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GLASS, LEON, AND A. T. WINFREE. Discontinuities inphe- 

resetting experiments. Am. J. Physiol. 246 (Regulatory Integra- 
tive Comp. Physiol. 15): R251-R258, 1984.-The effects of 
perturbing an on-going biological oscillation with a single brief 
stimulus are considered. If the time from some observable event 
before the stimulus to the next event after the stimulus is 
plotted as a function of the phase of the stimulus, then there 
may be discontinuities in this plot. The discontinuities reflect 
the size of the stimulus and the topological properties of the 
biological oscillation. The implications for experiments are 
discussed. 
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IN MANY BIOLOGICAL OSCILLATIONS, one event is readily 
observable, for example, the eclosion of fruit flies, the 
initiation of an action potential in a spontaneously firing 
neural or cardiac preparation, the onset of inspiration, 
and the start of mitosis in cells growing in tissue culture. 
After a perturbation of the oscillator, the timing of 
subsequent repeats of the event is generally altered: the 
prior rhythm eventually reasserts itself, only with its 
phase reset relative to an unperturbed control. The 
amount of resetting generally depends both on the mag- 
nitude and manner of perturbation and on the phase in 
the oscillation when the perturbation begins. 

Studies of phase resetting of biological rhythms go 
back at least to the middle of the last century. In 1868, 
Hering and Breuer showed that lung inflation can either 
advance or delay the time of the next inspiration, de- 
pending on the phase of the respiratory cycle at which 
the inflation pulse was delivered (7). Somewhat later, 
Mines showed that an electric pulse delivered to the 
heart can send the heart into fibrillation if the pulse is 
delivered at a certain vulnerable phase of the cardiac 
cycle but that the same pulse would temporarily reset 
the rhythm if delivered at other phases (38). Brown and 
Eccles and co-workers (8, 12) made a detailed experi- 
mental study of phase shifts of the heartbeat in cats 
induced by vagal stimulation. In the intervening years, 
there have been literally hundreds of experimental stud- 
ies of phase resetting in diverse systems. These studies 
provide data on functional control of biological rhythms. 
As well, phase-resetting experiments can be used as 

independent tests of hypotheses and models for genera- 
tion of biological rhythms derived from other experi- 
ments (e.g., voltage clamp, single-cell recording, and 
lesion studies). 

The basic experimental paradigm for phase-resetting 
experiments is to present a single stimulus to an ongoing 
rhythm. The effect of this stimulus on subsequent re- 
peats of the observable event is determined as a function 
of the phase of the cycle at which the stimulus was 
delivered. The experiment is repeated for stimuli of 
varying strength. This paper was motivated by trying to 
understand the theoretical implications of the following 
experimental results: 1) in some systems, stimuli of crit- 
ical magnitude delivered at a critical phase of an oscil- 
lation can abolish the oscillation or delay the reappear- 
ance of the next event for several times the intrinsic 
period of the oscillation (13, 20, 23, 24, 29, 30, 38, 42-43, 
53, 56, 57, 59, 60); and 2) if the time from the event 
before a stimulus to an event after a stimulus is plotted 
as a function of the phase of the stimulus, there can 
sometimes seem to be discontinuities (2, 3, 8, 12, 23-28, 
36, 39, 41, 45, 47-52, 60, 63). 

The main point of this paper is to show how the 
topological properties of mathematical models of biolog- 
ical oscillators are related to the experimental observa- 
tion of discontinuities in phase-resetting experiments. 
Although some of the results of the analysis are con- 
tained elsewhere (16, 32, 33, 53, 59, 60), a short descrip- 
tion of this topic directed toward experimentalists has 
not appeared previously. Our hope is that this paper will 
stimulate experimentalists to collect data that can be 
used to distinguish between the different classes of 
models presented or to suggest alternatives. 

Section I describes the experimental paradigm and our 
notation. Sections II and III described the effects of 
perturbation on timing in several different models for 
biological oscillators. 

