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Repeated stimulation of nonlinear oscillators at a fixed phase of the cycle leads to complex rhythms. This is illustrated using a 
theoretical example and a biological experiment. 

Periodic stimulation with brief pulsatile stimuli of 
nonlinear systems exhibiting stable limit cycle oscil- 
lations generates a rich diversity of regular and ir- 
regular rhythms as stimulation frequency and 
amplitude are changed. Under the assumption that 
the limit cycle is strongly attracting and that there is 
a rapid (relative to the time interval between stim- 
uli) return to the limit cycle following a single pulse, 
the dynamics can be analyzed using one-dimen- 
sional circle maps. Such a formalism has been ap- 
plied to biological oscillators [ 1-3 ], chemical 
oscillators [ 4], and theoretical models [ 5-9 ]. 

An alternate approach to study nonlinear oscilla- 
tors is to give repeated stimuli at a fixed phase of the 
cycle. If the limit cycle is very rapidly reestablished 
following a stimulus, then each stimulus will have 
the same effects as the preceding one, and a simple 
periodic rhythm with one stimulus per cycle of the 
perturbed oscillator will be found. If, however, there 
is not a rapid relaxation back to the limit cycle, a 
much more complicated situation arises. Although 
the phase resetting effects of a single stimulus have 
been intensively studied [ 10 ], the effects of repeated 
stimulation at a single phase have to the best of our 
knowledge only been examined in the context of 
neural stimulation of the heart [ 11,12]. In the fol- 
lowing we show that repeated stimulation of nonlin- 
ear oscillators at a fixed phase leads to complex 
bifurcations and dynamics. This is illustrated by 
considering two different examples: a simple math- 

ematical model and an experiment involving per- 
turbation of the respiratory rhythm. 

We consider the effects of stimulation at fixed 
phase of the simple limit cycle oscillation [ 6,8,10] 

d0-1,~-~- -~ t=kr ( l - r )  . (1) 

This equation displays a stable limit cycle at r=  1, 
which is globally attracting in the limit t--,~, for all 
points with the exception of r=0.  In eq. (1) ~ is nor- 
malized to lie between 0 and I and the period of the 
limit cycle is 1. A stimulus is assumed to be a hor- 
izontal translation of length S, fig. IA. Therefore if 
a stimulus is delivered when the system is at (ro, ~o), 
there is an immediate displacement to (r' ,~') where 

r' = ( r ~ + S  2 +2roScos 2X~o) 1/2 , 

1 cos 

The marker event, taken to be 0=  0, will occur fol- 
lowing a time interval of 1 -  ~'. Thus, if a stimulus 
is given at a phase ~o with n cycles between stimuli, 
the time between stimuli is ts= 1 - ~' + ~o + n. By in- 
tegrating (1), for a time ts we obtain 

¢1 =Oo+ts (mod 1) , 

r '  (3) 
rl - (1 - r ' )  exp( - kts) + r' ' 

where (rt,#~)=(r~,#0) gives the coordinates at the 

0375-9601/87/$ 03.50 © Elsevier Science Publishers B.V. 
(North-Holland Physics Publishing Division) 

119 



Volume 125, number 2,3 PHYSICS LETTERS A 2 November 1987 

~ =1/4 

• 3/4 

/, 
/ 

1 / ,:i 

0 

0 1 

r o 

1.5 

r 

o 

1 , O  

r 

. 7  

. 4 9 9  ~ .507 

Fig. 1. (A) Graphical representation of the model. The limit cycle at r= 1 is shown in the (r, 0) plane. The marker event is defined at 
= 0 (with 0 ranging between 0 and 1 ). A stimulus consists of a horizontal translation of length S. A stable cycle of period two is shown. 

(B) One-dimensional map (r,=f(ro)) of (2) and (3) showing the first and second iterates, rL and r2. Parameter values 00=0.48, S=0.8. 
k = 1, n = 0 show a stable period-2 orbit. (C) Bifurcation diagram of solutions of (2) and (3) where r is the radius of the next stimulus as 
the phase, 0, is varied, at an increment of 0.001, from 0 to 1, with s = 0.8, k = 1, n = 0. (D) The window of the bifurcation diagram in (C)+ 
between 0 = 0.499 and 0 = 507 with an increment = 0.00001. 

next stimulus. Note that by giving stimuli at a fixed 
phase the two-dimensional  problem can be reduced 
to the one-dimensional  map r,+ l - - f ( r J .  In fig. lb  we 
show rl and r2 as a function ofro for 0o=0.48, S =  0.8, 
k =  1, n - -0 .  In this case, there is a stable cycle of pe- 
riod two. A bifurcat ion diagram showing r as a func- 
t ion of 0o for (2) and (3) for S=0 .8 ,  k =  1, n = 0  is 
shown in fig. 1C. In the region between 0o=0.5 and 
00=0.506 cascades of period-doubling bifurcations 
are seen, fig. 1 D, but  the global organization of the 
bifurcations is not fully understood. Similarly, if sev- 
eral cycles are skipped between stimuli, one can also 
obtain complex bifurcations as the st imulus phase is 
changed provided the relaxation rate, k, is not too 
large. In general, for any limit cycle oscillation in n 
dimensions, the effect of repeated stimulation at fixed 
phase can be described by an ( n - 1  )-dimensional  
map. This example shows that even the simplest pos- 
sible cases of two-dimensional  l imit cycles leads to 

