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Common Chaos in Arbitrarily Complex Feedback Networks
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A class of differential equations, which captures the logical structure of discrete time logical switching
networks composed of many elements, displays deterministic chaos if each element has many inputs.
Statistical features of the dynamics are approximated by using a mean field Langevin-type equation with
a random telegraph signal as a stochastic forcing function, and also by considering a random walk on
an N-dimensional hypercube. [S0031-9007(97)03599-0]

PACS numbers: 05.45.+b, 05.40.+j, 05.50.+q, 87.10.+e

A logical switching network is composed of logical betweenX; and x; is defined as follows: X; = —1 if
elements that assume discrete values. Time is discrefe < 0 andX; = +1if x;, = 0. For a given set of\; the
and each element computes a logical function based adifferential equation
the values of inputs to that element. Logical switching -
networks are used to design computers [1], and as models L= —x; + A(X(D)), i=1....,N, (3
of neural [2] and genetic networks [3]. The current dt
work is motivated by studies of randomly generatedis a continuous analog of Eqg. (1). For each variable, the
logical networks in which the logical elements representemporal evolution is governed by a first order piecewise
genes [3]. If there are a large number of elements antinear differential equation. Left, 1, ..., 7} denote the
each element has more than two inputs, these discresvitch times when any variable of the network crosses O.
time networks show disordered behavior in which nearbyFor t; <t < t;1, the solution [14] of Eq. (3) for each
trajectories diverge and cycle lengths grow exponentiallyariablex; is
as the number of elements in the network increases [3,4]. . —(1—1, ' R
In real biological systems there are not clocking devices to xi(0) = xit)e T+ AN — e V) ()
generate synchronous updating, and theoretical models avée carried out extensive numerical computations with
more appropriately formulated as continuous differentialv = 64 and the number of inputd = K = 25. For
equations [5—13]. In what follows, we analyze disorderedhese equations, the Jacobian can be explicitly computed
dynamics in a differential equation analog of logical numerically [13]. Using the technique in [15], the leading
switching networks for parameter ranges that lead td.yapunov number was computed. It was always positive

disordered dynamics in the discrete system. for the randomly generated networks with= 64, 9 <
First consider a logical network consisting of bi- K = 25, indicating deterministic chaos.
nary elementsX(t) = (X,(¢), X2(t),...,Xn (1), X;(t) = Figure 1 shows the dynamics of a single variable
—1,+1. The network is updated by means of the dy-(lower trace) and the forcing function for that variable
namical equation (upper trace) from a 64-dimensional system wkth= 20.
X,’(I + 1) = AI(X(I))’ i=1,...,N, (1)
whereA; is a logical function andX(¢) is the input state 1
at timer. We consider networks with no self-input. In E(Y) ‘
other words, we assume -1
Ai(X13X27“"Xi_17_1’Xi+1""XN) x(t)!
= Ai(X17X27“"Xi_17 I’Xi+1"‘7XN)' (2) 0-05-
A; generates an output of either +1 or —1 for each input
state. EachA; can be chosen in?" ' different ways, 0

and for N fixed, there are2"*2"" different networks
corresponding to Eq. (1). Thus, Eg. (1) represents the
class of arbitrarily complex logical feedback networks. A
K-input network is a subclass of Eqg. (1) in which, for
each element, the inputs are selected fiéne= (N — 1)  FIG. 1. Dynamics in a system with = 64, K = 20 showing
inputs. fluctuation of a single variable (lower trace) and its associated

. forcing function (upper trace¥(r) = A;(X(¢)) from Eg. (3).
,The '99'03' strgcture of Eq. (1) Can be captu'red by %ach zero crossing of any variable is designated by-.a
differential equation [6]. For each discrete variable  Because of the short times between switches, the piecewise

