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Randomly connected Boolean networks have been used as mathematical models of neural, genetic, and
immune systems. A key quantity of such networks is the number of basins of attraction in the state
space. The number of basins of attraction changes as a function of the size of the network, its
connectivity and its transition rules. In discrete networks, a simple count of the numbers of attractors
does not reveal the combinatorial structure of the attractors. These points are illustrated in a
reexamination of dynamics in a class of random Boolean networks considered previously by Kauffman.
We also consider comparisons between dynamics in discrete networks and continuous analogues. A
continuous analogue of a discrete network may have a different number of attractors for many different
reasons. Some attractors in discrete networks may be associated with unstable dynamics, and several
different attractors in a discrete network may be associated with a single attractor in the continuous
case. Special problems in determining attractors in continuous systems arise when there is aperiodic
dynamics associated with quasiperiodicity or deterministic chaos.
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1. Introduction

Discrete Boolean networks have been applied broadly
as models of high-dimensional biological systems.
Such networks are composed of discrete Boolean
elements that we call automata. Depending on the
context, an automaton might represent a gene
(Kauffman, 1969; Thomas, 1973), a neuron (Hopfield,
1982), a class of immune cells (Kaufman et al., 1985;
Thomas & D’Ari, 1990). Each automaton receives
inputs from some subset of the automata in the
network and all automata are updated simul-
taneously. In many applications, the discrete models
are thought of as simplified versions of continuous
differential equations that would be a more
appropriate but less tractable model of the real
biological system.

We are concerned with the qualitative features in
the dynamics of such systems. Perhaps the most basic

qualitative features of a dynamical system are the
number and types of different behaviors, often called
attractors, that are found as time goes to infinity. All
initial conditions that evolve to a given attractor
constitute its basin of attraction. An attractor of a
given network might correspond to a memory trace,
a pattern of motor nerve activity, a state of an
immune network, or a cell type. Consequently,
knowledge of the number of attractors and how
their respective basins partition the state space
is essential to understand the function of the
particular system being investigated. For example,
in models of neural networks, the number of basins
of attraction of a given network might correspond
to the number of ‘‘memories’’ that could be
stored in it (Hopfield, 1982). In studies of immune
networks, the number of attractors might correspond
to the numbers of antigens that can be uniquely
identified (Segel & Perelson, 1988; Weisbuch &
Oprea, 1994).

Although the issue of counting the number of
attractors in a given dynamical system is fundamen-
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tal, the number of definite theoretical results in this
area are scattered thinly over a broad range.

(i) Hilbert’s sixteenth problem. The problem is to
determine the maximum number and position
of limit cycles in the ordinary differential
equations

ẋ= f(x,y), ẏ= g(x,y)

where f and g are nth order polynomials
(Hilbert, 1902), and the dot represents a
derivative with respect to time.

(ii) A Boolean network of N automata in which
each automaton receives inputs from each of
the automata in the network and realizes a
random function on those inputs. This system
is described by a random map on a finite state
space of 2N states, see Derrida & Flyvbjerg
(1987), Weisbuch (1990), Jaffe (1988),
Kauffman (1993) and references therein. In the
limit N4a the expected number of cycles is

0log 2
2 1 N.

(iii) A Boolean network of N automata in which
each automaton receives one input. This case
was treated by Jaffe (1988). The mean number
of cycles grows exponentially like

0 2

ze1
N(1+ o(1))

.

(iv) Random Boolean networks of N automata in
which each automaton receives inputs from
two automata. Numerical results carried out
by Kauffman show that the number of
attractors increases as zN (Kauffman, 1969,
1993).

(v) Various models of neural networks in which
‘‘neurons’’ are represented by Boolean vari-
ables. The state of a neuron at a given time is
a Heaviside function of weighted inputs to the
neuron at the previous time. An initial
condition evolves to one of several attractors.
The system could act as a memory device with
a low error rate provided the number of
attractors Q0.15N, where N is the number
of neurons (Hopfield, 1982; McEliece et al.,
1987; Weisbuch & Fogelman-Soulié, 1985;
Weisbuch, 1990).

(vi) Spin glasses. These are physical systems in
which localized spins have interaction energies
that can take two or more different values.

Depending on the temperature, there may be
a large number of different configurations that
represent local energy minima. This has
thermodynamic consequences and may have
implications for biological systems (Derrida,
1987b; Mezard et al., 1987; Weisbuch, 1990).

The current work was motivated by a desire to
extend earlier results on discrete time and discrete
state space systems to systems in which time and state
space are continuous. In order to carry this out, we
first tried to reproduce Kauffman’s results on two
input discrete time Boolean networks. This exercise
led us to recognize that a simple count of the number
of attractors in a given network will not always lead
to a clear picture of the dynamics in the network.
Moreover, the number of attractors in discrete
networks may be different from the number of
attractors in analogous continuous networks.

In this paper we address issues concerning counting
and classifying attractors in automata networks
and in continuous nonlinear equations in high
dimensions. In Section 2, we review basic concepts
concerning automata networks, and we summarize
the numerical methods. Section 3 presents numerical
studies on the numbers of basins of attraction in
randomly constructed automata networks that have
been proposed by Kauffman as models of gene
networks. In Section 4 we demonstrate that simple
enumeration of the numbers of different attractors in
a given network fails to adequately represent the
relationships that exist between the different attrac-
tors. By considering a particular example, we propose
a taxonomic classification of the basins of attraction,
and demonstrate the combinatorial basis for the
generation of the diversity of the numbers of
attractors. Although the results concerning automata
networks are relevant to the study of continuous
networks, there are many differences between
continuous and discrete systems. In Section 5, we
discuss the issues associated with counting the
attractors in continuous systems, and describe the
differences in the dynamics between the continuous
and discrete systems.

