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I. INTRODUCTION

In biology it is common to represent the dynamics of
complex interacting systems by N coupled first order ordi-
nary differential equations

=y

" fi(;)’ i=1, N (I.1)

where the x; are the variables (e.g. population densities,
concentrations of metabolites, firing frequencies of neu-
rons), the fi give the interactions between the variables,
and there are N variables of interest. The equation of
motion (equation (I.1)) can in principle be integrated start-
ing from any initial condition to give the N variables as

a function of time. These solutions define continuous tra-
jectories in N-dimensional Euclidean space. In many in-
stances, and those which I discuss here, the variables are
positive by definition so that the phase space is the posi-
tive orthant of N-dimensional Euclidean space. Since, the
f; will in general be nonlinear, and there may be a great
many interacting species, "analytic solutions" of equation
(I.1) are impossible. This observation has led to the de-
velopment of methods to determine the properties of the
solutions of equation (I.1) without numerically integrating
the equation.

Statistical mechanics has played a prominent role.
Volterra [1] assumed the f ; are
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N
£, =xa, - jgl Bijxj (1.2)
- i#j

where the x; are the population densities, the a; give the
growth of a single species in absence of all others, and
the interaction coefficients Bjs; are appropriate for pred-
ator-prey systems Bij"'sij' With this choice of fi the
quantity

N

H= Z[ﬁu)-{mxﬁn] (1.3)
i=1

is conserved. Here, x{ is the steady state solution of
equation (I.1) dxg/dt =0. The observation of a conserved
quantity has led to the development of a statistical me-
chanics of equations (I.1) and (I.2), [2,3]. This approach
has not only been applied to ecological systems [7-3] but
also to metabolic cellular systems [4] and to neural net-
works [5] by choosing different (but also very special)
functional forms for the fi'

The major criticism of this statistical mechanical
approach is that the theory depends on selection of special
functional forms for the f; [6]. Under arbitrary small per-
turbations to the fi’ the whole topological character of the
solution curves to equation (I.1) and (I.2) changes. A
set of differential equations is called structurally stable
if the topological features of the dynamics remain invariant
to small changes in the differential equations [7]. Several
authors, particularly Thom, have stressed the importance of
structural stability of mathematical models in biology [8].
Since the interactions between species are not exactly those
described by equation (I.2), mathematical results which de-
pend on this precise functional form lack robustness.

This article describes combinatorial methods which can
be used to analyze qualitative aspects of flows in phase
space. My approach has been motivated by the observation
that despite differences in mathematical models of biolog-
ical systems, the qualitative features of the dynamics are
often identical. For example, in mathematical models of
the predator-prey system with 2 species, one of two generic
behaviors is typically observed [6]. 1In the limit t >,
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either trajectories approach a stable steady state, or tra-
jectories approach a stable limit cycle, figure (1) (a
stable 1imit eycle is a periodic solution to a differential
equation which has the property that every point in phase
space sufficiently close to the periodic solution approaches
it in the limit t +«)[7]. These two phase plane portraits
should be compared with the nested closed trajectories ob-
served in the structurally unstable Volterra-Lotka equation,
equations (I.1) and (I.2) with N=2, figure (1) [3,6,7].

In this article I describe mathematical methods which
can be used to classify biological systems on the basis of
the symmetries of the flows in N-dimensional phase space
(Section II). These methods are then used to classify a set
of paradigm piecewise linear differential equations (called
PL equations, Eqs. (III.1)) on the basis of the flows in
phase space and also the interactions between the variables
(Section III). Using this classification scheme, it has
been possible to predict the existence of stable limit cycle
oscillations in a large class of the PL equations (Section
IV). Methods to study the uniqueness and the period of the
cycles are introduced in Section V. The results are dis—
cussed in Section VI. The Appendix contains a brief sur-
vey of the combinatorial methods used in the text.

S

> > >

X X X

Figure 1 -- Typical dynamics found for predator-
prey system. In (a) all trajectories approach
a steady state in the limit t+«. In (b) all
trajectories approach a stable limit cycle
attractor. In (c) the structurally unstable
closed loop trajectories for the Volterra-Lotka
equations is shown.




