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Common Chaos in Arbitrarily Complex Feedback Networks
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A class of differential equations, which captures the logical structure of discrete time logical switchi
networks composed of many elements, displays deterministic chaos if each element has many inp
Statistical features of the dynamics are approximated by using a mean field Langevin-type equation w
a random telegraph signal as a stochastic forcing function, and also by considering a random walk
an N-dimensional hypercube. [S0031-9007(97)03599-0]

PACS numbers: 05.45.+b, 05.40.+ j, 05.50.+q, 87.10.+e
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A logical switching network is composed of logica
elements that assume discrete values. Time is disc
and each element computes a logical function based
the values of inputs to that element. Logical switchin
networks are used to design computers [1], and as mod
of neural [2] and genetic networks [3]. The curren
work is motivated by studies of randomly generate
logical networks in which the logical elements represe
genes [3]. If there are a large number of elements a
each element has more than two inputs, these disc
time networks show disordered behavior in which near
trajectories diverge and cycle lengths grow exponentia
as the number of elements in the network increases [3
In real biological systems there are not clocking devices
generate synchronous updating, and theoretical models
more appropriately formulated as continuous different
equations [5–13]. In what follows, we analyze disorder
dynamics in a differential equation analog of logica
switching networks for parameter ranges that lead
disordered dynamics in the discrete system.

First consider a logical network consisting ofN bi-
nary elementsXstd ­ sssX1std, X2std, . . . , XN stdddd, Xistd ­
21, 11. The network is updated by means of the d
namical equation

Xist 1 1d ­ LisssXstdddd, i ­ 1, . . . , N , (1)

whereLi is a logical function andXstd is the input state
at time t. We consider networks with no self-input. In
other words, we assume

LisX1, X2, . . . , Xi21, 21, Xi11 . . . , XN d

­ LisX1, X2, . . . , Xi21, 1, Xi11 . . . , XN d . (2)

Li generates an output of either +1 or –1 for each inp
state. EachLi can be chosen in22N21

different ways,
and for N fixed, there are2N32N21

different networks
corresponding to Eq. (1). Thus, Eq. (1) represents
class of arbitrarily complex logical feedback networks.
K-input network is a subclass of Eq. (1) in which, fo
each element, the inputs are selected fromK # sN 2 1d
inputs.

The logical structure of Eq. (1) can be captured by
differential equation [6]. For each discrete variableXi,
we associate a continuous variablexi . The relationship
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betweenXi and xi is defined as follows: Xi ­ 21 if
xi , 0 andXi ­ 11 if xi $ 0. For a given set ofLi the
differential equation

dxi

dt
­ 2xi 1 LisssXstdddd, i ­ 1, . . . , N , (3)

is a continuous analog of Eq. (1). For each variable, t
temporal evolution is governed by a first order piecewi
linear differential equation. Letht1, t2, . . . , tkj denote the
switch times when any variable of the network crosses
For tj , t , tj11, the solution [14] of Eq. (3) for each
variablexi is

xistd ­ xistjd e2st2tjd 1 LisXd f1 2 e2st2tj dg . (4)

We carried out extensive numerical computations wi
N ­ 64 and the number of inputs9 # K # 25. For
these equations, the Jacobian can be explicitly compu
numerically [13]. Using the technique in [15], the leadin
Lyapunov number was computed. It was always positi
for the randomly generated networks withN ­ 64, 9 #

K # 25, indicating deterministic chaos.
Figure 1 shows the dynamics of a single variab

(lower trace) and the forcing function for that variabl
(upper trace) from a 64-dimensional system withK ­ 20.

FIG. 1. Dynamics in a system withN ­ 64, K ­ 20 showing
fluctuation of a single variablex (lower trace) and its associated
forcing function (upper trace)jstd ­ LisssXstdddd from Eq. (3).
Each zero crossing of any variable is designated by a1.
Because of the short times between switches, the piecew
exponential trajectory appears as straight line segments.
© 1997 The American Physical Society 653
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In Eq. (3) each variable experiences a fluctuating fie
described by a Langevin-type differential equation

dx
dt

­ 2x 1 jstd . (5)

Here, however,jstd is not a random variable, but rathe
it is a chaotic fluctuating variable switching back an
forth between61 as the deterministic trajectory crosse
thresholds inN-dimensional state space.

