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Continuity of Resetting a Pacemaker in an Excitable Medium∗

Bart�lomiej Borek†, Leon Glass†, and Bart E. Oldeman†

Abstract. Pacemakers in excitable media generate waves that propagate outward from the pacemaker. Such
waves of excitation are well known in biological and chemical systems such as nerves, the heart,
and the Belousov–Zhabotinsky reaction. Stimuli delivered at a distant site from the pacemaker can
reset the pacemaker, leading to a change in the timing of the pacemaker. The relation between
stimulus timing and resultant resetting of the pacemaker is captured by phase resetting curves. The
continuity of resetting curves has been investigated in both experiments and numerical models. We
present theoretical results discussing conditions for continuity of resetting curves as the amplitude
and phase of the stimulus varies. We also use continuation and shooting methods to analyze the
continuity of resetting curves in simple mathematical models of cardiac and neural activity. Under
continuous changes of stimulus parameters, resetting curves will be continuous unless a stimulus leads
to dynamics that fall outside the basin of attraction of the pacemaker-driven excitable medium.
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1. Introduction. Biological oscillations are essential to life and underlie key physiologi-
cal functions from the beating of the heart to reproductive cycles. In order to understand
the interactions of oscillations with the environment and with each other, experimentalists
have determined the effects of single or repeated perturbation on oscillations. Concurrently,
there has been theoretical analysis of the fundamental properties of biological oscillations and
their response to perturbation. A geometric perspective was developed by Winfree, who con-
sidered the response of a limit-cycle oscillation in ordinary differential equations to stimuli
delivered at various phases of the oscillation [39, 40]. Winfree posed several conjectures re-
lated to phase resetting that were subsequently examined from a topological perspective by
Guckenheimer [16].

Winfree defines a phase transition curve that gives the phase of an oscillation subsequent
to a perturbation delivered at a phase ϕ (for formal definitions see section 2). Provided
that the state point following the perturbation remains in the basin of attraction of the limit
cycle for a stimulus delivered at any phase of the cycle, the phase transition curve must be a
continuous function that maps the unit circle onto itself. This Continuity Theorem is true for
oscillations in ordinary differential equations [16] and partial differential equations [12].
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Although examination of the Continuity Theorem has not been a focus of experimental
studies, apparent discontinuities have been observed [40, 18]. There are at least two poten-
tially different theoretical mechanisms that may lead to discontinuities in phase transition
curves [15]: (i) Phase transition curves can be continuous but very steep in appropriate theo-
retical models formulated as differential equations; (ii) for some phase, or range of phases, a
perturbation may displace the state point outside of the basin of attraction of the limit cycle,
so that the continuity theorem no longer holds.

Krogh-Madsen et al. found an example of an apparent discontinuity, in a numerical study of
resetting in an ionic model of cardiac cells [26]. By using continuation methods with AUTO [9]
for stimulus phase and amplitude parameters close to those for which there is a sharp change
in the phase transition curve, they show that all perturbed trajectories stay in the basin of
attraction of the limit cycle so that the resetting curve is steep but not discontinuous. In a real
biological system, the phase transition curve would be so steep that to resolve the continuity
might demand voltage resolutions smaller than the voltage changes induced by the opening
or closing of a single channel. This could provide a mechanism for experimental observations
of discontinuous phase resetting [18].

A numerical study of resetting a circulating pulse in a one-dimensional ring provided
an example in which the system was shifted outside its basin of attraction by appropriately
timed stimuli [13]. In this example, carrying out resetting with a single stimulus at low
temporal resolution gives rise to discontinuous phase transition curves. However, by probing
the phases finely near the discontinuous resetting in a range of phases called the vulnerable
period [38], stimuli were identified which led to a single retrograde wave. When this retrograde
wave collided with the anterograde wave, both waves were annihilated, thereby shifting the
dynamics outside of the basin of attraction of the original dynamics. However, additional
studies of resetting in a related model, in which re-entry occurs on a one-dimensional ring
with a tail, showed discontinuous resetting even though there was no evidence for stimuli
which would lead to annihilation of the re-entry [36, 14, 25]. Similarly, numerical results
on the resetting of a pacemaker embedded in a two-dimensional excitable medium appeared
to lead to discontinuous resetting curves [19], even though no stimuli led to dynamics lying
outside the basin of attraction of the pacemaker. These findings are in apparent contradiction
to the theory. In the following we show that examination of continuity of resetting curves
using shooting methods may be inadequate due to very steep changes in resetting behavior
as a function of stimulus parameters.

Continuation provides an alternative to shooting to investigate resetting curves [26, 6,
29]. Continuation methods are particularly suitable for investigating resetting in continuous
ordinary or partial differential equations in settings where there are strong divergences between
trajectories arising from neighboring initial conditions. In the current context, we change
either the phase or the amplitude of a stimulus and apply continuation methods in two different
fashions originally utilized to compute manifolds [24]. (i) Fixed integration time: we carry
out integration for a fixed length of time as the initial condition varies. By continuity of
the differential equations, the endpoint of the integration and the trajectories will change
continuously as the initial condition varies [16]. (ii) Constrained endpoint: we carry out the
integration using a boundary condition criterion in which we track the trajectories until the
state point returns to the vicinity of a point on the stable limit cycle attractor. In this case,
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if, as a parameter changes, some initial conditions are not in the basin of attraction of the
limit cycle attractor, then continuation methods will fail.

Phase transition curves were first directly computed through continuation by using a
fixed integration time of 3T0, where T0 is the period of the cycle, in [6]. Our approach extends
this method so that it can be applied to discontinuous perturbations and partial differential
equations and uses a constrained endpoint where desirable.

In the following, we show that the use of continuation methods enables us to find complex
dynamics, including one-dimensional spiral waves [23, 11, 7] over tiny ranges of parameter
space. The presence of such behaviors may depend sensitively on parameters of the under-
lying equations as well as the discretization of the domain. Although dynamics occurring
over such small regions of parameter space would normally not be considered important for
the understanding of real physical or biological systems, the strong analogy between these
dynamics and echo waves observed experimentally in biological preparations of Purkinje fiber
from mammalian heart [1, 3] suggest a possible implication of these behaviors in situations of
reduced cardiac conductivity such as might occur as a result of heart disease.

