = 1.05, b = 0.95,
6 =~ 2.61°. (b) Focus geometry generated with a = 1.05, b = 0.95, § ~ 5.47°. For a = 1.05, b = 0.95, is there a value of 8 in the range 2.61°

< 6 <5.47° that gives a node geometry?
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Now more than 30 years after I first observed these
images composed of correlated random dots, it still
seems we are just at the beginning of developing an un-
derstanding of how the visual system processes the in-
formation contained in these images. These images com-
bine both local and global features, which can be varied
independently. Observation of experimental subjects
(men, monkeys, or even pigeons! [16]) looking at the dot
patterns is providing a window into the physiological
processes of vision.
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