I, TERMINOLOGY 

A great many different researchers have conducted 
phase-resetting experiments and reported their results 
in different notations. Ours follows. Suppose a periodi- 
cally recurring event as indicated in Fig. 1. We call the 
events “firings,” because we have in mind neural or 
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FIG. 1, Schematic representation of experimental paradigm for 
phase-resetting experiments. Heavy vertical bars, observable events of 
oscillator, with intrinsic interval between successive events of To. 
Stimulus (STIM) is delivered at time 6 after event. After time p, 
oscillation resumes with time To between events. 

cardiac pacemaker cells. To simplify notation, let us 
restrict attention to instantaneous firings and instanta- 
neous stimuli; our conclusions are similar but more awk- 
wardly expressed in the more realistic case of finite, even 
long, durations. The interval of time (To) between suc- 
cessive firings is assumed constant in the absence of 
stimulation. A stimulus is administered at a time 6 after 
one such firing. As a consequence, the successive firing 
times are altered. Assume that after the first poststimu- 
lus event, firing repeats at its previous interval To. We 
designate by p the time from the stimulus to the next 
firing. The sum 6 plus p, the time from the firing imme- 
diately before the stimulus to the firing next after stim- 
ulation is T 

T=&+p (1) 

The basic experiment entails measuring either T or p 
as a function of d for several different strengths of the 
perturbing stimulus. It is not common to present exper- 
imental results in this format. A diversity of other for- 
mats have been used (e.g., see catalog of p. 111, Ref. 60). 
A normalized version of this format best serves the 
purposes of the present paper: to facilitate comparison 
between different experimental preparations, we nor- 
malize each quantity to the unperturbed interval (To) 
observed immediately before the perturbation in that 
preparation. Dividing by To we have 

7=$+6 (2) 

where the normalized T (the perturbed interval taking 
the unperturbed interval as the unit of time) is denoted 
by 7. The normalized 6 is called the old phase (+) and 
the normalized p is called the cophase (0). 4 ranges 
between 0 and 1, equivalent to the full circle ranges O- 
360” or 0-2~ familiar in other contexts. T may be very 
long so that 7 and 0, unlike 4, may exceed 1. 

The usual consequence of stimulation is to produce a 
phase difference (A$) between the perturbed oscillator 
and an unperturbed control oscillator. In terms of the 
quantities defined above, this A& = 1 - 7. The depend- 
ence of A@ on 4 for any fixed stimulus is commonly 
called the phase-response curve (PRC). 

Another convenient representation emphasizes not the 
phase difference, but the new phase (&) 

4 ‘=$+A$=$+l-7 (3) 

Its dependence on 4 is called the phase-transition curve 
(PTC) [also called the phase-resetting curve (60)]. Just 
before the stimulus the oscillator had reached phase #; 
just after, it appears to resume from new phase d’. In 

L. GLASS AND A. T. WINFREE 

the event of a long delay, 4’ should be considered modulo 
1 [e.g., 1.4 (mod 1) = 0.4 = -0.6 (mod l)]. 

We compute A$ and $’ from the first firing time. 
Under our approximation that the interval 7 between 
firings after perturbation remains the same as before 
perturbation, the values of A@ and $’ computed from the 
first firing are the same as asymptotic values long after 
perturbation. The possibility that after resumption of 
the firing, there are transient changes in the firing rate 
for several cycles until a new equilibrium is established 
has been discussed in some detail (32). In this case, call 
pi the normalized time from the firing before the stimulus 
to the ith firing. Then 4: = 6 + 1 - 7; (mod 1) and 6’ = . 
lim . $1. Since the implications of such transient be- 
ha;z for the analysis of discontinuities in phase-reset- 
ting experiments have already been discussed by Kawato 
(32), we do not deal further with this situation. 