unexpectedly rich dynamics using this s t imulat ion 

protocol. 
We now consider a second example in which stim- 

ulat ion at fixed phase was under taken in a physio- 
logical experiment. A complete report of  these results 
will be published elsewhere. Experiments were per- 
formed on midcollicular decerebrate and paralyzed 
cats which were mechanically ventilated. The vagus 
nerves and the carotid sinus nerves were sectioned 
to el iminate feedback from the lungs and arterial 
baroreceptors to the respiratory rhythm generators 
in the brainstem. The respiratory rhythm is moni-  
tored from integrated (t ime c o n s t a n t = 1 0 0  ms) 
phrenic nerve activity. The onset of phrenic activity 
(corresponding to the onset of inspirat ion in an un- 
paralyzed animal)  is taken as zero phase. The con- 
trol cycle length, To, is the t ime between successive 
onsets, fig. 2A. Perturbat ion of the respiratory cycle 
is accomplished via s t imulat ion of the superior lar- 
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Fig. 2. Experimental traces of integrated phrenic activity. Onset of inspiration is marked by the onset of the phrenic activity and expira- 
tion occurs while the phrenie is quiescent. One cycle consists of an inspiration followed by an expiration. Panel (A) shows unstimulated 
control cycles. Panels (B) to (F) show the effect of varying the delay of the SLN stimuli from the onset of phrenic activity (0.098 V 
pulses at 100 Hz, 50 ms trains). (B) 100 ms, (C) 200 ms, (D) 350 ms, (E) 650 ms, and (F) 825 ms. The bottom trace of each panel 
shows the stimuli. Time bar is 10 s for (A)-(F). Panel (G) shows control cycles for a different experiment in which alternans was 
observed with 9 unstimulated cycles between stimuli (panel (H)). The bottom trace of panel (H) shows SLN stimuli (100 ms delay, 0.1 
V pulses at 200 Hz, 50 ms trains). Time bar is 30 s for (G) and (H). The delays were measured with an oscilloscope. The records were 
obtained on curvilinear paper (Grass Model 7D polygraph). 

yngeal nerve (SLN). This nerve contains sensory ax- 
ons originating in the larynx which have a marked 
effect on the respiratory rhythm [ 13 ]. An SLN stim- 
ulus of sufficient strength given during a phrenic burst 
will terminate it, and advance the onset of the nex 
burst resulting in a shortening of the cycle. SLN 

stimulation during the period when the phrenic nerve 
is quiescent delays the onset of  the next burst and a 
consequent prolongation of the cycle. 

When stimuli are delivered every cycle at fixed de- 
lay after phrenic onset (and hence at fixed phase), 
a number  of different rhythms result which depend 
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on the st imulus strength and the delay at which the 
st imulus is delivered.  Figs. 2 B - 2 F  show a sequence 
of  rhythms observed as delay is increased.  Typically,  
some of  the phrenic  bursts  are shortened,  whereas 
other  are not  markedly  affected by the SLN activa- 
tion. In some circumstances there is no evidence of  
a stable rhy thm (figs. 2C, 2E).  In other  c i rcumstan-  
ces a stable rhy thm is found. However ,  a per iod  of  
t ime of  up to a minute  or  more  may  be needed be- 
fore the activi ty pat tern stabilizes. In fig. 2D we show 
a segment of  an al ternat ing rhy thm which was main-  
ta ined  stably for over  three minutes,  following a 
t ransient  of  75 seconds. The last cycle before the sta- 
ble a l ternans is shown at the start  of  the record. A1- 
ternans could also be observed even when st imulus 
was del ivered regularly every several cycles ( 2 - 1 0 ) .  
In fig. 2H we show an a l ternans  found with s t imuli  
del ivered every 10 cycles with the 9 intervening un- 
s t imula ted  cycles having a cycle t ime approx imate ly  
equal to control  (fig. 2G) .  

The theoret ical  model  and the exper iments  both 
show complex bi furcat ions  which depend  on the 
st imulus phase, s t imulus magni tude  and the number  
of  cycles intervening between stimuli .  Although it is 
tempt ing  to associate the a l ternans in the experi-  
mental  systems with per iod-doubl ing  bi furcat ions  
observed in the model,  no clear evidence o f  per iod-  
doubling bi furcat ions  has yet been found in these ex- 
periments.  The sequence of  b i furcat ions  in figs. 1 C, 
1D and fig. 2 are not  the same. Therefore,  the the- 
oret ical  computa t ions  cannot  be taken as a model  for 
this exper imenta l  system. However ,  the exper imen-  
tal and theoret ical  results show that  variables which 

do not  affect the frequency of  the rhy thm (and  are 
thus hidden)  may nevertheless play an important  role 
in character izing the response of  the oscil lators to 
s t imulat ion,  Finally,  this s tudy shows that  s t imula-  
t ion of  nonl inear  oscil lators at f ixed phase is ex- 
pected to yield complex dynamics ,  and  provides  a 
further tool for theoretical and experimental  analysis. 
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