2. Definitions and Numerical Methods

In a Boolean network, the automata may be in one
of two states, designated zero and one. For a network
of N automata, there are 2N possible states for the
network. For each automaton, a Boolean rule assigns
an output of zero or one to all possible combinations
of input automata states in a manner similar to the
truth tables of logic. If an automaton has K inputs,
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its Boolean rule assigns an output to each of the 2K

possible combinations of the input states. Thus, there
are 22K possible rules for an automaton with K inputs.
The dynamics in a Boolean network is represented by
the equation

Xi(t+1)=Bi(X(t)) i=1, 2, . . ., N, (1)

where Xi(t) is the Boolean state, either zero or one, of
automaton i at time t, Bi is a Boolean function used
to update the state of automaton i, and X(t) is a
Boolean vector giving the states of the N automata in
the network.

We study Boolean networks in which the
connectivity of the network and the transition rules
are chosen at random from those possible. There are
possible constraints to this selection procedure. One
common constraint is the imposition of a fixed

number of inputs per automaton. Another disallows
the transition rules of contradiction (all zeros) and
tautology (all ones), since these rules are completely
insensitive to the state of the individual inputs.
Finally, an automaton can have itself as an input—or
it can have no self-input.

For each network, once the connectivity and
transition rules have been assigned, an initial
condition is randomly chosen. Successive states for
each automaton are assigned by its transition rule as
a function of the state of its inputs. The network is
updated synchronously and iterated until a cycle or
steady state is reached. A characteristic feature of
Boolean networks is that as finite systems, they will
eventually cycle. However, since there are 2N possible
states in a network with N automata, for sufficiently
large networks, the cycles can be astronomically long.

F. 1. Cycle lengths for random Boolean networks with 128 automata and two inputs per automata for 2000 different random networks
and 1000 random initial conditions. Each point represents the number of networks out of the 2×106 trials having the specified cycle length.
Each of the four different classes of network is shown in a separate panel. (a) No self-input. No tautology and contradiction. (b) Self-input.
No tautology and contradiction. (c) No self-input. Tautology and contradiction. (d) Self-input. Tautology and contradiction. Including
tautology and contradiction in the transition rules results in more short cycles and fewer long cycles.
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If two different initial conditions lead to an identical
cycle, the two different initial conditions lie in the
same basin of attraction.

In this paper we consider two input random
networks. Numerical simulations were performed on
four subsets of Boolean networks. These are the same
as those initially considered by Kauffman (1969).

Subset 1: tautology and contradiction allowed; self-
input allowed.
Subset 2: tautology and contradiction allowed; self-
input not allowed.
Subset 3: tautology and contradiction not allowed;
self-input allowed.
Subset 4: tautology and contradiction not allowed;
self-input not allowed.

Computations were carried out in a similar fashion
to the one employed by Kauffman (1969). Boolean
networks and initial conditions were generated
randomly using a pseudo-random number generator.
Continuous nonlinear equations were integrated
using a fourth order Runge-Kutta integration
scheme. Piecewise linear equations were integrated
using methods considered previously (Glass &
Pasternack, 1978b).

3. Counting Attractors

Boolean networks are an ideal system to study the
number of the basins of attraction. It is easy to
compute dynamics in Boolean networks and dis-
tinguishing between different cycles is unambiguous.
A previous study of random Boolean networks
modeling genetic regulatory systems (Kauffman,
1969; 1993) reported a numerical estimate of the
number of basins of attraction for two input networks
consisting of N automata. In this model, genes are
represented as Boolean automata. On the basis of
numerical computation, Kauffman conjectured that
both the median cycle length and the number of
attractors increases only as zN, a striking result
when one considers the number of possible states in
very large networks. Our first step is to recompute
these results and reconsider the issues involved.

The results of randomly sampling among Boolean
networks are presented in Figs 1–5. Improvements in
the speed and availability of computation have
allowed us to improve the sampling somewhat. Where
feasible, 2000 networks were iterated from 1000
different initial conditions, for all four connectivity
subsets defined above. Figure 1 presents scatter
diagrams of the cycle lengths found for the four
subsets for networks of N=128 automata. The
addition of tautology and contradiction considerably

simplifies the dynamics. A bulk statistic, the median,
is presented in Fig. 2a on cycle length statistics for
networks of N=32, 64, 128, 256 automata. The
figure reveals a smooth relationship with increasing
N. However, though the median cycle length for
networks with tautology and contradiction show the
conjectured relationship to zN, networks without
these transition rules do not.

After examination of the distribution of cycle
lengths in Fig. 1 (which are typical), one can see that
the median has merit as a representative number. The
distributions are heavily skewed towards smaller
lengths. Numerically, the median tends to converge to
a small interval after only a few samples. The
distributions have however very long tails, something
not intimated by the median.

A second candidate for the representative cycle
length is the mean which in these systems is much

F. 2. The (a) median and (b) mean cycle length for the simu-
lations presented in Fig. 1. The curve y=zx/2 has been added for
reference. The median cycle length is AzN only when tautology
and contradiction are used. W−self input− taut/cont; Q+self
input− taut/cont; R−self input+ taut/cont; R+self input +
taut/cont; ······· y= axa, a=1/2.
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F. 3. The mean cycle length for networks of N=128 automata as a function of the number of networks sampled for the same networks
represented in Fig. 2. Each network was sampled 1000 times. The data point representing the mean cycle length for 128 automata in
networks with self input and tautology and contradiction in Fig. 2 is caused by a single network with a cycle length 521220. 992 out of
1000 initial conditions led to this attractor. —— −self input− taut/cont; ······· + self input− taut/cont; – – – −self input+ taut/cont;
— — +self input+ taut/cont.

larger than the median and increases with a power of
N (Fig. 2b). However, the convergence of the mean
can be quite slow. Figure 3 shows the value of the
computed mean with each increase in the sample for
all four network subsets. One network consisting of
128 automata (about the 1000th sampled) in the
subset of networks that has both tautology and
self-input had a very long cycle length. This led to the
apparently inconsistent value for the mean cycle
length in Fig. 2 for networks with 128 automata and
both tautology and self-input.