We prefer the “new phase” notation to the “phase 
shift” notation, because it avoids a possible source of 
ambiguity in reporting experimental results. This ambi- 
guity arises, because, as noted above, it is often conve- 
nient to measure the change of phase only after several 
cycles have elapsed after the perturbation. In this cir- 
cumstance a phase delay of A$ = -0.1 is indistinguish- 
able from the complementary phase advance, A$ = +0.9. 
The difference between delay and advances lies only in 
the immediate aftermath of perturbation, frequently ob- 
scured by diverse experimental artifacts. In the case of 
neural pacemakers it may also happen that several ex- 
pected firings are missed before the rhythm is reestab- 
lished. In this circumstance we would measure 7 > 2 and 
A$ < -1 (see Eq. 2). But phase values are commonly 
reported modulo 1 and might be reported either positive 
or negative as noted above. Moreover when, as 6 is varied 
the phase difference crosses some value (e.g., +0.5 or 
-0.5), the reported value is commonly increased or de- 
creased by 1. Thus a large advance (+0.49) may be plotted 
adjacent to a large delay (- 0.50), giving the appearance 
of discontinuity or an unmeasurably steep slope. 

II. PERTURBATIONS OF INTEGRATE-AND-FIRE MODELS 

One caricature for many kinds of biological oscillator 
is called the “integrate-and-fire” model. It has been in- 
voked in reference to the activity of pacemaker neurons 
and of cardiac pacemaker cells (1, 34, 46), circadian 
eclosion of insects (60, p. 403-406), flashing of fireflies 
(9), circadian timing of sleepiness in humans (11,61,62), 
the timing of cell division and nuclear division (31, 37, 
54), and respiratory rhythms (4,6,44). In the correspond- 
ing models a quantity called the “activity” rises toward 
a threshold (linearly in Fig. 2). When the threshold is 
reached, an event “firing” is triggered. Activity then 
decays back toward a lower threshold (instantaneously 
in Fig. 2) then again begins to rise. 

Suppose the perturbation temporarily increases the 
activity or decreases the upper threshold; when the (in- 
stantaneous) perturbation ends, activity or threshold 
reverts immediately to the prior level. Such a perturba- 
tion advances the oscillator by prematurely putting it 
above threshold. But if applied too early, the boost may 
not exceed threshold and there will be no advance. Thus 
resetting is only a piecewise continuous function of stim- 
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FIG. 2. A: simple integrate-and-fire model for biological oscillator 
activity linearly rises to threshold. Event occurs every time threshold 
is reached, whereupon activity resets to zero. B: plot of perturbed cycle 
length (7) as function of phase of stimulus when threshold in A is 
instantaneously lowered by an amount 0.6 at different phases of cycle. 
If activity is greater than or equal to threshold at instant threshold is 
lowered, event occurs and activity is reset to zero. C: plot of new phase 
(4’) vs. $ (phase-transition curve) derived from B, using Eq. 3. 

ulus parameters, and discontinuities in the plot of 7 vs. 
+ are expected (3, 9, 58). Figure 2B shows the perturbed 
cycle length 7 vs. + for the model of Fig. 2A with a 
stimulus that instantaneously lowers the threshold by 
0.6. Note that the stimulus has no effect before 4 = 0.4; 
then it abruptly causes an advance of 0.6 cycle, which 
declines as the stimulus is offered nearer and nearer to 
spontaneous firing. A larger perturbation makes the dis- 
continuity larger and places it correspondingly earlier in 
the cycle. Figure 2C is a plot of 4’ vs. 4. In this situation 
qS and B are not continuous or differentiable on the unit 
circle. 

Many modifications of the simple integrate-and-fire 
models have been made to provide closer agreement with 
experiment or to study the properties of the model sub- 
ject to periodic inputs: 1) introduction of two phases, for 
example, by having a finite time for relaxation to zero in 
Fig. 2 [models for fireflies (9) and respiration (4, 6, 44)], 
2) nonlinear increases and decreases in activities [models 
for phase locking of neural and cardiac pacemakers (34) 
and respiration (4, 6)], and 3) periodic modulation of the 
thresholds [models for entrainment of respiration (4,44), 
the circadian rhythm (11,61,62), and neural and cardiac 
oscillators (1, 46)]. 