The plan of the paper is as follows. In section 2 we introduce essential definitions and
terminology for the resetting of limit cycle oscillations. As these topics have been discussed
at length elsewhere [16, 19, 28, 12, 14], we provide key ideas, and readers should consult
the references for more detailed discussions. In section 3 we apply continuation methods
to study resetting of an equation in which the Van der Pol oscillator has been modified so
that there are three equilibria: a saddle point and two unstable nodes. This illustrates the
way the continuation methods can be used to identify initial conditions that lie outside the
basin of attraction of the limit cycle oscillation. In section 4, we extend these methods to a
case of a pacemaker embedded in a one-dimensional excitable medium modeled by a modi-
fied FitzHugh–Nagumo equation. Since cardiac tissue is composed of discrete cells, it is not
necessarily appropriate to think of cardiac tissue as a continuous medium [21, 22], and we con-
sider different discretizations of the medium. We show that, depending on the discretization,
continuation [9] can reveal very different transient dynamics following a stimulus at a critical
phase of the cycle. In particular, we show the presence of one-dimensional spiral waves for
coarse discretizations similar to those described recently in the Morris–Lecar equations [7].
Since the one-dimensional spiral provides a mechanism through which discontinuous phase
transition curves are possible, in section 5 we use continuation for the Morris–Lecar equations
in modified equations with a localized pacemaker. This analysis allows us to confirm and ex-
tend the earlier results [7] and also to identify a new type of dynamics in which a pacemaker is
entrained to a one-dimensional spiral wave. We conclude with a brief discussion of the results.

2. Mathematical background. The following technical material is needed for establish-
ing continuity properties of phase resetting following perturbation. The basic formulation
is adopted from earlier papers [16, 19, 28, 12, 14], but we present a new result, the Conti-
nuity Lemma, which asserts continuity of resetting curves over a range of different types of
perturbation.

Assume a dynamical system with a stable limit cycle Γ with period T0. The limit cycle
is assumed to be a hyperbolic attractor. We specify a marker event on the limit cycle which
we define as phase 0. For example, for excitable tissue the marker event is usually taken at
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the onset of the excitation. As time progresses the state point traces a trajectory X(t) ∈ Γ in
state space. If the marker event occurs at time t = t0, then in the absence of perturbations we
define the phase of the oscillation as ϕ(t) = (t− t0)/T0 (mod 1). Each point on the trajectory
X(t) ∈ Γ is also identified by the phase ϕ(X(t)) = (t − t0)/T0 (mod 1). Consequently all
points on Γ can be identified with a phase.

The basin of attraction of Γ, designated B(Γ), corresponds to all states that approach Γ in
the limit t → ∞. B(Γ) is foliated by hypersurfaces called isochrons. In the asymptotic limit
t → ∞, all states on an isochron asymptotically approach the same state. Consequently, each
isochron is identified by the phase defining the unique state in Γ lying on the isochron.

To help fix ideas, consider a two-dimensional ordinary differential equation with a single
unstable steady state and stable limit cycle that is globally attracting for all points except
the steady state. The isochrons are curve segments that cut transversely across the limit
cycle. All isochrons approach the neighborhood of the steady state as shown in Figure 1.
A point P ∈ B(Γ), P /∈ Γ, has the latent phase ϕl(P ) defined as the phase of the isochron
containing P . If P ∈ Γ, then ϕl(P ) = ϕ(P ). For partial differential equations, all definitions
extend naturally, but a point P on an isochron represents a function defining the values of all
variables at all points in space.

ϕ = 0.8

ϕ = 0

ϕ = 0.6

ϕ = 0.2

ϕ = 0.4

Γ

Figure 1. The isochrons are the red line segments that transversally intersect the attracting limit cycle Γ
for different phases ϕ. In this schematic figure the velocity along the limit cycle is assumed to be uniform, so
the phases are uniformly distributed.

We now consider a state X0 ∈ B(Γ) and a continuous perturbation, Ψ(μ), depending on a
variable μ. In traditional studies of phase resetting, X0+Ψ(μ) represents the locus of states in
phase space generated by delivering a perturbation for all points on (at all phases of) the cycle.
However, X0 + Ψ(μ) could equally be generated by other perturbations including changing
the amplitude and the location of the stimulus. As long as the stimulation parameters are
changed continuously, the following Continuity Lemma holds.

Lemma 2.1 (Continuity Lemma). If X0 + Ψ(μ) ∈ B(Γ) for all μ, then ϕl(X0 + Ψ(μ)) is
continuous.

Although the Continuity Lemma seems obvious, we are not aware of any previous state-
ment of this result. It follows from the continuous dependence of solution curves in differential
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equations on initial conditions [17] and the continuity of the phases of isochrons [16, 12].
In the particular case where X0+Ψ(μ) is generated by delivering a stimulus to a limit cycle

oscillation at all phases of the oscillation, we have the Continuity Theorem, and ϕl(X0+Ψ(μ))
is a continuous map of the circle into itself [16, 12]. ϕl(X0 + Ψ(μ)) is often called the phase
transition curve. In this case, the states defined by X0 + Ψ(μ) for all μ define the image of
the original limit cycle Γ following a perturbation delivered at all phases of the cycle. This
is often called the shifted cycle. In the current context, if we perturb a limit cycle oscillation
by delivering stimuli of varying amplitudes (rather than of varying phases), then we need the
Continuity Lemma in order to assert continuity of the phase transition curve delivered as a
function of amplitude and provided the stimulus does not lead to a transition outside of the
basin of attraction of the limit cycle.