A subtlety in interpreting Fig. 2 is that an
individual cycle will be counted for each initial
condition in its basin of attraction. The long cycle
mentioned above was of length 521220, and 992 of
1000 initial conditions sampled were in this basin of
attraction, accentuating its distorting effect. Another
way of calculating the mean would only count the
cycle length of a particular basin of attraction once,
regardless of how many states are in its basin. Our
choice reflects the probability of a given cycle length
resulting from the random choice of one initial state,

one connectivity, and one set of transition rules from
their respective spaces.

The number of basins of attraction for the sample
of networks of 128 automata are shown in Fig. 4. The
presence of self-inputs tends to increase the diversity
in behavior. The effect of excluding tautology and
contradiction is more complicated. There are fewer
networks with very few basins, and also fewer
networks with very many basins (Fig. 5) leading to a
decrease in the mean number of the basins of
attraction. The median number of basins of attraction
increases approximately as the square zN as
conjectured in Kauffman (1969), but more data is
needed to determine if the relationship holds as the
number of automata increases further. The mean
increases more rapidly than zN for large N.

In the numerical determination of the mean
cycle length there is a significant chance that a very
long cycle will be encountered; this probability
increases with network size. Similarly, as the size
of the network grows, more initial conditions are
needed to sample the different basins of attraction.
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F. 4. The number of basins of attraction per network, for the same networks in Fig. 1. Excluding tautology and contradiction results
in fewer networks with only one basin, and fewer networks with many basins.

Consequently, the mean numbers of basins computed
here are approximate, and are probably lower than
the ‘‘true’’ values, especially for the larger networks.

In a discussion of gene regulation, Kauffman (1969)
equates a cycle in the Boolean network with the cell
cycle and argues that very long cycles would not be
a suitable representation of a cell’s dynamics. Thus,
his proposal of the median as the representative cycle
length. But more generally there is no compelling
reason for preferring the median as a descriptor of
Boolean network dynamics.

In summary, numerical study of random Boolean
networks reproduce many early results of Kauffman
(1969), but also reveal difficulties in estimating the
cycle length. We will now consider additional
complications associated with counting the number of
different attractors in a given network. Different
attractors may arise as a consequence of the discrete
updating scheme, and would not necessarily be

different in more realistic continuous representations
of the same network connectivity. In addition,
different attractors in the same network may show
striking similarities. These points are important in the
interpretation of the results of the computations in
automata networks, and are discussed in the
remainder of this paper.

4. Classifying Attractors

In this section we demonstrate methods that can be
used to classify the attractors in synchronous Boolean
networks. For illustrative purposes we consider a
randomly connected two input per automata network
with 25 automata that had an unusually large number
(384) of attractors. However, we shall see that these
attractors are related to each other.

In order to determine all the basins for this network
initial conditions were generated until no further
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F. 5. The (a) median and (b) mean number of basins of attrac-
tion per network for the same networks in Fig. 1. inputs per
automata plotted against network size. The curve y=zx/2 has
been added for reference. W−self input− taut/cont; Q+self
input− taut/cont; R−self input+ taut/cont; R+self input +
taut/cont; ······· y= axa, a=1/2.

F. 6. (a) The number of basins of attraction a network of 25
automata as a function of the number of initial conditions sampled.
384 basins of attraction were present, the last sampled at 10632th
initial condition. (b) The fraction of state space associated with
each attractor based on 105 initial conditions. K=2; N=25 for (a)
and (b).

attractors were found. In Fig. 6, the number of
distinct periodic orbits is plotted against the number
of initial conditions, showing that the finding of new
basins saturates. After several recomputations of this
curve, the same 384 basins were consistently found
after 0104 initial conditions were iterated. If any
basins have escaped count, they comprise a negligible
portion of the state space.

In a first attempt to find a means of grouping
cycles, individual cycles were reduced to a schema (see
Table 1) that distinguishes periodic orbits on the basis
of which of the automata have frozen to a fixed value
(Weisbuch & Stauffer, 1987). Thus, cycles may be
represented by the same schema if the same automata
are frozen to the same fixed values. In this example,
the 384 basins of attraction fall into 12 schemata, with
a large degree of homology between schemata
(Table 2). What is not shown is that the individual

T 1.
The generation of a schema from a
periodic cycle of a Boolean network

with six automata
1 1 1 0 1 0
1 0 1 0 0 1
1 1 0 0 0 0
1 0 0 0 0 0
1 1 1 0 1 1
1 0 0 0 1 0

1 * * 0 * *

The states of the automata are displayed
from left to right, and the six steps of the cycle
progress from top to bottom. Beneath the
cycle is the schema. The first and fourth
automata are frozen into the one and zero
states respectively. The other automata are
assigned the symbol * indicating that the
individual automata exhibited a cycle length
greater than one.
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T 2.
The twelve schemata derived from the 384 cycles found for one network of 25 automata