The fluctuating forcing function in Fig. 1 (upper trace
is suggestive of the random telegraph signal (RTS)—
signal that switches randomly between the two values61
[16,17]. The usual assumption is that the time betwe
switches is Poisson distributed with mean switch timet.

Equation (5) whenjstd is the RTS has been previously
analyzed [17]. The autocorrelation functionCxstd is

Cxstd 2
1

1 2
2
t

µ
e2s2ytdjtj 2

2
t

e2jtj

∂
, (6)

and the power spectrum is

Ss fd ­
1

2ptfs2pfd2 1 1g fs2pfd2 1 s 2
t d2g

. (7)

The density ofx is

rsxd ­ cj1 2 x2js1ytd21, jxj # 1 , (8)

with c a normalization constant determined bR11
21 rsxddx ­ 1 [18].
These results provide an approximate theory for t

deterministic differential equation. Figure 2(a) show
a time series of a single variablexi in a network
with N ­ 64, K ­ 20, together with the corresponding
density distribution Fig. 2(b), power spectrum Fig. 2(c
and distribution of timesti between switching in the
forcing jstd, Fig. 2(d). Superimposed on these resul
are the analytic results found for Eq. (5) (dashed line
but with the assumption thatjstd is the RTS with the
same mean time between switches as in the determini
equation.

There are several differences between the two resu
The density of intervals of a Poisson process is expone
tial with equal values for the mean and the standard dev
tion. In the deterministic equation, the density distributio
for times between switches,rstid, has a higher density
for short and long times, Fig. 2(d), than the exponent
function. The mean time between switches is 0.041
with standard deviation 0.052 17. The deterministic sy
tem gives a broader density distribution,rsxd Fig. 2(b),
than the stochastic model. However, despite these d
ferences, Eq. (5) withjstd given by an appropriate RTS
provides a reasonable first approximation to the dynam
in Eq. (3).

We now consider the relationship between the me
time between switches of the forcing function in Eq. (5
and the mean zero crossing times ofx. We designate
the mean time between switches and zero-crossing ti
654
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FIG. 2. Dynamics over 20 000 switch times (N ­ 64, K ­
20) compared with results from Eq. (5) with the RTS as
stochastic forcing. The theoretical results for the RTS forcin
are shown as dashed lines. In the RTS model we tak
t ­ 0.04185 to correspond to the numerically determined mea
value in the deterministic equation. (a) A typical variable
xi in the deterministic system. (b) Density distributionrsxid
averaged over alli, with 100 bins in the intervalf21, 1g,
theoretical result from Eq. (8). (c) The power spectrum
The theoretical result from Eq. (7) is obscured under th
numerically determined power spectrum. (d) Distributionrstid
of timesti between switching in the forcingjstd.

for the RTS forcing byt and tz , respectively. The
corresponding quantities for the deterministic system a
given byt andtz .

In Eq. (5) with the RTS as the forcing signal, ift ¿ 1
then x will cross zero almost every timejstd switches,
so that tz ø t. We are not aware of analytic results
for smaller values oft. In Fig. 3(a) the1 represent
numerical results and the solid curve is

tz ­
p

pt . (9)

There is close agreement for sufficiently low values oft,
but we have no derivation.

Now consider the deterministic system. If we assum
that the logical functionLi combinesK inputs randomly,
a switch in the forcing of any given variable will
occur with a probability of K

2sN21d whenever any other
variable crosses its threshold. For a given time leng
T sufficiently long, the average number of expecte
zero crossings for a single variable isnz ­

T
tz

. The
total number of zero crossings for all variables isnzN.
Consequently, the expected number of switches of th
forcing function for a given variable in timeT is nzNK

2sN21d ,
which should equalTyt. Consequently, for largeN we
obtain

tz ­
K
2

t , (10)
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FIG. 3. (a) The mean zero crossing timetz in the RTS model
as a function oft (+), based on the mean of5, 000 zero
crossings for several values oft. The data are well described
by tz ­ sptd1y2, which is completely covered by the dat
points (+). The circles (±) are computations from Eq. (3) fitted
by the curve2.13 t1y2. (b) t as a function ofK, compared with
numerical data (±) fitted by Eq. (11)tsKd ­ 18.1

K2 .

which agrees with the numerical computations. Th
values fortz and t are plotted in Fig. 3(a). Taking our
cue from the system with RTS forcing, the data fa
approximately on the curvetz ­ c

p
pt wherec ø 1.2.