588 ' L. GLASS

IT. CLASSIFICATION OF COARSE GRAINED FLOWS
IN PHASE SPACE [9]

The analysis is appropriate for biological systems in
which
1) The phase space can be decomposed into 2N volumes
which are homeomorphic (topologically equivalent)
to the 27 orthants of N-dimensional Euclidean space.

2) Flows between each pair of adjaceht volumes
(volumes which share a common (N-1) dimensional
boundary) are in one and only one direction.

The consequence of these two assumptions is that a coarse-
grained representation of the dynamics is possible on an
N-cube, where each edge of the N-cube is directed (see
Appendix). Each vertex of the N-cube corresponds to a
volume of phase space and the directed edges give transi-
tions between adjacent volumes. The N-cube with directed
edges is called a state transition diagram. State transi-
tion diagrams have been constructed for a large number of
mathematical models which have been proposed previously to
represent dynamics in biological systems [9]. Two biologi-
cal systems will be said to be in the same structural equiv-
alence class if their state transition diagrams can be
superimposed under a symmetry operation of the N-cube.

It is a simple matter to count the number of structural
equivalence classes in 2 and 3 dimensions [9]. In 2 dimen-
sions there are just 4 classes, shown in figure (2). Struc-
ture IV arises in situations in which there are stable os-
cillations, or where there is an oscillatory decay to a
single stable steady state such as is shown in figure (1).
Structure I arises in cases for which there are two stable
steady states, such as occurs with mutually inhibitory in-
teraction (competitive exclusion) or mutually activating
interactions. In 3 dimensions the Polya enumeration theo-
rem (see Appendix) can be used to count the number of struc-
tural equivalence classes. There are 112. One of the
classes, shown in figure (3), has been of particular interest
in studies of oscillations in biological and chemical sys-
tems. This structure was found [10,77] for the Field-Noyes
model [72] of the Belousov-Zhabotinsky reaction (an oscil-
lating chemical reaction) and also in mathematical models of
feedback inhibition (the last element in a synthetic se-
quence inhibits synthesis of the first element) [13-18].
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I have not tried to count the number of structural
equivalence classes for N34. Although such computations
should be possible, the number of classes is large and

knowing the exact number does not seem to be terribly in-
teresting.

a
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Figure 2 -- The four structural equivalence
classes in 2 dimensions. Structure IV is the
2-dimensional cyclic attractor (see Sect. Iv).

011 1

<«
010 > 110 A
Y 001 44 101
000 > 100

Figure 3 -- The structural equivalence class
found for mathematical models of limit cycle
oscillations in biological systems in 3 dimen-
sions. This is the 3-dimensional cyclic
attractor (see Sect. IV).
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ITI. CLASSIFICATION OF PARADIGM
PL EQUATIONS [11,16,17]

In neurobiology [19], cellular biology [20-23], and
endocrinology [24] analogies have been drawn between con-
trol elements and discrete "switches." 1In this section, a
system of piecewise linear ordinary differential equations
(PL equations) is given which represents in a schematic
fashion, potentially complex interactions between "switch-
like" elements. These equations can be classified on the
basis of their state transition diagrams using the technique
described in the preceeding section. The PL equations are,

dx
at  MBilEEyeexy g% eeexy] - ovgxg
xiBO; i=1,N; N+1=1 (III.la)

where

ii =1 if X, > ei

ii =0 if x; < Gi (III.1b)
and

Ai/yi > ei s (III.1c)

The production constants Aj, decay constants y,, and thresh-
olds 6., are all taken to be positive numbers.  Here each

B, is a Boolean function of (N-1) Boolean variables (see
Appendix). The B; can be represented in a truth table as
in Table I. Each of the bj ; in Table I is either 0 or 1.
The condition that B; is not a function of i places re-
strictions on the entries in the truth table, by 1=b1 2>
by,3=by,4, by, ;=by, 3 etc. Since each B, can be chosen in
ZZN_1 different ways, the tota% %umber of ways of choosing the
Bi in equation (III.1) is 2Nx2 . The N_threshold hyper-
planes divide the positive orthant into 2 hypervolumes.
Each hypervolume is named by its Boolean state (ilﬁz...xu)
and in this way can be associated with a vertex of the
N-cube (see Appendix). The Boolean states are called
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S1,S2 ...S . in Table I. From the truth table it is easy to
determine 2 the restrictions on the flows in phase space
for any set of Bj. For example, consider the two vertices
representing S; and Sp. If by ,=b; =1 then the edge is
directed from S; to S;. This is because from equation
(III.1) if §2=§3=...=iN=0, (dx]_/dt)x1=91>o' If b1’2='b1’1

=0 the edge is directed from S; to S;. In similar fashion

the orientation of each of the Nx2N-1 edges of the N-cube
is specified by the truth table in Table I. The N-cube
with directed edges is called the state transition diagram
of equation (III.1). Given a state transition diagram, the
process just described can be reversed‘'so that mathematical
models which reproduce observed patterns of coarse-grained
flows can be generated. This process is used in the next
section and also is discussed in detail elsewhere [17].