Despite these many modifications, if one maintains 
the central idea of integrate-and-fire models (that firing 
is an all-or-none phenomenon initiated once an activity 
reaches a fixed threshold), one will observe discontinui- 
ties of varying sizes, whose magnitude and location de- 
pend on stimulus magnitude, in the plot of T vs. 4 (Fig. 
2B). To our knowledge, close analysis of integrate-and- 
fire models using phase-resetting data has been per- 
formed in only three situations: the mitotic oscillator in 
Physarum (54), firefly flashing (9), and the crayfish 
stretch receptor’s oscillation (39). 

III. PERTURBATIONS OF LIMIT CYCLE MODELS 

Although integrate-and-fire models have provided con- 
venient and readily understandable idealizations of bio- 
logical oscillators, inconsistencies between the predic- 
tions of integrate-and-fire models and experimental data 
have been observed. 

1) Experimentalists have observed that a particular 
selection of stimulus magnitude and phase of application 
can lead to a long delay (longer than twice the intrinsic 
period) or even abolition of the oscillation. This has been 
found from perturbation of an oscillating squid neuron 
(20), in spontaneously oscillating Purkinje fibers (23,24) 
and sinoatrial node cells (27), in the circadian activity 
rhythms of mosquitoes (43), in water regulation of plant 
sprouts (29, 30), in the rhythmic metabolism of glucose 
in yeast (56), and in the circadian eclosion rhythm in 
Drosophila (57, 60) and in Sarcophaga (42). Such long 
delays are inconsistent with integrate-and-fire models. 

2) The PTC and PRC are often found to be continuous, 
whereas this is impossible in integrate-and-fire models. 

Suppose alternatively that the biological rhythm is 
generated by a stable limit cycle oscillation. A stable 
limit cycle is a periodic solution of a differential equation 
that is attracting in the limit t + 00 from all points in 
the neighborhood of the cycle. To illustrate this concept, 
Fig. 3 shows a schematic phase plane illustration of a 
limit cycle in a two-dimensional ordinary differential 
equation. A limit cycle is further said to be globally 
attracting if from all initial conditions, except for a set 
of measure zero (e.g., a point or line in a 2-dimensional 
phase space), the limit cycle is approached in the limit t 
--3 00. All points that approach the limit cycle as t + 00 
are said to be in the basin of attraction of the limit cycle. 
In this paper we consider phase resetting of globally 
attracting limit cycles in two-dimensional ordinary dif- 
ferential equations. We do not consider the added com- 
plications from phase resetting in higher dimensions or 
in functional or partial differential equations. 

To discuss phase resetting of limit cycle oscillators 
some additional concepts are needed. Assume the limit 
cycle has period To and that we start with initial condi- 
tions x(t = 0) = ~0, with ~0 being an arbitrary point on 
the limit cycle. Set the phase of x0 to be zero. Then the 
phase of the point x(t) is defined to t/To (mod 1). Thus 
a phase $(O 5 + < I) can be assigned to every point on 
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FIG. 3. A: schematic representation of phase plane of limit cycle 
oscillator. All points, except for singular phaseless point, attract to 
limit cycle (C) as t --3 00. B: for simple model in Eq. 4, isochrons (see 
text, dashed lines in right-hand panel) are straight lines that approach 
arbitrarily closely to singular point. For Eq. 4 limit cycle is circle with 
radius = 1. 
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the limit cycle. The latent phase of points in the basin 
of attraction of the cycle can now be defined. Let x(t = 
O), x’(t = 0) be the initial conditions of a point on the 
cycle and a point not on the cycle, respectively, and x(t), 
x’(t), be the coordinates of the trajectories at time t. If 
lim d[x(t), x’(t)] = 0, where d is the Euclidean distance, 
then the latent phase t ---) 00 of x'(t = 0) is the same as 
the phase of x(t = 0). A locus of points all with the same 
latent phase is called an isochron (60). An isochron is a 
smooth curve crossing the trajectories in the attractor 
basin of the limit cycle (Fig. 3B). The state point on any 
trajectory in the attractor basin of the limit cycle passes 
through all the isochrons at uniform rate. Thus the 
isochrons are very close together wherever the time de- 
rivatives are small. In particular, they all come arbitarily 
close together at any stationary state (critical point or 
fixed point) and therefore necessarily also along any 
singular trajectory leading to a stationary state. Near 
any such singular trajectory a small displacement may 
shift the oscillator across many isochrons to a distinctly 
different latent phase. We call the locus of stationary 
states and the attracting sets of these stationary states 
the phaseless set. Except for the phaseless set, one and 
only one isochron passes through each point of the 
attractor basin of the limit cycle. 