3. Computing the phase transition curve using continuation in an ordinary differential
equation. As a first example, we consider a system of ordinary differential equations based
on the Van der Pol oscillator, which has been modified so that the single unstable equilibrium
is replaced by a saddle and two unstable foci:

ẋ =
1

ε
(−y − x3 + a2x),

ẏ = ε(bx− y),
(3.1)

where a =
√
2, b = 0.1, and ε = 0.1.

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

x

−1.0

−0.5

0.0

0.5

1.0

y

weak unstable manifold

source

saddle

source

Figure 2. Phase space for (3.1) with a =
√
2, b = 0.1, and ε = 0.1. There are two unstable nodes, a saddle

point, and a stable limit cycle oscillation.

The phase space for this system can be seen in Figure 2. Most initial conditions in this
system give rise to orbits that very quickly converge to a stable limit cycle. However, if the
shifted cycle crosses the stable manifold of the saddle point, then there is a point on the shifted



CONTINUITY OF RESETTING A PACEMAKER 1507

cycle that lies outside of the basin of attraction of the limit cycle, and the phase transition
curve will be discontinuous. Further, in some cases the shifted cycle can cross the canard
trajectory which is formed by the weak unstable manifold, that is, a trajectory tangent to
the weak unstable eigenvector of a source. In this case, the shifted cycle will lie entirely in
the basin of attraction of the limit cycle, but points near the canard trajectory will take a
long time to approach the limit cycle. We illustrate this computation using both continuation
methods—fixed integration time and constrained endpoint. For each of these methods we
consider both the situation in which the shifted cycle lies entirely in the basin of attraction
of the limit cycle and the situation in which the shifted cycle intersects the stable manifold of
the saddle point.

We use standard boundary value problem continuation and bifurcation software in AUTO
[9] to continue orbit segments as they depend on parameters. AUTO uses Gauss–Legendre
collocation; the orbits are continued as they depend on parameters “as a whole” instead of
using numerical integration. This approach is robust against sensitive dependence on initial
conditions and was described in [24] and directly applied to compute phase transition curves
with a continuous perturbation in [6]. A similar technique has recently been used to compute
isochrons for the FitzHugh–Nagumo equation [29].

To obtain the phase transition curve involving a discrete perturbation numerically using
continuation techniques, the trajectory is split into two parts, one part (xΓ(t), yΓ(t)), t ∈
[0, ϕT0], before the stimulus, and one part (xs(t), ys(t)), t ∈ [ϕT0, T1], after the stimulus,
where T1 denotes the period of the perturbed cycle. These two trajectories are then followed
simultaneously by effectively considering a four-dimensional system in which the first two
dimensions contain the first part and the last two dimensions the second part.

A boundary value problem then models the cycle and the discrete perturbation, where
the system of differential equations is given by

ẋΓ =
1

ε
(−yΓ − x3Γ + a2xΓ),

ẏΓ = ε(bxΓ − yΓ),

ẋs =
1

ε
(−ys − x3s + a2xs),

ẏs = ε(bxs − ys),

and the boundary conditions are given by

xΓ(0) = x0,

yΓ(0) = y0,

xs(ϕT0) = xΓ(ϕT0) + Δx,

ys(ϕT0) = yΓ(ϕT0),

ys(T1) = y1.

Here (x0, y0) = (1.41589, 0) ∈ Γ denotes the fixed starting point on the cycle, T0 = 22.4869
the period of the cycle, and y1 the y-coordinate of the endpoint, which is allowed to vary for
intermediate continuation steps that do not compute the phase transition curve but is fixed
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as y1 = 0 otherwise. Note that for Δx = 0 there is no perturbation, and hence T0 = T1, but
ϕ can still vary.

The cycle is extremely attracting, with the magnitude of the nontrivial Floquet multiplier
less than 10−80, so constraining the y-coordinate of the endpoint for positive x is sufficient for
the endpoint to be close to the starting point (x0, y0). While continuing this system in ϕ, the
phase transition curve can be monitored by computing g(ϕ) = ϕ+ (T0 − T1(ϕ))/T0.

To be able to fit the boundary value problem into AUTO, both segments must be scaled
and translated in time from the intervals [0, ϕT0] and [ϕT0, T1] to the interval [0, 1]. Such
transformations give rise to the system of differential equations

ẋΓ = ϕT0
1

ε
(−yΓ − x3Γ + a2xΓ),

ẏΓ = ϕT0ε(bxΓ − yΓ),

ẋs = (T1 − ϕT0)
1

ε
(−ys − x3s + a2xs),

ẏs = (T1 − ϕT0)ε(bxs − ys),

subject to the boundary conditions

0 = xΓ(0) − x0,

0 = yΓ(0)− y0,

0 = xs(0)− xΓ(1) −Δx,

0 = ys(0) − yΓ(1),

0 = ys(1) − y1.

The continuation strategy is then as follows.
1. Set (xΓ(t), yΓ(t)) = (x0, y0) and (xs(t), ys(t)) = (x0 + Δx, y0) for all t and y1 = ϕ =

T1 = 0.
2. Continue in T1 and y1 until y1 = 0 for the third time. This effectively grows the orbit

(xs(t), ys(t)) from the point (x0+Δx, y0) corresponding to the initial stimulus applied
at (x0, y0) until it returns close to the stimulus point.

3. Continue in ϕ and T1 until ϕ = 1, constraining the endpoint so that ys(1)) = y1 = 0.
The orbit segment (xΓ(t), yΓ(t)) before the stimulus is applied now grows from the
point (x0, y0), and the stimulus point (xΓ(1), yΓ(1)) corresponds to and varies with
the endpoint of this first part. The phase transition curve can be directly computed.
This strategy works only if the phase transition curve is continuous; if the curve is
discontinuous, and the segment (xs(t), ys(t)) crosses a saddle equilibrium point, then
T1 will tend to infinity at a certain phase. Then, we must split this step into three
parts:
(a) Continue in ϕ and T1 until T1 = Tmax. Here Tmax must be sufficiently high to

ascertain the discontinuity.
(b) Continue in ϕ and y1, fixing the integration time T1, until y1 = 0 again, to reach

the other side of the saddle. During this intermediate calculation, the phase
transition curve is not well defined.
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Figure 3. Phase space as in Figure 2 with shifted orbits and critical trajectories added. The shifted cycle
is perturbed by Δx = 1.9. The hatched trajectory makes a jump of Δx = 1.9 and continues as the thick black
trajectory along the weak unstable manifold for a long time in a canard-like trajectory until converging back to
the cycle. The dotted gray cycle denotes the shifted cycle.
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Figure 4. Phase space as in Figure 3 where the shifted cycle is now perturbed by Δx = 1.7. The hatched
trajectory makes a jump of Δx = 1.7 and continues as the thick black curve along the stable manifold of
the saddle for a long time before converging back to the cycle, either moving to the left (panel (a), before the
discontinuity) or moving to the right (panel (b), after the discontinuity).