The remainder of this article deals with limit cycles in
equation (III.1).

Table I

A tabular representation of the function B; in
equation (III.1). The elements b are either
1 or 0. Using the restrictions didcussed in the

text, only NXZN_l of the bi, can be chosen in-
dependently. Each of these ~choices corresponds
to specifying one of the edges on the N-cube.

x1 x2 x3 ...xN B1 B2 - BN
5, 000 ...0 b, b,y cee by
s, 100 ...0 b, L cee By g
s, 0 10 ...0 b, by 3 cos By g
s, 110 ..00b, By 4 o By,
s 111 ...1 b b ... D
N1 1,281 2,281 N,2V-1
g 111 ...1 b b b

oN 1,2 2,2 N,2
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IV. LIMIT CYCLES IN THE PL EQUATIONS

A. Cyclic Attractors Imply Limit Cycles [16,17]

I believe the dynamics of equation (ITI.1) are of in-
terest not only in their own right, but also because they
appear to offer a set of paradigm examples of interest in
a biological context. For more than three interacting
species it seems hopeless to try to examine every possible
structural equivalence class. However, a method has been
found which has been used to predict the existence of stable
limit cycle oscillations for a large class of PL equations.
The method is related to the combinatorial notion of snakes.

A snagke in a graph G is a simple circuit C in G such

that C has no chords in G, so that every edge in G which
joins two vertices of C is an edge of C [25]. A eyclie
attractor of a directed graph G' can be constructed from a
snake C in the following way [16,77]. Every edge in G'
which shares a common vertex with C is directed towards C.
Every edge in C is directed so that the snake may be tra-
versed by following the directed edges (figures 2 and 3).
In the following I consider cyclic attractors on the N-cube.
An V-dimensional cyclie attractor (or snake) is found on all
M-cubes for M :N but not for M<N. Two N-dimensional cyclic
attractors which can be superimposed under a symmetry of the
N-cube are called equivalent.

Conjecture [17] For N33, an N-dimensional cyclic
attractor implies a stable limit cycle oscillation in the
PL equations. This limit cycle oscillation passes through
the same volumes in phase space in the same order as the
cyclic attractor. All points in each volume through which
the limit cycle passes tend to the limit cycle as t »=,

Equation (III.1) was numerically integrated with
A3=v4=1, 64=0.5, i=1,N for all the different equivalence
classes of cyclic attractors in 3, 4 and 5 dimensions, (22
cases in all). In every case a stable limit cycle oscil-
lation was found. The patterns of oscillation in phase
space satisfy the conjecture. Moreover, in any one case,
the limit cycles appear to be unique as conjectured, since
the asymptotic cycle was the same for several different in-
itial conditions (but an extensive numerical study of this
point was not undertaken). The periods of the limit cycles
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found for each case are different. These results are sum—
marized in Table II.

The cyclic attractors in 3 and 4 dimensions were readily
found using Gilbert's list of cycles on 3-cubes and 4-cubes
[26]. It was necessary to find the 5-dimensional snakes
since I was unable to find a complete listing of snakes or
cycles on N-cubes, for N3>5. The next section describes
this computation.

B. Snakes on 5-cubes

The length of a snake is equal to the number of ver-
tices (or edges) that the snake passes through as the cir-
cuit is traversed. Let S(N) denote the length of the long-
est snake on the N-cube. A number of workers [25,27,28]
have provided upper bounds for S(N). Using the result at-
tributed to Larman [28] for N5

N-1 N-5 N—6

S(N) <2 -2 s (1v.1)

S(5) is computed to be 14.