I.5 

0.5 

The effect of a stimulus is to shift a state point on the 
limit cycle, at some isochron (+) to a new point in phase 
space lying on some new isochron (&) generally not on 
the limit cycle. If stimuli are administered at all phases 
of the cycle, then the locus of new states reached imme- 
diately after the stimulus in all those experiments will 
be a displaced image of the limit cycle. We call this closed 
curve C’, the shifted cycle, Fig. 4A. From one of these 
initial conditions (after the stimulus), the oscillator fol- 
lows the corresponding trajectory back toward the limit 
cycle. 

0 0.5 1.0 0 0.5 t .o 
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FIG. 4. A: schematic representation of effects of perturbing limit 

cycle oscillator such as 
in this case horizontal 
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that depicted in Fig. 
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3 and Eq. 4. Perturbations, 
shifted cycle, C’. If shifted 

ncloses singular point, 
cycle does not enclose 

there is type 1 phase resetting 
phaseless point, there is type 

(al). If 
0 phase 

resetting (a2). Isochrons are represented by dashed lines. B: perturbed 
cycle length (7) as function of phase of stimulus (#) for type 1 (bl) and 
type 0 (b2) phase resetting. C: schematic representation of phase- 
transition curve for type 1 (cl) and type 0 (c2)-phase 
C are related through Eq. 3. 

resetting. B and 

Phase changes continuously along C’ except wherever 
C’ cuts across the phaseless set. Supposing continuity, 
one can circumnavigate C’, advancing through one full 
cycle of $, while counting the net number of times 4’ 
advances through a cycle. Call this integer the winding 
number or topological degree of C’. Recall that the plot 
of 4’ vs. 4 is the PTC. After a sufficiently slight pertur- 
bation, the shifted cycle, C’, scarcely differs from the 
limit cycle, so 4’ scarcely differs from $ and its degree is 
still 1. We call this type 1 resetting. A perturbation that 
changes the degree to 0 would be said to inflict type 0 
resetting (Fig. 4A). (Note that the PRC plots 6’ - d, vs. 
4. Therefore for type 1 resetting the degree of the plot of 
4 

/ - 4 vs. 4 is 0, whereas for type 0 resetting the degree 
is -1.) 

A. Radial isochron clock. We consider a simple equation 
for a limit cycle oscillator of unit period that enables 
explicit computation of the effects of perturbations. This 
model, the radial isochron clock (RIC), has been pro- 
posed as a simplified model for the circadian rhythm 
(57), cardiac oscillator (l7), and neural oscillators (21). 
The equations of the RIC are 

d$/dt = 1 (4) 
dr/dt = kr(1 - r) 

Except for the singular point at the origin, trajectories 
pass through every point in the (r, 4) plane, leading 
toward the attracting cycle at r = 1. 

Given the kinetics of a free-running oscillator, we can 
construct its isochrons. Given the kinetics of the oscil- 
lator while subjected to a stimulus, we can construct the 
shifted cycle for each stimulus strength. Given a shifted 
cycle and the isochrons, we can construct the PTC. Its 
grossest feature, the integer degree of resetting, is im- 
mediately obvious from the way the shifted cycle lies on 
the isochrons. Note, however, that if the shifted cycle 
intersects the phaseless set, the degree of the PTC is not 
defined. We now consider three examples of phase reset- 
ting of two-dimensional oscillators. 