This expression is consistent with Eq. (10), provided

t ­
4pc2

K2
. (11)

Figure 3(b) comparest as a function ofK from the
numerical simulations with Eq. (11).

The above arguments lead us to conjecture that
statistical features of the chaotic dynamics in Eq. (3) f
sufficiently largeK andN depend on the number of inpu
variablesK rather than the dimension of the network.

Now we adopt a more global perspective. A solutio
trajectory of Eq. (3) can be represented symbolically
a sequence of logical stateshX1, X2, . . . , Xkj that are en-
countered when starting from some arbitrary initial co
dition. The Hamming distanceh, 0 # h # N, between
two logical states is the number of coordinates in whi
the two states are different [3]. Since each logical state
a Hamming distance of one from the preceding state,
dynamics can be represented schematically by a walk
anN-dimensional hypercube (N-cube) where at each step
there is a transition to a neighboring vertex [19]. In ord
to compare networks of different dimension, it is useful
define thenormalizedHamming distanceH,

H ­
h 2

N
2

N
2

. (12)

For any two vertices on anN-cube,0 # jHj # 1.
In the deterministic equations, there are restrictio

on the allowed transitions imposed by the structure
the network, but we simply consider a random walk o
an N-cube. Letpsh, nd denote the probability that the
Hamming distance from some arbitrary starting vertex ish
aftern steps. Thenpsh, nd satisfies the recursion relation

psh, nd ­ psh 2 1, n 2 1d
N 2 sh 2 1d

N

1 psh 1 1, n 2 1d
h 1 1

N
, (13)
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where N2sh21d
N and h21

N give the probabilities of increas-
ing and decreasing, respectively, the Hamming distan
on any given step. Based on the above, the normaliz
Hamming distance, Eq. (12), is

Hsnd ­
N 2 2

N
Hsn 2 1d ­

µ
N 2 2

N

∂n

, (14)

where Hs0d ­ 1, n $ 0. Thus, the random walk on
the N-cube leads to an exponential decay ofHsnd to 0
[20]. However, this is not the case in the determinist
equation, Fig. 4. For the deterministic system,Hsnd is
well described by a stretched exponential of the form

Hsnd ­ exp2snyn0db

. (15)

Stretched exponential relaxation has been widely obser
in a variety of physical and biological settings [21]. Tw
factors may contribute to the nonexponential decay
the current situation: (i) Following a zero crossing, th
corresponding variable will remain in the neighborhoo
of zero for several integration steps and will therefo
have an increased probability for zero crossing so th
Eq. (13) does not hold; (ii) restrictions are imposed b
the logical network since each edge can only be traver
in one orientation [19]. The relative importance of thes
factors needs further investigation.

Equation (3) is a differential equation modeling com
plex networks with a definite logical structure. Early re
search which investigated this equation, or equations w
similar structure, analyzed conditions for steady sta
and limit cycles [5–8]. Although deterministic chaos ha
also been observed in related models of neural and g
networks [9–13], there is no general theory. Our a
proach is related to earlier criteria for chaotic dynamics
Hopfield-type neural networks [10]. In this earlier work
a Langevin-type equation was derived in which the for
ing term was Gaussian noise rather than the RTS.

Biological systems are often modeled by feedba
networks of great complexity. An unresolved issue

FIG. 4. Semilog plot of the normalized Hamming distanceH
for different values ofK as a function ofn (averaged over10
different networks with50 initial conditions each,N ­ 64).
The dashed line gives the falloff derived from a rando
walk on the hypercube Eq. (14).Hsnd is well described by
a stretched exponential, Eq. (15):K ­ 10, n0 ­ 53.6, b ­
0.828; K ­ 15, n0 ­ 69.4, b ­ 0.784; K ­ 20, n0 ­ 88.9,
b ­ 0.760.
655
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whether the dynamics described here might reflect norm
function and behavior, or whether network connectivi
and structure are selected to lead to a more orde
dynamics.
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