(c) For the remainder of the continuation, proceed as in step 3 above.

The above procedure was applied for two values of Δx: 1.9 and 1.7. For Δx = 1.9,
the phase transition curve is continuous. However, the perturbed cycle can follow the weak
unstable manifold of the saddle for a long time in a canard-like trajectory, giving rise to a
transient up to T1 = 6.2971T0. For Δx = 1.7, the saddle interferes, and we use a value of
Tmax = 7T0. The structure of these extreme perturbed trajectories can be seen in Figures 3
and 4.
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Figure 5. (a) Plot of the phase transition curve for (3.1) using the constrained end state method for a
perturbation of Δx = 1.9, which leaves the state point always in the basin of attraction of the limit cycle. The
horizontal axis denotes the phase at which the perturbation occurs. The red dashed line shows the apparent
discontinuity, that is, the part that was found using continuation but not using shooting techniques. (b) The
same curve as (a), but now the horizontal axis denotes the continuation step. This shows the fine structure of
the resetting.
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Figure 6. (a) Plot of the phase transition curve for (3.1) for a perturbation of Δx = 1.7, as in Figure 5(a).
Here a combination of the constrained end state and fixed time methods was used. The state point is moved
out of the basin of attraction of the limit cycle to the stable manifold of the saddle. (b) The horizontal axis
denotes the continuation step, as in Figure 5(b); the gap corresponds to the fixed time continuation interval
during which the phase transition curve cannot be obtained.

Note that the maximum T1 = 6.2971T0 is a limit point in the continuation procedure,
which could be continued in the three parameters ϕ, T1, and Δx. That would allow us to
compute the boundary of the continuity region of the phase resetting curve.

The resulting phase transition curves are shown in Figures 5(a) and 6(a). Note the striking
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similarity. If, instead of continuation, a shooting method were used, the figures would look
qualitatively the same (the apparently vertical red dashed line at the critical phase would be
missing), and one could easily conclude that a discontinuity appears in both cases. However,
using continuation the difference of the orbit in both phase space and parameter space is taken
into account.

To be more specific, given an existing orbit u at parameter values p, and a continuation
direction (u′,p′), the next orbit for step size Δs in the continuation is predicted to be at
(u,p)new = (u,p) +Δs(u′,p′) and then corrected using Newton iterations in a process called
pseudo-arclength continuation. A new value for the continuation direction can then be com-
puted by subtracting the corrected new and old orbits. The step size is automatically adapted
depending on the number of Newton iterations necessary to converge and is allowed to vary
between the two specified values Δsmin and Δsmax.

Hence, to analyze the complete phase transition curve, we also provide plots versus the
continuation step number. Even though the continuation step size may be adapted during
continuation and the relationship between ϕ and the step is highly nonlinear, the qualitative
structure of the phase transition curve immediately becomes clear. Such plots are provided
in Figures 5(b) and 6(b). The gap in Figure 6(b) corresponds to the discontinuity, where the
number of continuation steps in the gap corresponds to step 3(b) described above.

4. Resetting a pacemaker in an excitable medium. In this section we consider reset-
ting a pacemaker embedded in an excitable medium with one spatial dimension. Pulses of
activation generated at the pacemaker site propagate through the surrounding medium, re-
sulting in a periodic train of one-dimensional expanding target patterns emanating from the
pacemaker site. Although it is usual to assume that cardiac tissue is well described by an
appropriate partial differential equation, in some circumstances the discrete cellular nature of
cardiac tissue appears important [37, 20, 8, 21, 33, 22, 32]. As such, we consider two different
spatial discretizations: one of which approximates the continuous nonlinear partial differential
equation, and one more suitable to a coarsely discretized system.

Since we are motivated by cardiac systems, we adapt the FitzHugh–Nagumo equation to
represent a line of excitable medium with an embedded pacemaker [19]. As described in earlier
work [31, 27], the FitzHugh–Nagumo equations can support both low amplitude unstable slow
waves, designated S (or s), and high amplitude stable fast waves, designated F (or f), where
lower case letters represent waves propagating to the left and upper case letters represent
waves propagating to the right.

We consider the system of partial differential equations

vt =
1

ε
(v − v3 − w) + Is + Ip +Dvxx,

wt = ε(v + β − γw)

(
wh − wl

1 + e−4v
+wl

)
,

(4.1)

where x is measured in centimeters and t is in units of 10 milliseconds, because this is a
model of a cardiac system. The variable v(x, t) is an excitation variable, w(x, t) is a recovery
variable, β = 0.7, γ = 0.5, ε = 0.3, D = 1, Is(x, t) is a stimulation variable, and Ip(x) is a
pacemaker current. The constants wl and wh control the duration of the recovery phases and
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Figure 7. The stimulus function Is (4.2) for ϕ = 0 that approximates a square wave.

the active states of the excitable medium. The pacemaker oscillator is modeled by changing
Ip and wl in the pacemaker region:{

pacemaker: 0.72 ≤ x ≤ 0.76 : Ip = 1, wl = 0.13,

elsewhere (excitable regions) : Ip = 0, wl = 0.4.