Now consider a discrete stimulus of magnitude M that 
displaces the oscillator a distance M to the right. From 
the new initial condition immediately after stimulation 
a trajectory leads back to the attracting cycle at a rate 
that depends on k. In the case of k + 00, relaxation back 
to the cycle is instantaneous after perturbation. This 
case was analyzed by Winfree (57, 59) with additional 
consideration of implications for entrainment (17, 21). 
We assume that the oscillator initiates a firing every 
time its state crosses the half line 4 = 0 (17). Thus the 
perturbed interval 7 is simply 7 = 1 + 4 - $’ (Eq. 3). 
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Note the two distinctly different types of PTC: type 1 
resetting (PTC degree of 1) occurs in response to small 
stimuli (M c l), but type 0 resetting (PTC degree of 0) 
occurs in response to stimuli exceeding strength M = 1. 
With stimuli of strength A4 = 1 one would measure a 
PTC that has a discontinuity, but only at that exact 
strength. In general, for two-dimensional limit cycle os- 
cillators topologically equivalent to Fig. 3A, one expects 
to find type 1 .resetting for small stimuli and type 0 
resetting for sufficiently large stimuli (60). 

In this paper we generalize the previous analysis in 
two ways. First we let k be a finite positive number. Then 
we alter the triggering locus to initiate firing only if r is 
larger than some positive r. inside the limit cycle. 

Because d4/dt does not depend on r, the plot of $’ vs. 
4 for any given A4 remains the same as under the prior 
assumptions. However, the plot of 7 vs. 4 is markedly 
changed in regions of (4, M) that move the oscillator 
inside the circle ro. In particular, if the stimulus results 
in a new (r, 4) coordinate from which the trajectory may 
pass $ = 0 one or more times at amplitudes still less than 
rot then one or more firings will be missed. To determine 
the exact boundaries of (r, 4) regions in which rz firings 
will be missed, we need to follow backward the trajectory 
through ($ = 0, r = QJ. Its successive crossing of the 
radius 4 = 0 are given by 

rn = ro/[ro + (1 - r0Pl (5) 

In Fig. 5 the spiral zone bounded by line segments (ro, 
rl) and (rl, Q) contains initial conditions after which one 
firing is skipped, because the oscillator will cross the 6 
= 0 axis once before triggering amplitude is exceeded 
(zone 1, Zl). From Zz, two firings will be skipped, and so 
on. In general in Z,, 7 = 1 + 4 - 4’ + n. Figure 6 shows 
T vs. 6 for k = 10 and ro = 0.98 for two stimulus 
magnitudes, M = 0.94 and A4 = l-04. The discontinuities 
of exactly one period correspond to crossing the boundary 
of a spiral zone in Fig. 4 as the stimulus timing changes. 
These discontinuities are not artifacts of conventions for 
defining the phase angle. Despite the discontinuities in 

FIG. 5. Phase plane for limit cycle with finite relaxation back to 
limit cycle and threshold (rO) that must be exceeded at + = 0 to initiate 
event. Point in spiral zone 2, will cross 4 = 0 n times before initiating 
event. Points ro, rl, rz, . . . all lie on common trajectory and are given by 
Eq. 5. 
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I.0 

FIG. 6. Plot of 7 vs. # for Eq. 4, with finite threshold of ro = 0.98 at 
4 = 0 needed to initiate event and k = 10. Effects of perturb&on with 
magnitude of 0.94 (A) and 1.02 (B). 

7, the PTC is continuous and differentiable on the unit 
circle. Thus the PTCs corresponding to Fig. 6, A and B, 
are topologically equivalent to the graphs in Fig. 4 (cl 
and c2), respectively. 

B. A model with three stationary states. Recent theo- 
retical studies (10) of phase resetting in ionic models of 
cardiac cells have shown that some of the qualitative 
features of the dynamics can be approximated by assum- 
ing a two-dimensional limit cycle oscillation surrounding 
three unstable steady states (Fig. 7A). The referee 
pointed out that the phase plane in Fig. 7A also arises in 
mathematical models of the Belousov-Zhabotinsky re- 
action (40, Fig. 9A) and of continuous stirred-tank chem- 
ical reactors (55, Fig. 6G). The isochrons and phase- 
resetting behavior of such systems will now be described. 