A 56 1 * 1 1 * * 1 1 * * 0 * 0 1 0 0 1 * * 1 * 0 * 0 1
B 20 1 * 1 1 * * 1 1 * * * * * 1 * 0 * * * * * * * * 1
C 192 1 * 1 * * * 1 1 * * * * * 1 * * * * * * * * * * 1
D 48 1 * 1 * * * 1 1 * * * * * 1 * 0 * * * * * * * * 1
E 4 1 * * * * * 1 1 * * * * * 1 * * * * * * * 1 * * 1
F 4 1 * * * * * 1 1 * * * * * 1 * 0 * * * * * * * * 1
G 24 1 * 1 1 * * 1 1 * * * * * 1 * * * * * * * * * * 1
H 8 1 * * * * * 1 1 * * * * * 1 * * * * * * * * * * 1
I 4 1 * 1 1 * * 1 1 * 1 0 0 0 1 0 0 1 * 1 1 * 0 0 0 1
J 4 1 * 1 1 * * 1 1 * * * * * 1 * * * * * * * 1 * * 1
K 16 1 * 1 * * * 1 1 * * * * * 1 * * * * * * * 1 * * 1
L 4 1 * 1 1 * * 1 1 * 0 0 1 0 1 0 0 1 * 0 1 * 0 1 0 1

The first column is a label for each schemata, the second indicates the number of periodic orbits which are grouped under the schemata
which follows.

cycles grouped within a single schema also show a
large degree of homology. The resemblances in the set
of schemata, and the fact that some schemata tend
towards more frozen states than others, suggests a
taxonomic classification of the schemata. In Fig. 7,
the schemata are arranged in a tree. As one descends
in the tree, automata become progressively fixed.

Each schema in the tree has more fixed elements than
the schema immediately above it. Once a given
automaton is fixed it remains fixed to the same value
in all the schemata beneath it. In most instances
schema connected by a line differ in the state of only
a single automaton. If more automata than a single
one become fixed as one descends in the tree, this
number is indicated in Fig. 7.

An alternative way to group the cycles of a network
is by the cycle length of each automaton (Weisbuch
& Stauffer, 1987). With the same data used to
generate the schemata in Table 2, 21 schemata with
this alternative definition were found (see Table 3).
Note that the number of cycles grouped under each
schema (the second column) is often a multiple of
some of the individual cycle lengths. This arises
because many cycles differ only in the phase of the
oscillations of the individual automata. Between two
such cycles, all of the individual automata have
identical sequences of on and off states, but one or
several automata in one cycle are not synchronized in
the same way as in the other. In such instances, the
cycles are qualitatively identical. Such an occurrence
is diagrammed in Table 4.

The fact that automata cycles which vary in
synchrony may be of different lengths leads to a
simple way for generating periodic orbits of many
different lengths for the network as a whole, often
longer than the period of any of its constituent
automata (Weisbuch & Stauffer, 1987; Weisbuch,
1990). In Table 4, no single automaton has a cycle
length larger than 3, yet the cycle length of the
network is six. Note in Table 3 that orbits for the
network as a whole are often much larger than the
cycle length of any individual automaton.

The above results show that in discrete networks
there can be a rich combinatorial structure that is not
reflected in a simple count of the numbers of
attractors.

F. 7. A taxonomic representation of the schemata in Table 2.
As one descends from the top of the tree to the bottom, automata
get fixed (see the text).
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T 3.
A different schema for the same network in Table 2

1 24 12 1 6 1 1 6 6 1 1 4 4 1 4 1 1 1 1 1 6 4 1 4 1 4 1 1
2 16 8 1 2 1 1 2 2 1 1 4 8 4 8 4 1 4 1 4 2 8 4 4 4 8 4 1
3 4 4 1 2 1 1 2 2 1 1 4 2 1 2 1 1 1 1 1 2 2 1 4 1 2 1 1
4 32 24 1 6 1 12 6 6 1 1 4 8 4 8 4 1 4 4 4 6 8 4 4 4 8 4 1
5 32 24 1 6 1 12 6 6 1 1 4 8 4 8 4 1 4 1 4 6 8 4 4 4 8 4 1
6 4 56 1 14 14 14 14 14 1 1 4 8 2 8 2 1 2 2 2 14 8 2 4 1 8 2 1
7 4 56 1 14 14 14 14 14 1 1 4 8 2 8 2 1 2 1 2 14 8 2 4 2 8 2 1
8 80 8 1 2 1 4 2 2 1 1 4 8 4 8 4 1 4 8 4 2 8 4 4 4 8 4 1
9 16 8 1 2 1 1 2 2 1 1 4 8 4 8 4 1 4 4 4 2 8 4 4 4 8 4 1

10 8 56 1 14 14 14 14 14 1 1 4 8 2 8 2 1 2 4 2 14 8 2 4 4 8 2 1
11 16 8 1 2 1 4 2 2 1 1 4 8 4 8 4 1 4 4 4 2 8 4 4 4 8 4 1
12 24 4 1 2 1 1 2 2 1 1 4 4 1 4 1 1 1 1 1 2 4 1 4 1 4 1 1
13 64 24 1 6 1 12 6 6 1 1 4 8 4 8 4 1 4 8 4 6 8 4 4 4 8 4 1
14 8 8 1 2 1 1 2 2 1 1 4 8 2 8 2 1 2 4 2 2 8 2 4 4 8 2 1
15 4 12 1 6 1 1 6 6 1 1 4 2 1 2 1 1 1 1 1 6 2 1 4 1 2 1 1
16 4 4 1 2 1 1 2 2 1 1 4 1 1 1 1 1 1 1 1 2 1 1 4 1 1 1 1
17 16 8 1 2 1 4 2 2 1 1 4 8 4 8 4 1 4 1 4 2 8 4 4 4 8 4 1
18 4 8 1 2 1 1 2 2 1 1 4 8 2 8 2 1 2 2 2 2 8 2 4 1 8 2 1
19 2 12 1 6 1 1 6 6 1 1 4 1 1 1 1 1 1 1 1 6 1 1 4 1 1 1 1
20 16 8 1 2 1 4 2 2 1 1 4 8 4 8 4 1 4 8 4 2 8 4 4 1 8 4 1
21 4 8 1 2 1 1 2 2 1 1 4 8 2 8 2 1 2 1 2 2 8 2 4 1 8 2 1

The first column is a numerical index, the second indicates the number of periodic orbits which fall within the following schemata, and
the third column indicates the length of the cycles found. The length of the cycle for each individual automata in the network of 25 automata
is given.