We apply a stimulus Is of the form

(4.2) Is = A(tanh(10(t − ts))− tanh(10(t− te)))/2

so that it approximates a square pulse; see Figure 7. The stimulus is applied at x ≤ 0.02 for a
duration te− ts = 1. The start time ts is varied to control the phase of stimulation ϕ = ts/T0,
and the stimulus amplitude A is initially fixed at 1. The resulting phase g(ϕ) is measured
at the pacemaker at x = 0.74 as the time at which the first regular maximum of v occurs,
divided by T0, and then shifted so that g(0) = 0.

The boundary conditions consist of Dirichlet boundary conditions at t = 0, that is, fixed
initial conditions, and Neumann conditions at x = 0 and x = L = 0.84:

v(x, 0) = v0(x), w(x, 0) = w0(x),(4.3)

vx(0, t) = 0, wx(0, t) = 0,(4.4)

vx(L, t) = 0, wx(L, t) = 0.(4.5)

We first discretize (4.1) on a lattice of 43 cells using an 87-dimensional (including t)
continuous system of ordinary differential equations involving v1, . . . , v43, w1, . . . , w43, and t,
where vi = vi(t), wi = wi(t), x = dx(i − 1), with dx = 0.02, and ṫ = 1, using a 4th-order
compact Collatz “Mehrstellen” scheme [5] to estimate νi = (vxx)i:

(2ν2 + 10ν1)/12 = 2(v2 − v1)/dx
2 for i = 1,

(νi+1 + 10νi + νi−1)/12 = (vi+1 − 2vi + vi−1)/dx
2 for 2 ≤ i ≤ 42,

(10ν43 + 2ν42)/12 = −2(v43 − v42)/dx
2 for i = 43.

(4.6)

We integrate the system using the 4th-order Dormand–Prince method [10] up to t =
T = 250 so as to use accurate 4th-order schemes throughout, that is, for both the space
and time discretizations, to obtain a state (v∗, w∗) that lies on a limit cycle oscillation with
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Figure 8. Space-time plot for v in the FitzHugh–Nagumo system (4.1), where the applied stimulus Is = 0.
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Figure 9. (a) Phase transition curve for an apparent discontinuity in the FitzHugh–Nagumo system (4.1),
where A = 1 and dx = 0.02. (b) Here the horizontal axis denotes the continuation step.

T0 ≈ 57.353757. The resulting space-time diagram for A = 0, that is, without the stimulation
Is applied, is depicted in Figure 8. We then use this state as an initial condition for the
resetting runs.

We first used Dormand–Prince integration and shooting methods to compute the resetting
curve, as in Figure 9(a). This shows three ranges of phase with distinct behaviors and resetting
features:

1. 0 ≤ ϕ ≤ ϕ∗ ≈ 0.504. In this range the stimulus generates a large amplitude stable
fast pulse, F , which collides with a wave generated by the pacemaker, as can be seen
in Figure 10(a), or falls in the refractory period of the tissue and fails to elicit a wave
that propagates to the pacemaker, as in Figure 10(b). In either case the stimulus has
no effect on the pacemaker, and consequently g(ϕ) = ϕ.

2. ϕ∗ < ϕ < 0.82; see Figures 10(e) and (f). For this range of phases the stimulus
generates a fast pulse, F , that propagates to the pacemaker and resets it. The first
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(a) step 0, ϕ ≈ 0.000

(b) step 130, ϕ ≈ 0.504 (c) step 165, ϕ ≈ 0.504 (d) step=445, ϕ ≈ 0.504

(e) step 730, ϕ ≈ 0.573 (f) step 1060, ϕ ≈ 0.821 (g) step 1165, ϕ = 1.000

Figure 10. Space-time plots for v in the FitzHugh–Nagumo system (4.1), where “step” denotes the contin-
uation step number. Here the phase of the stimulus is shifted with respect to panel (a), A = 1, and dx = 0.02.
The tick marks along the left-hand sides of the plots mark the time at which the stimulus Is is applied. Panels
(b), (c), (e), and (f) correspond to extrema in Figure 9(b). Intermediate panel (d) shows the pattern SfF
most clearly. The accompanying movie (see 81922 01.avi [local/web 1.35MB]) shows the sequence (a)–(f) as a
continuous process.

instance of resetting around ϕ∗ causes an apparent jump discontinuity in the phase
transition curve. In this range, g(ϕ) ≈ 0.82.

3. 0.82 < ϕ < 1.0; see Figure 10(g). For all stimulus phases in this range the induced
fast pulse collides with a wave emitted by the pacemaker so that there is no resetting.
In this range, g(ϕ) = ϕ.

81922_01.avi
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We can estimate these ranges by using a simple model of excitable media with refractory
period R, in which waves propagate with velocity c, the pacemaker has the period T0 [14], and
the stimulus is at a distance d from the pacemaker. In our computation R ≈ 18.6, d ≈ 0.74,
v ≈ 0.067, and T0 ≈ 57.4. For this model we find ϕ∗ = (R+d/c)/T0. Furthermore, the level of
the plateau in Figure 9 is g(ϕ) = (T0−d/c)/T0. In the current situation we estimate ϕ∗ ≈ 0.51
and the value of g(ϕ) ≈ 0.81 for the plateau. The small discrepancies from these values in
the computations arise from nonlinear effects such as the variable velocity in the medium
following an excitation. In the case that the stimulus is given at distance d > c(T0 − R)/2,
the stimulus will fail to reset the pacemaker for all phases of delivery.

After this jump g(ϕ) ≈ 0.85 stays relatively constant with respect to ϕ. The resetting in
this region can be estimated by g(ϕ) = 1 − (R + td)/T0, where R is the refractory period of
the medium and td is the delay associated with the propagation from stimulus to pacemaker
site.

Note that all the figures described above were in fact obtained using continuation but
looked the same using shooting methods.