In Fig. 7A, there are three stationary points (two 
unstable nodes and a saddle point). Two singular trajec- 
tories (separatrices) lead from the nodes to the saddle 
point. Since any initial condition on the separatrices 
does not approach the limit cycle in the limit t + 00, the 
latent phase is not defined on-the separatrices. The three 
steady states and the separatrices constitute a phaseless 
set, as defined above. 

We propose (without proof) the following structure 
(Fig. 7B) for the isochrons for the phase plane shown in 
Fig. 7A.l The isochrons all approach every point of the 
phaseless set arbitrarily closely: they wrap around it an 
unlimited number of times (16). Latent-phase is thus 
discontinuous across this locus. Any stimulus whose 
shifted cycle, C’, cuts across this locus produces a PTC 
discontinuous at the separatrix and is therefore of inde- 
terminate degree. 

A coarse sampling of C’ in an experiment with few 
initial $ values might suggest a PTC resembling Fig. 8A. 
In this example, the size of its apparent discontinuity 
depends on the sampling. In Fig. 8B we sketch the result 
of much finer sampling of 7 near the locus where C’ 

’ In the basin of attraction of the limit cycle, isochrons are contin- 
uous, and they cannot branch or cross. The isochrons in Figs. 3B and 
7B are topologically equivalent (homeomorphic). We conieiture that 
in the basin of attraction of any %dimensional limit cycle, the isochrons 
will always be homeomorphic to the isochrons shown in Figs. 323 and 
7B. 
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FIG. 7. Schematic representation of model of limit cycle oscillator 
with 3 steady states (heauy pokts). In terminology of qualitative theory 
of differential equations, central steady state is called saddle point and 
2 other steady states are unstable nodes. Trajectory that leads from 
node to saddle point is called a separatrix. A: trajectories for this model 
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FIG. 8. Schematic plot of perturbed cycle length vs. 6 for model 
shown in Fig. 7 for perturbation that leads to shifted cycle that 
intersects in 1 point phaseless set in Fig. 7B. Events are initiated when 
trajectory crosses isochron 4 = 0 in neighborhood of intersection of 
isochron and C. A: comparatively crude determination. B: finer deter- 
mination As a result of intersection of shifted cycle with phaseless set, 
perturbed cycle length exponentially increases to infinity, but resolu- 
tion of this singularity depends sensitively on noise in system and 
fineness of experimental probing. 

crosses the phaseless set. Note that a small change of 4 
can result in passing through many successive cycles of 
4’: 7 may approach infinity. In terms of trajectories, this 
is because trajectories through states near the separatrix 
go almost to the central steady state and linger there for 
a long time before finally diverging toward the limit 
cycle. The PTC corresponding to Fig. 8 can be found by 
applying Eq. 3. The PTC is not continuous because the 
jumps in 7 do not span an integer number of cycles. If 
the PTC were measured very finely it would show very 
sensitive dependence to the phase of stimulus presenta- 
tion in the neighborhood of the discontinuity. 

C. IModels with nested limit cycles. In some biological 
systems one can abolish an oscillation by delivering 
perturbations over some range of stimulus phases and 
amplitudes (5, 20, 23, 24, 53, 60). A second perturbation 
will restart the oscillation. In two dimensions such be- 
havior can be modeled bv having two nested limit cycles 
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system. B: conjectured structure for isochrons for this model. All 
isochrons continue to wind as tight spirals around phaseless set and 
approach arbitrarily close to phaseless set [(16); cf. Fig. 31. Note that 
although the phase planes are not topologically equivalent, isochrons 
are. 