A circuit on an N-cube can be specified by giving the
sequence of vertices the cycle passes through as the cycle
is traversed. The circuit in figure 3 can be given

(ooo, 100, 110, 111, 011, 001, 000 ...) . (Iv.2)

The coordinate sequence gives a listing of the coordinates
which change as the circuit is traversed [26]. For a cir-
cuit of the length L the coordinate sequence is an L-tuple,
for example the circuit in equation (IV.2) is designated
(123123).

Consider the circuit that passes through the vertices
(010, 110, 100, 101, 001, 011, 010 ...). (Iv.3)

This circuit is obtained from equation (IV.2) by comple-
menting the second coordinate (see Appendix). The coordi-
nate sequences of equations (IV.2) and (IV.3) are identical,
and the two cycles are in the same equivalence class.
Similarly given a coordinate sequence for any circuit, po-
tentially 2N different orientations of the circuit on the
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Table II %2

Snakes in 2,3,4 and 5 dimensions. For each snake is
given the coordinate sequence; interval sequence; the span
(8); the period of the associated limit cycle in equation = -
(III.1) with A3=v4=1, 6.=0.5, i=1,N; the predicted period
(T=kS*) with k=0.65576 and a=0.47485 (see Sections IV and V).

Dimen-  Coordinate Interval s Period of N

sion Sequence Sequence Limit Cycle T=kS

2 1212 (anQamn 8 - =
123123 (22)(22)(22) 27 2.88727  3.13644

4 12341234 (33)(33)(33)(33) 64 4.87502  4.72521
12341243 (33)(33)(42)(42) 62 4.77749  4.65451
12314324 (24)(42)(24)(24) 60 4.67046  4.58260

5 1234512345 (44)(44)(44)(44) (44) 125 6.56256  6.49347
1234512354 (44)(44)(44)(53)(35) 123 6.52185  6.44393
1234513254 (44)(53)(35)(53)(35) 121 6.47949  6.39396
1234512534 (44)(44)(53)(53)(26) 119 6.42957  6.34355
1234521534 (53)(35)(53)(53)(26) 17 6.38316  6.29270
1234512543 (44)(44)(62_)(44)(26) 17 6.37605  6.29270
1234513524 (44)(62)(35)(53)(26) 115 6.33490  6.24139
1234521543 (53)(35)(62)(44)(26) 115 6.32712  6.24139
1234531524 (53)(62)(26)(53)(26) m 6.23048  6.13734
1231435425 (26)(62)(26)(26)(26) 105 6.05948  5.97751

123145123145 (2222)(55) (55) (55) (55) 180 7.57853  7.72106
123145123154 (2222)(55) (55) (64) (46) 178 7.55154  7.68019
123145132154 (2222)(64)(46)(64)(46) 176 7.52381 7.63910
123142153145 (2222)(37)(55) (55) (37) 172 7.47991 7.55616
123142154135 (2222)(37)(73)(37)(37) 164 7.37034  7.38718

12314251231425  (2323)(3232)(66)(66)(66) 243 8.71866  8.90362
12314215321425  (2233)(3322)(57)(66)(57) 243 8.71342  8.90362
12314215231425  (2233)(3232)(66)(66)(57) 243 8.71276  8.90362

L




e

DYNAMICS IN BIOLOGICAL SYSTEMS 595

N-cube can be generated by considering all possible comple-—
mentations of the coordinates. Therefore, it simplifies
matters to consider the coordinate sequences for circuits,
rather than listing the vertices the circuit passes through.

Any listing of coordinates will generate a path on the
N-cube. It is simple to find the criteria that give paths
which are circuits and snakes. The two conditions that a
list of coordinates must satisfy to represent a circuit of
length L and not contain a shorter circuit are [26]:

1. Each coordinate in the L-tuple must appear an
even number of times.

2. For any sequence of consecutive steps of length
shorter than L, at least one coordinate must
appear an odd number of times.

The coordinate sequence also makes it easy to spot circuits
which are snakes. In addition to conditions 1 and 2, for
a snake of length L (L >6)

3. Every sequence of consecutive digits of length
I, where I is an odd integer 3 < I <L-3, must con-—
tain at least 3 coordinates which appear an odd
number of times.

For example, the coordinate sequence for (IV.2) does repre-
sent a snake, whereas, the coordinate sequence (121323) rep-
resents a circuit which is not a snake.