we associate a continuous variahle The relationship exponential trajectory appears as straight line segments.
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In Eq. (3) each variable experiences a fluctuating field (1) (G) A o b
described b in- i i i PC 7a\ ()
y a Langevin-type differential equation 03 ooul
dx 0
7 x + £@1). 5) o ool
Here, however£(t) is not a random variable, but rather g R / \
it is a chaotic fluctuating variable switching back and 0 o 0 7 o v s 2
forth between=1 as the deterministic trajectory crosses
thresholds inV-dimensional state space. y
The fluctuating forcing function in Fig. 1 (upper trace) S() }— ( C ) p(t)
is suggestive of the random telegraph signal (RTS)—¢ 10° 0.044
signal that switches randomly between the two valtigés 10° "
[16,17]. The usual assumption is that the time betweer 107 0.024
switches is Poisson distributed with mean switch time )
Equation (5) wherg(¢) is the RTS has been previously 10 — 0 >
analyzed [17]. The autocorrelation functiGh(z) is 100 10 10 f 0 0.1 02 T;
C.(1) — 1 <e—(2/7)|t| _ ze—m) (6) FIG. 2. Dynamics over 20000 switch timed (= 64, K =
_ 2 T ’ 20) compared with results from Eq. (5) with the RTS as
T stochastic forcing. The theoretical results for the RTS forcing
and the power spectrum is are shown as dashed lines. In the RTS model we take
7 = 0.04185 to correspond to the numerically determined mean
S(f) = 1 @) value in the deterministic equation. (a) A typical variable,

x; in the deterministic system. (b) Density distributiprix;)

2 2 2\21°
2@ f)? + 17 f)* + (T) ] averaged over alli, with 100 bins in the interval—1,1],

The density of is theoretical result from Eq. (8). (c) The power spectrum.
21(1/7)-1 The theoretical result from Eq. (7) is obscured under the
p(x) = cll — x*|%/777, x| =1, (8)  numerically determined power spectrum. (d) Distributjefr;)

with ¢ a normalization constant determined byOf“meST" between switching i the forcing(r).

fﬂ p(x)dx = 1[18].
These results provide an approximate theory for the
deterministic differential equation. Figure 2(a) showsfor the RTS forcing byr and r,, respectively. The
a time series of a single variable; in a network  corresponding quantities for the deterministic system are
with N = 64, K = 20, together with the corresponding given by7 and7,.
density distribution Fig. 2(b), power spectrum Fig. 2(c), * |n Eq. (5) with the RTS as the forcing signal,if> 1
and distribution of timesr; between switching in the tnhen x will cross zero almost every timé(s) switches,
forcing £(s), Fig. 2(d). Superimposed on these resultssg thats, ~ . We are not aware of analytic results

are th_e analytic result.s found for_ Eq. (5) (dash_ed lines)ior smaller values ofr. In Fig. 3(a) the+ represent
but with the assumption thag(s) is the RTS with the umerical results and the solid curve is

same mean time between switches as in the deterministic

equation. tp =~mT. 9)
There are several differences between the two result§inere is close agreement for sufficiently low valuesof

The density of intervals of a Poisson process is exponer; i we have no derivation.

tial with equal values for the mean and the standard devia- now consider the deterministic system. If we assume

tion. In the deterministic equation, the density distributionypat the logical functiom\; combinesk inputs randomly
for times between switchegi(7;), has a higher density 5 gswitch in the forcing of any given variable will

for short and long times, Fig. 2(d), than the exponentia%Ccur with a o K
. . . . probability of;z—7; whenever any other
function. The mean time between switches is 0.0418 ariable crosses its threshold. For a given time length

with standard deviation 0.05217. The deterministic sys- sufficiently long, the average number of expected

tem gives a broader density distribution(x) Fig. 2(b), : . . T
than the stochastic model. However, despite these d“z_er? crosk')smgsf for a smgl-e Vaf”ablTl 15 '_b;f. The
ferences, Eq. (5) witke(1) given by an appropriate RTS total number of zero crossings for all variablesnigv.

provides a reasonable first approximation to the dynamicgonsequently, the expected number of SW'ICQ?NSK of the

in Eq. (3). forcing function for a given variable in tim€ is 55—,

We now consider the relationship between the meathich should equal’/7. Consequently, for large/ we

time between switches of the forcing function in Eg. (5)°Ptain
and the mean zero crossing times xof We designate _ K
2

the mean time between switches and zero-crossing time I =T, (10)
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(a) o T (b) wherew and % give the probabilities of increas-
0.2 ing and decreasing, respectively, the Hamming distance
2 on any given step. Based on the above, the normalized
0.1 Hamming distance, Eq. (12), is
AN B — H(n)zuH(n—1)=<N 2), (14)
0o 01 02 T 10 15 20 25K N N