To probe the apparent discontinuity at ϕ∗ we carry out a continuation using the fixed
integration time method in [9], using a boundary value problem where the solution is fixed
at t = 0, and the integration time is fixed at T = 250. This amounts to the 87-dimensional
ordinary differential equation given by (4.1) discretized using (4.6) plus ṫ = 1, subject to a total
of 87 boundary conditions, (4.3) plus t(0) = 0. Such a continuation problem is consistent when
there is only one free parameter; in this case we vary only ϕ, which is equivalent to varying
ts. The endpoint is completely left alone. This technique corresponds to continuation step
3(b) in section 3, except that in this case the equivalent of y1 is not explicitly tracked.

As can be seen in Figure 10, when ϕ increases from ϕ∗, the stimulus generates an unstable
slow wave, S, which splits into two counterpropagating fast waves, f and F ; see Figure 10(d).
We label this type of solution SfF and note that similar reflected pulse solutions have pre-
viously been seen by others using a range of different excitable equations [11, 7, 2, 4]. At
slightly later phases Figure 10(e) shows that the stimulus elicits a single fast pulse F leading
to full resetting, where g(ϕ) ≈ 0.861.

Figure 9(b) shows the fine structure of the phase resetting expanded around the sharp
transition at ϕ∗. This critical phase ϕ∗ is encountered around step 130, at which point the
slow unstable wave S is generated at the stimulus site and propagates farther to the right with
each continuation step until it almost reaches the pacemaker site in Figure 10(b). Just beyond
this point the pacemaker begins to experience a small delay in its firing due to the influence
of the slow wave S, which corresponds to the small decrease in the phase transition curve
between steps 130 and 165; see Figure 10(c). When the slow pulse S propagates sufficiently
close to the pacemaker the SfF solution appears, with the split from S to fF occurring at
the pacemaker site. At around step 170 the SfF split site begins to move left toward the
stimulus site, as shown in Figure 10(d), incrementally advancing the resultant phase of the
pacemaker. When the SfF split site reaches the stimulus site, around step 730, the S and
f pulses disappear, and what is left is the fast pulse F resetting the pacemaker as shown in
Figure 10(e).

To complement these observations we also look at the phase resetting caused by varying
the stimulus amplitude A at ϕ ≈ 0.509, a value slightly higher than ϕ∗, from 0 to 1. As
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Figure 11. (a) Phase resetting caused by varying the stimulus amplitude A for the FitzHugh–Nagumo
system (4.1), where dx = 0.02 and ϕ ≈ 0.509. Note how g(ϕ) moves from 0.509 to 0.845, corresponding to the
point (ϕ, g(ϕ)) ≈ (0.509, 0.845) in Figure 9. (b) Here the horizontal axis corresponds to the continuation step.
The behavior in space-time for this process, following a sequence similar to the panels in Figure 10, is shown in
the accompanying movie (see 81922 02.avi [local/web 351KB]). Note how the first frame in this movie equals
the basic state in Figure 8 where A = 0.

shown in Figure 11(a), there is a sharp transition to resetting following a stimulus of ampli-
tude A ≈ 0.502. At the transition the jump in g(ϕ) from 0.509 to 0.845 is similar to what is
seen around ϕ∗ in the phase resetting experiment. The transition from no propagation, via S
and SfF , to F is also observed in this amplitude continuation. The main difference between
using the phase and using the amplitude for resetting is that the slow wave generated at the
stimulus site is not able to reach the pacemaker site and cause the small phase advances seen
during steps 130–165 of the stimulus phase continuation. This is due to the fact that the
slow wave begins to propagate from the stimulus site slightly later relative to the time in the
phase resetting experiment, which happens because the stimulus is applied for a nonzero dura-
tion. Nevertheless, the continuity of the phase transition curve is preserved under amplitude
continuation at ϕ ≈ 0.509, which is in concordance with the Continuity Lemma, Lemma 2.1.

We found that a different resetting scenario occurs varying the amplitude for a coarser
discretization of space (dx = 0.04). Analysis of the propagation parameters at different
mesh discretizations showed appreciable change of action potential duration, maximal rate
of activation, and propagation velocity between the discretizations dx = 0.02 and 0.04. In
contrast, comparing dx = 0.02 with the even finer discretization dx = 0.01 showed much
smaller variations (< 2% for propagation velocity, activation duration, and maximal rate of
activation). Together these observations corroborate the fact that the coarser discretization
dx = 0.04 can have different properties than the continuous partial differential equation (4.1).

A very fine discretization is too computationally expensive for the continuation methods
that we used. Because AUTO employs Gauss elimination to solve the linearized system during
Newton iterations, halving dx causes an increase of up to a factor of 8 in the computation
time of AUTO. With a space discretization where dx = 0.02 we already needed several hours

81922_02.avi
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Figure 12. Space-time plot for v in (4.1) on a coarse grid with dx = 0.04. During the continuation this
situation corresponds to the first time that the waves caused by the stimulus reach t = 250. The phase is
at ϕ ≈ 0.509; the amplitude is at the critical value A ≈ 0.502. The accompanying movie (see 81922 03.avi
[local/web 11.8MB]), varying the amplitude A, shows how this situation is obtained from the basic state in
Figure 8 and also shows a limited further continuation.

on a cluster using 16 processors in parallel.

The gross features of the phase transition curve for the coarse case are very similar to
those of the finely discretized case shown in Figure 11(a). However, looking closely around
the apparent jump discontinuity at A ≈ 0.502 using continuation, we find differences in the fine
structure of the phase transition curve at dx = 0.04. The algorithm begins to track solutions
which are not present in the dx = 0.02 case, so the discretization no longer approximates the
continuous partial differential equation sufficiently. We observed trajectories consisting of a
slow wave S either (a) reflecting from the boundary, or (b) splitting into an anterograde fast
wave F and a retrograde slow wave s. The slow wave s can reflect or split another slow wave
S multiple times as shown in Figure 12. The sequence of slow pulse reflections begins to look
like an extremely complex solution where the pacemaker never reestablishes entrainment of
the medium, and so the system is taken out of the basin of attraction B(Γ).