The coordinate sequence does not help very much in
identifying equivalent snakes under permutations (see Appen-
dix) of the coordinates, particularly if different starting
vertices are listed first in the different coordinate se-
quences. For example, the coordinate sequences

(12314251231425) (1Iv.4a)
(12314351231435) (IV.4b)

represent equivalent snakes. The change number n; of the
i-th coordinate gives the number of times the Z-th coor-
dinate appears in the coordinate sequence [26]. The inter-
val sequence (ai 84500, a4 .) of the i-th coordinate is an
n; tuple giving the number * of coordinates intervening be-
tween each successive appearance in the coordinate sequence
1 .n (IV.4a) is (2323). For a circuit of length L




596 L. GLASS

Provided cyclic permutations of interval sequences are
allowed, the interval sequence of a given element is in- -
variant to both permutations of labellings as well as start-
ing points on the cycle. Consequently, by determining the
interval sequences for each element of two snakes, permuta-
tions in labellings and starting points can be rapidly found.
For example, the interval sequences for (IV.4a) and (IV.4b)
are (2323)(3232)(66) (66) (66) and (2323) (66) (2323) (66) (66)
respectively. If equation (IV.4b) is rewritten
(31435123143512) and the coordinates are relabelled 3-+1,
1+2, 4+3, 5+4, 2+5, the equivalence of equations (IV.4a)
and (IV.4b) is established. 1In general, a necessary but not
sufficient condition that two snakes are equivalent is that
the set of interval sequences for one snake are in one to
one correspondence with the set of interval sequences of

the second snake, where the interval sequence for any one
coordinate can be cyclically permuted.

A systematic procedure was developed for finding all
the snakes in 5 dimensions. The technique will be briefly
indicated. Without any loss of generality, the first three
digits of the coordinate sequence can be given as (123 ...).
Using the criteria for snakes discussed above, it is easy
to see that the fourth digit can either be 1 or 4. Given
the first four digits, there are restrictions placed on the
fifth digit, so that the only possibilities for the first
five digits for snakes on 5-cubes are (12341 ...), (12342
«ee)s (12345 ...) and (12314 ...). Note that only the last
possibility need be considered for snakes of length 12 and
14. 1In similar fashion, all the possibilities for the re-
maining digits consistent with the three criteria discussed
above were generated. Since each snake appears several
times, these long lists of coordinate sequences were then
winnowed down by computing the set of interval sequences
for each snake and searching for permutations which led to
equivalences with other snakes. This search for equivalences
was facilitated by integrating equation (III.1). Equivalent
snakes always led to limit cycles of identical periods, as e
they must if the limit cycles are unique as conjectured.
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V. THE PERIODS OF LIMIT CYCLES IN THE PL EQUATIONS

A. The Span of the Cyclic Attractors

An examination of Table II shows that the periods of
the limit cycles change in approximate "quanta'", where the
size of the quanta gets smaller as the period gets longer.
I have observed a correlation between the period of the
cycle and a number, which I call the span of the cycle, de-
noted S, which can be computed by considering the entire
set of vertices that the cycle passes through. The span of
a cycle is equal to the sum of distances between all pairs
of vertices on the cycle, where the distance between any
two vertices is only counted once. For example, the span
of the cycle in equation (IV.1) is 27. I have fit the period
of the cycles listed in Table II to the equation

T = ks® (v.1)

The computation was performed by taking the logarithm of
both sides and doing a least squares fit. The computed

- values of k and a are k=0.65576 and 0=0.47485. The pre-
dicted cycle periods using these values of k and o in equa-
tion (V.1) are listed in Table II. Agreement between pre-
dicted and observed periods is excellent (except for the
3-dimensional snake, it is better than 3%).

B. Uniqueness and Period for Two Classes
of Limit Cycles

Here I derive polynomial expressions for the periods of
the limit cycles for two classes of cyclic attractors of
equation (III.1). For an N-dimensional system, the poly-
nomial is of order (N-1). In the limit N-«, the period is
explieitly computed. This computation can be used to give
values for k and o in equation (V.1l) for each class of
cycles in the asymptotic high dimension case. Moreover,
certain uniqueness properties of the limit cycle solutions
of equation (III.1) can be deduced by considering the roots
of the polynomials.