5. From Discrete to Continuous Models

Though discrete dynamical systems are relatively
easy to compute, continuous descriptions of regulat-
ory networks in the biological sciences are undoubt-
edly a more appropriate mathematical framework.
Variables in biological systems are usually continuous
and there are few mechanisms for synchronous
updating of the state. There have been a number of
studies that have tried to relate the dynamics in logical
networks with associated continuous equations based
on them (Thomas & D’Ari, 1990; Thomas, 1991). Our
approach is based on (Glass & Kauffman, 1973;
Glass, 1975a; Glass, 1975b).

A natural generalization of eqn (1) to the
continuous domain is

ẋi =Bi(X(t))− xi, i=1, 2, . . ., N, (2)

where xi is a continuous variable, the time t is
continuous, and Bi is once again a Boolean function

that depends on the Boolean vector X(t). However,
the Boolean variable Xi, now depends on the value of
the continuous variable xi by the rule

Xi(t)=H(xi − ui),

where H is the Heaviside function H(u)=0 for uQ 0,
H(u)=1 for ur 0, and ui is a constant that we call
the threshold.

Starting at some initial condition, designate the first
time a variable crosses its threshold as t1. There will
be evolution until a second variable crosses its
thresholds at t2 and so forth. The set of threshold
crossing times is {t1, t2, . . ., tk}. Then by integrating
eqn (2), we find for each variable xi,

xi(t)= xi(tj)e−(t− tj ) + ai(X(t))

× (1− e−(t− tj )), tj Q tQ tj+1, (3)

where ai is either zero or one; the value at any time
depends on the current logical state X(t). Since the

T 4.
Two different periodic orbits from the same ten automata network

0 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0 1 1 0 0
1 1 1 1 0 0 0 1 0 0 0 1 0 1 0 1 0 1 0 1
0 1 0 0 1 1 1 1 0 0 1 1 1 1 1 0 1 0 0 0
0 1 1 1 1 0 0 0 0 1 0 1 0 0 1 0 0 1 0 0
1 1 0 1 0 0 1 1 0 0 0 1 1 1 0 1 1 1 0 1
0 1 1 0 1 1 0 1 0 0 1 1 0 1 1 0 0 0 0 0

3 1 2 3 3 3 2 3 1 3 3 1 2 3 3 3 2 3 1 3

The schemata at the bottom of the table give either the fixed state for each automaton,
or the cycle length for each automaton. Using this schema, both cycles are the same.
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current value of ai depends on the logical state, for
each variable, the solution is a continuous function
with discontinuities in the slope that arise as a
consequence of input variables crossing their respect-
ive thresholds. Thus, in eqn (2), each variable is
governed by a linear equation and is a piecewise
exponential function asymptotically approaching
either one or zero. In the N-dimensional phase space,
the trajectories are straight lines that have corners on
the thresholds. A variety of modifications of eqn (3)
have been studied. For example, Glass and
Pasternack (1978b) considered the case in which ai is
no longer restricted to be a Boolean variable, but
could be any real finite number whose sign was not
a function of Xi. Also, the Boolean functions can be
smoothed to make steep continuous nonlinear
functions (Glass & Kauffman, 1973; Glass &
Pasternack, 1978a; Thomas & D’Ari, 1990). Equation
(2) is a generalization of Hopfield models of neural
networks (Lewis & Glass, 1992) so that this class of
equations in its various incarnations is relevant in
different fields.

Here are two problems that appear to be of some
interest:

(i) Given some subset of eqn (2), e.g. all networks
with N variables and two inputs, what is the
expected numbers of basins of attraction?

(ii) Given a particular logical network (1), can
one predict the dynamics in the analogous
continuous eqn (2) without integrating it but
simply based on its logical structure?

Since in the continuous equations, in general only
one variable will change at a given time a natural
geometrical representation of the logical structure of
(1) and the flows in (2) can be achieved by a directed
graph on an N-dimensional hypercube (Glass,
1975a, b). For the case of no self-input, each edge on
the graph of the N-dimensional hypercube is directed
in a unique orientation. Two vertices on a graph are
called adjacent if they share a common edge.

The logical structure can be exploited to identify
stable and unstable steady states and limit cycles in N
dimensional networks (Glass & Pasternack, 1978b;
Plahte et al., 1994; Snoussi & Thomas, 1993; Mestl
et al., 1995). For example, a vertex in the directed
graph in which all edges from adjacent vertices are
directed towards it is associated with a stable steady
state in both the discrete (1) and continuous (2)
representations of the same network. Similarly, cycles
on the directed graph representation of a given logical
network are stable (or unstable) if all (no) adjacent
vertices are directed towards the cycle. In some

instances stable limit cycles can be predicted in the
continuous eqn (2) based solely on the presence of a
stable cycle in the discrete system and in the
associated directed graph (Glass & Pasternack,
1978b; Mestl et al., 1995). These observations
enable one to generate a method to classify two
different networks. Two networks are in the same
equivalence class if their directed graph represen-
tations on the N-dimensional hypercube are equival-
ent under a symmetry operation of the N-dimensional
hypercube. For example, for N=3, there are 112
different classes which are enumerated in Glass
(1975b). However, these methods have not yet been
extended to higher dimensions and other means to
count and classify the attractors in high dimensions
are needed.