An equation giving this behavior is (60, p. 156) 

d4 -- - 
dt 

1 + E(1 - r) 
(6) 

dr -= 
dt 

Ml - r) (r - Y2) 

where k and 6 are constants. Here, there is a stable limit 
cycle at r = 1 and an unstable limit cycle at r = %. All 
points with r < V’2 approach the origin r = 0 in the limit 
t + 00, Thus the phaseless set is two dimensional. The 
PTCs are accordingly neither type 1 nor type 0: they 
have a finite gap in which phase is not defined for the 
same range of stimulus sizes. Diagrams of the isochrons 
and trajectories in this case are given elsewhere (60, p. 
156) and will not be reproduced here. 

The topological degree of the PTC is defined only if 
the shifted cycle does not intersect the phaseless set. If 
the shifted cycle does intersect the phaseless set, the 
topological degree of the PTC is not defined. Kawato has 
shown that in the cases in which the PTC is defined, it 
must be of either degree 1 or degree 0 for two-dimensional 
limit cycles (32, 33). For the examples in section III, B 
and C, a finite range of stimulus strengths will lead to a 
PTC in which the topological degree is not defined. 

IV. DISCUSSION 

One of the basic methods for studying biological oscil- 
lations is to subject the oscillation to brief stimuli deliv- 
ered at different phases of the cycle. We have described 
phase resetting observed for several simple mathematical 
models of biological oscillations and shown that topolog- 
ical properties of experimentally observable functions do 
depend sensitively on the class of models proposed. Con- 
sequently a recognition of the different predictions of the 
theoretical models can lead to refinement and reexami- 
nation of experiments in physiology. 

As an illustration, consider the respiratory oscillator. 
Proposals have been made that the respiratory rhythm 
can be generated by limit cycle oscillations (4, M), but 
integrate-and-fire models are much more common (4, 6, 
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44). Experimental predictions from the two classes of 
model do differ. If the respiratory rhythm is generated 
by a limit cycle oscillator, then it should be possible to 
find critical stimuli that will perturb the rhythm to a 
locus near the phaseless set and lead to an arrest of the 
respiratory oscillator. From a clinical context, such a 
stimulus could lead to a prolonged apnea and might even 
underlie respiratory arrest in infant apnea (and perhaps 
sudden infant death syndrome). However, such critical 
stimuli have not been demonstrated in experimental 
preparations. In experimental respiratory physiology it 
is not common to plot the perturbed cycle length as a 
function of phase of a stimulus such as lung inflation. 
However, since a discontinuous termination of inspira- 
tion by lung inflation is postulated by Bradley et al. (6), 
we anticipate that a plot of perturbed cycle len @h vs. 
the phase of lung inflation would have one or more 
discontinuities for a range of inflation amplitudes if 
contemporary integrate-and-fire models are correct. 
Careful studies of the continuity properties are war- 
ranted in view of the difference between predictions 
between the different classes of models. 

A second situation in which a knowledge of the topo- 
logical structure of a biological oscillator is important is 
in the analysis of the effects of periodic inputs to the 
oscillator. It has long been recognized that the PTC can 
be used to predict the effects of periodic stimulation of 
biological oscillators (17, 19, 41, 48, 49). It has recently 
been suggested that changes (bifurcations) in dynamics 
that occur as the stimulation parameters are varied de- 
pend on topological, continuity, and differentiability 
properties of the PTC (15). There are differences be- 
tween the dynamics predicted from discontinuous PTCs 
and continuous PTCs with steep slopes. Thus studies 
using piecewise linear PTCs as models of pacemaker 
response, such as have been carried out by Segundo and 
co-workers (35, 39, 49-52) and Ikeda et al. (22), lead to 
different topological structures than studies using more 
realistic PTCs. 

Although theoretical predictions of the different 
classes of models do differ, the extent to which experi- 
mental studies can resolve the differences remains to be 
clarified. Some effects, such as temporary respiratory 
arrest in response to a stimulus of critical amplitude, are 
dramatic and could be easily observed if present. Other 
mea surable properties, such as the pe rturbed CYC le length 
and phase- locking structure, show very la xe changes 
over very small changes in the stimulus 
to measure experimenta 1lY Moreover a l 

and are difficult 
small amount of 

noise present in the experimental system adds further 
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