The two classes of cycles which I consider are speci-
fied by the coordinate sequences
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123 ... M123 ... M (V.2a)
2M terms M2
and
(1M) (21)(32) ... (M,M-1) (V.2b)
M doublets M3

The coordinate sequences in equations (V.2) produce M-di-
mensional snakes of length 2M. The spans of both classes
of snakes can be computed and are M3 and 6M2-9M for equa-
tions (V.2a) and (V.2b) respectively. For an M-dimensional
snake of length 2M, equation (V.2a) gives the snake of
greatest span-and equation (V.2b) gives the snake of small-
est span. The coordinate sequence in equation (V.2a) gives
the coordinate sequence for a system of equations analogous
to N-dimensional feedback inhibition [75,78]. In 3 dimen-
sions both (V.2a) and (V.2b) give snakes equivalent to the
snake in equation (IV.2). In 4 dimensions the snakes are
different. One of the snakes for equation (V.2a) passes
through the vertices

(0000,1000,1100,1110,1111,0111,0011,0001,0000 ...)
(V.3a)
while one of the 4-dimensional snakes for equation (V.2b)
passes through the vertices
(0o01,1001,1000,1100,0100,0110,0010,0011,0001, ...)
(V.3b)
Truth tables which produce the snakes in equations (V.3)
are given in Table III.

Polynomial expressions for the period of the cycles
are computed for a special case of equation (III.1) in
which

\;=1, v;=1,0;=0.5, i=1,N. (V.4)

The computations are simplified by transforming the vari-
ables. If
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Table III
Truth tables which generate two of the 4-dimen-

sional cyclic attractors.

Case A gives equa-

tion (V.3a) and Case B gives equation (V.3b).

Case B

Case A

By
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¥g = 2(x:L - 0.5)

' = —
Bi 2(Bi 0.5)

ei = 2(91 - 0.5) (v.5)

then for the values of the parameters in equation (V.4),
equation (III.1) can be rewritten

dy .
e W ] = 5.1 -
dt 1952 Y3 1Y q4q0 V] - Yy
i=1,N; yia—l; N+1=1 (V.6a)
where
¥y = 1 if vy 0,
;=0 if y; < 0. (V.6b)

The transformation does not alter the period of the limit
cycles. Numerical integration of equation (V.6) in 4 di-
mensions for the two snakes in equation (V.3) gives the
limit cycles in Table IV. These limit cycles are termed
"symmetric" since they fully reflect the symmetry of the
piecewise linear vector fields. The arguments which follow
derive periods for such symmetric solutions of equations
(V.6), but do not exclude the possibility of asymmetric
solutions [18]. The periods for the two classes of snakes
will be computed separately. . . is the maximum value of
y and ot is the minimum value.

Case A. (Coordinate sequenc:z 2iven in equation (V.3a))
By integrating equation (V.6), we find in M-dimensions

-Mt -Mt
Ymax = ymine_T * (l—f_l_ )
0=y min® + (1-e )
Ymax = Ymin k%2
where the period of the cycle is 2Mr. Calling
w=e ' (v.8)

equation (V.7) can be reduced to the polynomial
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Time

0.000
0.609
1.219
1.828
2.437
3.047
3.656
4.266
4.875

Time

0.000
0.644
1.168
1.811
2.335
2.979
3.503
4.146
4.670

Table IV

601

The limit cycle oscillations found in equations
(V.6) for the truth tables in Table III.
limit cycle can be constructed by joining neigh-
boring points on the cycles by straight lines
in the four dimensional phase space.

Y1
0.000
0.456
0.704
0.839
0.000
-0.456
-0.704
-0.839

0.000

1
0.408
0.689
0.000

-0.475
-0.689
-0.837
-0.903
0.000
0.408

IVa

Y2
-0.839
0.000
0.456
0.704
0.839
0.000
-0.456
-0.704
-0.839

IVb
Y2
-0.903
0.000
0.408
0.689
0.000
-0.475
-0.689
-0.837
-0.903

-0.704
-0.839
0.000
0.456
0.704
0.839
0.000
-0.456
-0.704

-0.689
-0.837
-0.903
0.000
0.408
0.689
0.000
-0.475
-0.689

The

-0.456
-0.704
-0.839
0.000
0.456
0.704
0.839
0.000
-0.456

0.000
-0.475
-0.689
-0.837
-0.903

0.000

0.408

0.689

0.000
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V- 2w+1=0 (v.9)

where the only roots of interest lie in the interval (0,1].
There is one root at w=1. This is a trivial solution of
zero period. Factoring this root from equation (V.9) yields
the equation