Consider a network in high dimensions. Provided
(i) the system can be decomposed into subnetworks,
(ii) there is at most a single stable limit cycle in only
one of the subnetworks, and (iii) the remaining
subnetworks only display steady states, the discus-
sions concerning the combinatorial structure of the
network presented above applies. In these cases the
number of stable attractors in the continuous systems
will be of the same order as the number of attractors
in the discrete analogue. However, in continuous
systems it is also possible to find aperiodic dynamics
as a consequence of either quasi-periodicity (the
presence of two incommensurate cycles in a single
system) or deterministic chaos. Since eqn (2) can
display both stable limit cycles (Glass & Pasternack,
1978b) and deterministic chaos (Sompolinsky et al.,
1988; Lewis & Glass, 1992; Mestl et al., 1996), in high
dimensional systems it is possible to find combi-
nations of quasi-periodicity and chaos in specific
examples. We illustrate some of the issues that arise
in systems that have aperiodic dynamics in two
examples.

5.1.     -



We now consider the dynamics of a system of
continuous differential equations which models a
regulatory network with threshold functions that are
steep, but are not step functions. The logical network
and the associated differential equation were analysed
in previous work (Glass & Pasternack, 1978a, b). The
system has been chosen to illustrate some of the
combinatorial notions in the preceding sections, and
to illustrate complications that arise when trying to
draw conclusions concerning the numbers of attrac-
tors in continuous systems based on an analysis of the
associated discrete systems.
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Define

f(x,u,n)=
xn

xn + un

f(x,u,n)=
un

xn + un (4)

Consider the ordinary differential equation with nine
variables

ẋ1 = f(x2,0.5,6)− x1

ẋ2 = f(x1,0.5,6)− x2

ẋ3 = f(x4,0.5,6)− x3

ẋ4 = f(x5,0.5,6)− x4

ẋ5 = f(x3,0.5,6)− x5

ẋ6 = f(x7,0.25,4)f(x8,0.25,4)− x6

ẋ7 = f(x8,0.25,4)f(x9,0.25,4)− x7

ẋ8 = f(x9,0.25,4)f(x6,0.25,4)− x8

ẋ9 = f(x60.25,4)f(x7,0.25,4)− x9 (5)

This differential equation is chosen so that there are
really three distinct subnetworks. Elements 1 and 2
mutually inhibit each other to give dynamics with two
stable steady states; elements 3, 4 and 5 form a
feedback inhibition loop that gives a stable limit cycle
oscillation with a period of about 3.61, and elements
6, 7, 8, and 9 form an inhibitory network that gives
a stable limit cycle oscillation with a period of about
6.1 (Glass & Pasternack, 1978a). Since the periods of
the oscillations in the two different oscillating
subgroups are not commensurate, the dynamics are
quasi-periodic.

To illustrate the dynamics in this system we assume
that we do not have access to the state of all the
variables, but only the quantity x1 + x3 + x6 shown in
Fig. 8, and display this quantity for two different
initial equations. There are two different asymptotic
behaviors which result in an offset in the mean value
of this fluctuation.

The best way to think of this system is in a com-
binatorial manner. There are three subnetworks—one
has two stable steady states and each of the other two
have one stable limit cycle. Consequently, the number
of stable attractors is 2×1×1=2.

This result is different from the discrete description
of a system with the same logical structure. For the
current case, the Boolean equation of the form of
eqn (1) corresponding to eqn (5) is

X1 = f(X2)

X2 = f(X1)

F. 8. x1 + x3 + x6 for eqn (5) starting from two different initial
conditions. In both time series there is quasiperiodic behavior. The
two time traces are shifted due to the difference in the steady-state
values of x1.

X3 = f(X4)

X4 = f(X5)

X5 = f(X3)

X6 = f(X7)f(X8)

X7 = f(X8)f(X9)

X8 = f(X9)f(X6)

X9 = f(X6)f(X7) (6)

where f represents tautology, f represents contradic-
tion, and the variables are Boolean variables.

The three subnetworks will show the following
behaviors.

(1) The subnetwork composed of elements 1 and 2
has 3 different behaviors: Steady states (10),(01)
and the 2-cycle (004114004. . .).

(2) The subnetwork composed of elements 3,4,5
has 2 different behaviors: the 2-cycle
(110400141104. . .), and the 6-cycle
(0004100410141114011401040004. . .).

(3) The subnetwork composed of elements 6,7,8,9
has 2 different behaviors: the 2-cycle
(000041111400004. . .) and the 8-cycle
(10004 11004 01004 01104 00104 00114
000141001410004. . .).

As with the Boolean networks discussed earlier, the
three independent cycles in this example may have an
arbitrarily chosen phase with respect to the others.
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The total number of different cycles that are found
using the methods discussed in Section 2 is 32. This
number arises from different behaviors that can occur
in each subnetwork, being combined with all possible
phases.

Thus, in this example, there is a striking difference
between the number of different attractors that are
found in the discrete system and in the continuous
system.

Part of this discrepancy arises from the introduc-
tion of unstable cycles in the Boolean network
introduced by the synchronous updating. An unstable
cycle can be defined based on the associated directed
graph on the N-dimensional hypercube represen-
tation, see for example (Glass & Pasternack, 1978b).
For an unstable cycle, transitions between a state on
the cycle and all its adjacent states are directed from
the cycle to its adjacent states. Thus, in this context
the 2-cycles mentioned above 004114004. . .,
(110400141104. . .), and (000041111400004. . .)
are all unstable cycles. An unstable cycle as defined
here would in general not be found in with
asynchronous updating.