In Figure 12 the initial range of times shows the slow wave S hitting the fast wave around
t = 90 at cell 15 (x = 0.56), much like in Figure 10(b). However, the wave now splits into an
anterograde fast pulse F and retrograde slow wave s at a point distant from the pacemaker
site. The continuation shows a complex recursive interaction of fast wave stubs with slow
waves, where fast waves grow or shrink one cell at a time. Eventually the fast wave around
t = 90 grows to cell 14 (x = 0.52), then to cell 13 (x = 0.48), and so on, up to cell 5
(x = 0.16). Beyond cell 5 the procedure arrives at a situation similar to Figure 10(d) and
then continues to Figure 10(e) in a straightforward fashion. The time values of the maxima at
cell 11 (x = 0.4) for a continuation up to t = 125 are tracked in Figure 13. Before continuation
step 60000, there exist two slow waves, one starting around t = 100 and one starting around

81922_03.avi
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Figure 13. Tracking time values of the maxima of v at cell 11 (x = 0.4) versus continuation step on
a coarse grid with dx = 0.04, T = 125, where the amplitude A varies. Black points denote maxima of fast
waves and red points maxima of slow waves. The accompanying movie (see 81922 04.avi [local/web 24.1MB])
shows the corresponding complete continuation in space-time: note how the first 2.3 seconds of this movie are
identical to the first 9 seconds of the partial movie (see 81922 03.avi [local/web 11.8MB]) for T = 250 attached
to Figure 12. After this initial part the lower half for t < 125 no longer changes. The movie for T = 250 never
reaches any corresponding further point in the movie for T = 125 because that is too computationally expensive.

t = 83. The wave for t = 100 moves a little each time as the fast wave grows one cell. Around
continuation step 60000, that is, at the fourth bump, the fast wave has grown to cell 11 and
the two reflected slow waves are merged into the fast wave.

The main problem with dissecting the full sequence of phase transitions in the dx = 0.04
case is the extremely long computation time required to make it through the continuation, as
evidenced by the number of steps in Figure 13. Continuing for T = 125 took around a week;
higher values quickly become prohibitively expensive by an estimated factor of 1.85 for every
additional 5 time units, because of the recursive nature of the structure. Hence the movie for
T = 250, referred to in Figure 12, shows only a partial continuation, where the initial part for
t < 125 follows only the first 35 frames (2.3 seconds) of the movie for T = 125.

Nevertheless, the fact that the multireflected unstable slow wave disappears at finer dx
implies that the solution is inherent to the discretized system of coupled ordinary differential
equations rather than the continuous partial differential equation. Regardless, this solution
need not be interpreted as a numerical artifact since, as mentioned previously, there are cases
for which the continuous cable equation fails to hold in models of cardiac tissue.

5. Resetting a pacemaker in a system governed by the Morris–Lecar equations. In
this section we provide an example of a partial differential equation where the phase tran-
sition curve is discontinuous, through a mechanism involving a one-dimensional spiral wave
solution that was studied, but not applied to phase transition curves in [7]. It is given by the

81922_04.avi
http://link.aip.org/mm/SJADAY/100819229/81922_04.avi
81922_03.avi
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Table 1
Morris–Lecar parameters used in (5.1).

D gl gK gCa v1 v2 v3 v4 ECa EK El ε Iapp
0.001 2 8 4.4 −1.2 18 2 10 120 −84 −60 0.18 10
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Figure 14. (a) Phase transition curve for the Morris–Lecar system (5.1), measured at the pacemaker at
x = 0.165. (b) Here the horizontal axis denotes the continuation step.

Morris–Lecar system of partial differential of equations

m∞(v) =

(
1 + tanh

(
v − v1
v2

))
/2, v∞(v) =

(
1 + tanh

(
v − v3
v4

))
/2,

τ(v) = 1/ cosh

(
v − v3
2v4

)
,

vt = −gCam∞(v)(v − ECa)− gKw(v − EK)− gl(v − El) + Iapp + Is +Dvxx,

wt = ε
v∞(v)− w

τ(v)
,

(5.1)

with parameters given in Table 1.
For this example, we use the same algorithm and discretization scheme as in section 4, but

with different parameters. The discretization now uses 41 equally spaced mesh points in space
over the x-interval [0, 0.2], so dx = 0.005. The mesh points corresponding to the x-interval
[0.15, 0.185] correspond to the pacemaker, with a modified applied current of Iapp = 60. We
use Neumann boundary conditions, and the total time interval has length 36.

At the x-interval [0.04, 0.055] we apply a stimulus Is of the form

Is = A(tanh(10(t − ts))− tanh(10(t − te)))/2,

where A = 2700 and te = ts+0.06, where ts varies. The resulting phase transition curves and
space-time diagrams are shown in Figures 14 and 15.



1520 B. BOREK, L. GLASS, AND B. E. OLDEMAN

 

 

−60

−40

−20

0

20

40

0

t

36 0 x 0.2

(a) step 0, ϕ = 0

(b) step 1140, ϕ ≈ ϕ∗ (c) step 1350, ϕ ≈ ϕ∗ (d) step 1730, ϕ ≈ ϕ∗

(e) step 2400, ϕ∗ ≤ ϕ ≤ ϕ∗∗ (f) step 3520, ϕ ≈ ϕ∗∗ (g) step 4370, ϕ ≈ 0.04011

Figure 15. Space-time plots for v in the Morris–Lecar system (5.1), where ϕ∗ ≈ 0.03343 and ϕ∗∗ ≈ 0.03347.
(a) The stimulus does not propagate. (b) Building the first one-dimensional spiral (ffFF ). (c) The first one-
dimensional spiral (the start fffFFF is observed). (d) Destroying the first one-dimensional spiral (fFF ).
(e) Single propagating fast wave F . (f) Second one-dimensional spiral (the start fffFFF is observed). (g)
Double fast wave fF . The accompanying movie (see 81922 05.avi [local/web 2.39MB]) shows how these plots
continuously connect to each other, in the same spirit as in Figure 10.