FIG. 3. (a) The mean zero crossing timein the RTS model Where H(0) =1, n = 0. Thus, the random walk on
as a function ofr (+), based on the mean df 000 zero the N-cube leads to an exponential decayffr) to O

crossings for severa] vaI_ues of The data are well described [20]. However, this is not the case in the deterministic
by r. = (w7)'”?, which is completely covered by the data equation, Fig. 4. For the deterministic systeHi(n) is

E;’i[;fz f:])r'v;ﬂi :ilr/gl_es(;g ?rsscg%ﬂ‘étt?gir?';z{frgg]mi%rg)\E}:ﬁd well described by a stretched exponential of the form
18.1

numerical datad) fitted by Eq. (11)r(K) = %= H(n) = exp’(”/”‘])ﬁ ) (15)

Stretched exponential relaxation has been widely observed

which agrees with the numerical computations. Thdn & variety of physical and biological settings [21]. Two
values for7, and 7 are plotted in Fig. 3(a). Taking our factors may contribute to the nonexponential decay in
cue from the system with RTS forcing, the data fallthe current situation: (i) Following a zero crossing, the
approximately on the curve. = c¢/77 wherec =~ 1.2.  corresponding variable will remain in the neighborhood

This expression is consistent with Eq. (10), provided of zero for several integration steps and will therefore
dar 2 have an increased probability for zero crossing so that

X2 (11)  Eqg. (13) does not hold; (ii) restrictions are imposed by
. . the logical network since each edge can only be traversed
F|gure_3(b)_comp_are§ as a function ofk" from the in one orientation [19]. The relative importance of these
nhumerical simulations with Eg. (11). . factors needs further investigation.

T_he. above arguments lead us to conjecture that the Equation (3) is a differential equation modeling com-
Stat!sF'Cal features of the chaotic dynamics in Eq. .(3) fOrplex networks with a definite logical structure. Early re-
sufi_‘lc:lently largeX’ andN depend on the number of input search which investigated this equation, or equations with
variablesk' rather than the dimension of th_e network. . similar structure, analyzed conditions for steady states

Now we adopt a more global perspective. A SOIUtlonand limit cycles [5—-8]. Although deterministic chaos has

trajectory of Eq. (3) can be represented symbolically byalso been observed in related models of neural and gene
a sequence of logical stat€X;, X, ..., X} that are en-

countered when starting from some arbitrary initial con networks [9-13], there is no general theory. Our ap-
o ; . “proach is related to earlier criteria for chaotic dynamics in
dition. The Hamming distancé,0 = & = N, between b y

Hopfield-type neural networks [10]. In this earlier work,

two logical states is the number of coordinates in wh|cha Langevin-type equation was derived in which the forc-

the two states are different [3]. Since each logical state '?ng term was Gaussian noise rather than the RTS

a Ham_ming distance of one from the Pfeceding state, the Biological systems are often modeled by feedback
dynamics can be represented schematically by a walk o

Retworks of great complexity. An unresolved issue is
an N-dimensional hypercubéVi-cube) where at each step g piexity
there is a transition to a neighboring vertex [19]. In order

T =

to compare networks of different dimension, it is useful to 1
define thenormalizedHamming distancéi, H(n)
h— 3 10"
H=—Fx~=. (12)
2 2
For any two vertices on aN-cube,0 < |H| < 1. 10
In the deterministic equations, there are restrictions 3
on the allowed transitions imposed by the structure of 10
the network, but we simply consider a random walk on 0 200 400 600 n

an N-cube. Letp(h,n) denote the probability that the g 4 Semilog plot of the normalized Hamming distarite

Hamming distance from some arbitrary starting vertek is for different values ofk as a function ofz (averaged ovet0
aftern steps. Themp(h, n) satisfies the recursion relation different networks with50 initial conditions each/N = 64).

N—(h-1 The dashed line gives the falloff derived from a random
p(h,n) =ph — 1,n — 1) walk on the hypercube Eq. (14)H(n) is well described by
N a stretched exponential, Eq. (15K = 10, ny = 53.6, B =
h+1 0.828; K = 15, ng = 69.4, B = 0.784; K = 20, ny = 88.9,
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