The network in this section consisted of three
independent subnetworks. Randomly generated con-
nectivities will generate such special connection
geometries, but with low probability. The frequency
of generating subnetworks in randomly constructed
networks with different construction rules and in real
biological networks is not well understood.

5.2.     

Deterministic chaos is found in continuous
equations based on eqn (2) (Lewis & Glass, 1992;
Mestl et al., 1996). Unpublished studies (LG) show
that in randomly generated networks, chaos is
comparatively infrequent in two input networks with
no self-input of moderate dimension. The frequency
of networks that give chaos increases with the size of
the network, but is still less than about 2% for
networks of dimension 100. The presence of chaotic
dynamics adds further difficulties in the counting of
the number of attractors. To illustrate problems that
arise, we consider a randomly generated network with
50 automata that display chaotic dynamics. More
details concerning the network is given in the
Appendix.

In this one network, our results indicate the
presence of two attractors. In Fig. 9 the projection of
the state space on two variables corresponding to
network elements 4 and 22 are shown for a periodic
orbit and a chaotic attractor respectively. The
periodic orbit was followed for several hundred

F. 9. (a) Periodic and (b) chaotic attractors in the 50 element
network given in the Appendix. The projection of the tracetory in
the x4 and x22 plane is shown. The periodic orbit was followed for
several hundred cycles. The chaotic trajectory was followed for
256×104 transitions, of which 104 are plotted.

cycles. The chaotic trajectory was followed for
256×104 threshold crossings and the dynamics were
sensitive to small (10−3) displacements from arbitrary
points on the attractor.

Despite the clear distinction between periodic
and chaotic behavior, by other measures the two
attractors are quite similar. These attractors may be
represented using a schema similar to those utilized in
Section 4. In Fig. 10, the elements which are fixed are
represented at the base of the graph in their respective
states, zero and one. Elements which are not fixed are
represented by an asterisk (*) at the bottom of the
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F. 10. Schema for representing the chaotic and periodic dynamics in a continuous network in Fig. 9. Each element is either fixed or
varying. If an element is fixed, its fixed value is represented at the bottom of the table. If the element is varying, the symbol * is given
at the bottom of the graph. For the varying elements, the number of the transitions (from one to zero or from zero to one) made by the
element is divided by the total number of transitions is given. Based on simulations with 256×104 transitions. Key: T2, Periodic; +,
Chaotic.

graph. For elements that are varying, the relative
transition frequencies are given. This is determined by
counting the number of threshold crossings for a
given element in the network and dividing that
number by the total number of threhold crossings.
The plots for the two attractors are overlayed. The
elements which are fixed in the network are identical
in both attractors. The relative transition frequencies
are similar in both the periodic and chaotic systems.
In addition, both periodic and chaotic attractors
share symmetries, at least in the variables selected
for the projection. Thus, both the state space
projections and transition density histograms portray
a similar global structure for both attractors. This
schema represents a novel method for classifying
attractors in continuous systems, and should be useful
in analysing systems in which both periodic and
chaotic dynamics can both be present in a single
network.

6. Discussion

This work has considered problems associated with
counting the number of attractors in dynamical
systems. In discrete Boolean networks with syn-
chronous updating, the criteria for deciding if two

behaviors are the same or different are precise.
However, some of the cycles may be unstable; others
that are technically different may still be equivalent in
many aspects (e.g. the cycles of each element
considered separately may be identical). Our compari-
son of continuous and discrete dynamics for one
connectivity underscored these problems by showing
that the two stable quasi-periodic attractors in the
continuous system represented 32 different asymp-
totic periodic behaviors in the discrete case.

There are a number of factors that lead to
differences between the numbers of attractors in
Boolean equations and in continuous equations with
the same logical structure. Most significant is that the
synchronous updating in the discrete system intro-
duces artifactual attractors not found in the
continuous system. However, the issues are subtle.
Cycles on the directed graph generated from a given
logical equation can be associated with steady states,
stable or unstable limit cycles, or chaos in an
associated differential equation. In a recent analysis of
a continuous equation in four dimensions, there were
two stable attractors—a steady state and a chaotic
attractor, whereas in the associated Boolean network
there was a single periodic attractor (Mestl et al.,
1996). As well, there is a possibility for multiple
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steady states in continuous equations with self-
input that do not have corresponding steady states
in the discrete equations (Snoussi & Thomas,
1993).

Despite these considerations, our analyses indicate
that there are deep connections between the dynamics
in a discrete system and its continuous analogues. We
believe that the key to the correspondences lies in
learning how to interpret the N-dimensional directed
graph which is related to both the discrete and
continuous descriptions. Several correspondences
have been described with respect to the identification
of steady states and limit cycles, but identification of
chaotic dynamics remains an open question.
Although we have still only carried through limited
computations in high-dimensional phase space, it is
clear that for two-input continuous networks, each
network displays a limited number of attractors.
Thus, Kauffman’s observations of a limited number
of attractors of discrete synchronous random Boolean
nets with two-inputs, appears to hold for two-input
continuous networks. We conjecture that the
numbers of attractors in the discrete and continuous
equations scales in similar fashion assuming the same
restrictions with respect to connectivity and input
functions.