At first sight, Figure 14(a) shows a single apparent discontinuity. We used continuation
techniques to investigate this and found that the one-dimensional spiral solution appears twice.
We also used shooting techniques to investigate this system, as was done in [7]. However, using
shooting only the very beginning of the one-dimensional spiral can be found, whereas using

81922_05.avi
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continuation we could in principle, given enough resources, reproduce as much of this structure
as is desired and produce a continuous movie. The shooting ability also allowed us to confirm
the validity of the structure with a finer discretization in space, which is computationally
much cheaper than using continuation.

In Figure 15, starting from the state in panel (a), where the stimulation dies out much
like in Figure 10(b), as the phase of the stimulus increases, a one-dimensional spiral grows
in qualitatively the same way as described in [7]. As the phase increases further, the spiral
shrinks again until we arrive at the situation seen in panel (e), where the stimulus gives rise to
a single fast wave F propagating to the right. Upon further increasing, a new one-dimensional
spiral appears in panel (f), which then breaks down again, and eventually we are left with
fast waves propagating both to the left and to the right from the stimulus in panel (g). After
this the situation gradually moves back to the one in Figure 14(a), shifted by one phase, in
a continuous fashion. Note that the phase in the movie is shifted by Δϕ ≈ 0.96144, so the
latter part of this description applies to the first part of the movie.

In the phase transition curve in Figures 14(b) there are two gaps, from steps 1140 to 1730
and from steps 3080 to 3770, corresponding to the places where the spiral appears. Because
we integrated up to a fixed time, for those gaps it is not possible to reliably compute the phase
transition curve. Figures 14(b) and 14(d) correspond to the boundaries of the first gap.

In other numerical experiments, not discussed in detail here, we found that for smaller
values of the applied current such as A = 2500 for the stimulus, the one-dimensional spiral
does not appear at all, and the transition is like that for the FitzHugh–Nagumo system in
section 4. In other words, using the notation of [7], for a stimulus of A = 2700 the rest/fast
wave (R/F ) threshold is crossed twice, from R to F and back to R, but for smaller A it is
not crossed at all and stays at R. This observation serves to further reinforce the thin line
between real and apparent discontinuity of phase transition curves.

6. Discussion. This paper analyzes resetting of oscillators that are localized to some re-
gion of excitable space. For neural and cardiac systems, which motivated the current studies,
stimuli will typically have to travel through excitable tissue before resetting is elicited. Con-
sider for example, an intact heart in which an excitation from the normal (sinus) pacemaker
resets a pacemaker at an abnormal (ectopic) location, or in which an inserted artificial pace-
maker interacts with sinus or ectopic rhythms.

Previous work has indicated that propagation solutions can have a very sensitive de-
pendence on stimuli parameters for stimuli delivered during the transition of tissue from a
refractory to an excitable state (often called the vulnerable period) [19, 38, 13, 26, 25, 7].
This phenomenon can manifest itself as an apparent jump discontinuity in the phase transi-
tion curve. In order to tease out the fine structure of the resetting around these jumps in the
phase transition curve, we have adapted continuation methods [9]. For the cases analyzed,
we find that the continuity properties of the phase transition curve are consistent with math-
ematical results which indicate that unless stimuli lead to a transition outside the basin of
attraction of an oscillator, the transition curves will be continuous. For situations in which a
stimulus leads to transitions outside the basin of attraction of an oscillator, constrained end
state continuation methods will fail to estimate the phase transition curve. This work there-
fore provides a new operational method to detect the existence of transitions outside the basin
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of attraction of the oscillation. This is true regardless of whether the discontinuous transitions
originate from the pacemaker itself (like the stable manifold of the saddle in the Van der Pol
example in section 3) or from a spatially periodic solution in the excitable media away from
the pacemaker site, like the one-dimensional spiral in section 5. Further, the methods should
be applicable to other situations, such as a rotating wave on a one-dimensional ring with a
tail, in which discontinuous resetting was observed even though all stimuli left the system in
the basin of attraction of the rotating wave [25].

Although we restricted our attention to systems in one spatial dimension, the continuation
methods used here should be adaptable to analysis of resetting in excitable media of higher di-
mensions. It should be possible to use continuation methods to analyze resetting a pacemaker
in higher spatial dimensions. This may provide new ways to investigate and generate solutions
outside of the basin of attraction of attraction of the pacemaker, such as spiral waves in two
dimensions and scroll waves in three dimensions [40]. Such extensions of this work will be
challenging in view of the high dimensions that would be needed to approximate the spatially
distributed system by ordinary differential equations.

This work primarily deals with theoretical questions and methodologies that do not ap-
pear related to practical situations, since they occur over such small ranges of parameter
space. However, experimental studies of propagation of cardiac excitation in one-dimensional
cardiac Purkinje fibers show some strikingly similar behaviors in which echo waves can be
generated in vitro [1, 3]. A rare clinical condition called bidirectional ventricular tachycardia
has been hypothesized to arise from alternating conduction down Purkinje fibers muscle fibers
(technically these are the right and left fascicles of the left bundle branch) originating from
a single focus [30]. Based on the current work, we suggest that one-dimensional spiral waves
originating at the junction point would be a potential dynamical mechanism that could lead
to such behavior.

A number of rigorous results exists on the behavior of one-dimensional spirals in pacemak-
ers, for example, in [34, 35], where they are referred to as spiral defects. It is interesting, but
beyond the scope of this paper, to link these results to those presented here. The qualitative
explanation of the one-dimensional spiral as a global bifurcation in [7] applies here, too.

The current work demonstrates that these types of behavior may represent generic (rather
than unusual) dynamics as parameters are systematically varied. The extent of phase space
in which these behaviors will be observed appear to be very small, but since they do depend
on parameters, there may well be circumstances in which the ranges are larger than those
found here. Furthermore, since many transitions of heart dynamics happen only once, leading
to a person’s death, the rare appearance of dynamics over limited regions of parameter space
in a mathematical model may still be a worthwhile and practically important direction for
analysis.

Acknowledgments. We thank Rod Edwards, Thomas Gedeon, and Eusebius Doedel for
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