We have utilized two different schemata to classify
the asymptotic behaviors of Boolean networks. In
both classification schemes, a large number of
attractors could be assigned to a much smaller
number of classes. Although these schemata obscure
some important aspects of the dynamics, they
nevertheless give equivalence relationships for differ-
ent attractors that can be useful for developing
taxonomic classifications between the different attrac-
tors (Fig. 7). The most informative schema to classify
attractors of a discrete network is the schema in
which the steady state or the cycle length for each
element is explicitly given, e.g. Table 3. Although this
schema still includes unstable dynamics, it is
nevertheless comparable to the schema in continuous
systems in which the steady state (for fixed elements)
or the transition density for varying elements is
explictly given (e.g. Fig. 10). The schema in Fig. 10
can classify and compare attractors in continu-
ous equations that display quasiperiodicity and
deterministic chaos.

The current work is related to previous attempts to
classify dynamics in logical and continuous networks.
Wolfram (1984) has given a classification that
identifies discrete cellular automata networks into one
of four classes—fixed, periodic, chaotic, and complex.
This terminology used by Wolfram (and many others
who primarily study discrete networks) is not

consistent with usage in other areas of nonlinear
dynamics. In the Wolfram definition, ‘‘chaos’’ can
occur in a system with a discrete phase space whereas
in continuous systems, aperiodicity is always a
necessary condition for chaotic dynamics.

There have been other previous approaches to
characterize the attractors and in dynamical systems.
One involves definition of an energy. This is
particularly useful for spin glasses and neural
networks that evolve to a steady state. The energy can
be used to generate trees relating the different basins
of attraction (Rammal et al., 1986; Mezard et al.,
1987). It is not clear if a quantity comparable to the
‘‘energy’’ will be useful for networks which show
complex fluctuations in time such as we have here.
However, the average value of the Boolean variables
(the ‘‘magnetization’’) has been used to characterize
the transition from ordered to disordered behavior as
a function of changes in the rules used to construct
the network (Derrida, 1987a).

Determination of the complete structure of the
basins of attraction of both cellular automata and
random Boolean networks have been carried out by
Wuensche who used inverse mappings to generate the
evolution of states throughout state space (Wuensche
& Lesser, 1992; Wuensche, 1993). However, determi-
nation of the complete structure of the basin of
attraction is necessarily limited to comparatively
small networks.

The combinatoric basis for comparing behaviors
may be applicable in various areas in biology. The
taxonomic trees that emerge from our analysis may
have correspondences with classifications of cell
types and may be related to the differentiation
pathways of different cell types (Kauffman, 1993).
Cognitive processes such as the formation of a
visual image or the recollection of a memory may
depend on generation of diversity in a combinatorial
manner (Weisbuch, 1990). On a larger scale, the
combination of relatively simple behaviors to form
many more complicated ones may be one aspect of
biological evolution. Thus, combinatoric mechan-
isms may underly both the function and evolution
of a system.

In conclusion, a simple count of the number of
basins of attraction offers limited insight into the
dynamics of many high-dimensional dynamical
systems. What is also required is a notion of
relatedness, between basins. We have proposed
classification methods that can be used for discrete
and continuous high dimensional networks. The
dynamic diversity observed in nature might best be
analysed by considering the combinatorial generation
of complex dynamics.
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APPENDIX

The connectivity and transition rules for the
network which generated the chaotic dynamics of
Section 5.2 is listed in Table A1. In integrating
the equation, the flow in each orthant is directed
toward a given vertex of a 50-dimensional hypercube.

The hypercube is centered at the origin with edge
length of 2. Thus, at any time, each variable is
exponentially increasing towards +1, or exponen-
tially decreasing towards −1, see Glass & Pasternack
(1978b) for more details about integration of these
equations.

T A1.
The network which generated the periodic chaotic dynamics of Section 5.2 is listed
Element Inputs Transition rule fA = f(xB,xC)
A B C 00 01 10 11

1 23 44 1 0 0 0
2 15 46 1 0 1 1
3 8 18 1 1 1 0
4 15 22 1 0 0 1
5 2 37 0 0 0 1
6 8 29 0 0 1 1
7 30 13 0 0 1 0
8 20 41 0 1 0 0
9 48 47 1 1 1 0

10 3 24 1 0 1 1
11 49 41 0 0 1 0
12 35 15 0 1 1 0
13 22 42 0 1 0 1
14 39 40 0 0 0 0
15 42 18 0 1 1 0
16 33 29 0 0 1 1
17 12 34 1 0 1 1
18 36 16 1 0 1 1
19 47 10 0 0 1 0
20 27 12 1 0 0 1
21 24 26 0 1 0 0
22 23 36 0 1 1 0
23 31 18 1 0 0 1
24 3 22 0 1 0 1
25 3 43 0 1 0 1
26 43 18 0 1 0 0
27 9 39 0 0 0 1
28 10 34 1 1 0 1
29 4 17 1 1 0 0
30 15 34 1 1 0 0
31 49 6 1 1 1 0
32 50 8 1 0 0 1
33 28 11 0 1 0 1
34 35 17 0 0 0 0
35 21 19 1 0 1 0
36 39 47 0 0 1 1
37 4 39 1 1 0 0
38 48 10 1 1 0 1
39 35 25 0 0 0 1
40 42 45 0 1 0 1
41 5 1 0 1 0 1
42 29 26 1 1 0 0
43 27 3 1 1 1 0
44 35 34 1 1 1 1
45 49 41 1 0 0 0
46 29 8 1 1 1 0
47 2 22 0 0 0 0
48 22 35 1 1 1 1
49 43 36 1 1 0 0
50 12 31 1 0 1 1

The transition rules and connectivity were randomly generated, with the restrictions that all
automata had two inputs and no self-inputs. The first column indexes the automata of the network
(A), followed by the indices for the two inputs (B,C) in the second and third columns. The transition
rule for A as a function of the states of input B and C appears in the last four columns, each of
which is headed with the state of the inputs (i.e. 01 implies that xB =0, xC =1.)