Mol
Fw) = ] w -1=0. (v.10)
i=1

Since F(0)=-1 and F(1)=(M-1), there must be at least one
root of F(w) in (0,1). However, since F'(w) >0 for O<w<l
the root is unique. Therefore, there is a unique symmetric
limit cycle for Case A. This result was found in reference
18 using f; somewhat different method. For M=3, T=-6 fn
(-0.5 + 53%/2) = 2.88727. 1In the limit M—+«, the root in
the interval (0,1) can be computed by summing the geometric
series in equation (V.10). This gives

\
T - 1=0 (v.11)

which has the root w=0.5. Consequently in the limit M+
the period is Tp=2M &n2. Since for this case $=M3, we com-
pute the values k=1.38630 and a=0.33333 in equation (V.1).

Case B. (Coordinate sequence given in equation (V.3b))
By integrating equation (V.6) we find

Voax = Yuin e—(211 +13) + ll_e—(211+12)]

-[(M-2)rl+ (M-l)'rl]
Ymin =~ Ymax ©
_ [l_e-[(M—Z)'tl + (M—l)'rz]

= T -e 01
0 Ynin © + (1-e 1)
O=y e '2_ (1-e %2 (v.12)

max




i
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where the period is I‘I('l‘1 + 1,). Calling

-( .+
peg s 175 (v.13)
after some algebra we find

wieawml ol tim-1=0 (v.14)

w=1 is a root of equation (V.14). Factoring out w=1,
we find

M-2
Fw) =wii= ] wi - 3w+l=o0. (v.15)
i=2

Now F(0)=1 and F(1)=2-M. Since F(0) >0 and F(1) <0 there
must be at least one root in the interval (0,1). Differ-
entiating equation (V.15) we find

\

. M2
F)=0-Dd2- ] v h-3=0. (V.16)
i=2

For M=4, F'(w)=3w2-2w-3. Since F'(0)<0, F'(1)<0 and

F"' (w)>0, F'(w)<0 for O<w<l and consequently there is one
symmetric solution for M=4. We now consider the cases
where M2 5. Here :

i) < W gl v.17)
where
g() = M1)wi- (M-2)w-(M-3). (v.18)

Since g(0)<0, g(1)<0 and g"(w)>0, g(w)<0 for O<w<l. There-
for F'(w) is negative for 0<w<l and there is a unique sym-
metric solution to Case B for M:5. 1In the limit M-+, the
positive root in the interval (0,1) is given by

2
W
ol v 3w+ 1=0 (V.19)
from which w=1-v/2/2. Consequently in the limit M-+, the
period for Case B is TB--M !.n(l—/2-/2). Since for this case
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S=6M2-9M we compute the values k=0.50131 and o=0.5000 in
equation (V.1).

VI. DISCUSSION

The methods which have been discussed are interesting
from a mathematical and biological perspective. The theory
of qualitative dynamics of nonlinear differential equations
in 3 or more dimensions is not in very good shape. It has
been particularly difficult to demonstrate uniqueness and
local and global stability for limit cycle oscillations
(but see references 29-31). 1If unique stable limit cycle
oscillations in high dimensions can be generated at will as
conjectured, a sharp challenge to prove the conjecture will
be posed to theoreticians. A numerical computation which
demonstrates the conjecture for the snake in equation (V.2a)
with the parameters in equation (V.3a) is in reference 18.
However, since the argument relied on explicit algebraic
computations made possible by the symmetries of the vector
field, the technique cannot be easily extended to the gen-
eral case. All attempts to date to find an appropriate
topological approach have failed.

Although in this article I have only discussed the
dynamics in a class of piecewise linear equations, I be-
lieve the results are of much more general interest. The
PL equations were devised only after several numerical
studies based on hypothetical mechanisms for biological
control systems indicated that qualitative features of the
numerical solutions did not change provided the same under-
lying "logical" structure was preserved [22,32,33]. Any
one PL equation can be taken to represent a paradigm ex-
ample for a large class of nonlinear ordinary differential
equations. Also partial differential equations, in which
the N variables are considered to be localized catalysts
interacting by diffusion, give dynamics which are typified
by the PL equations [34-36]. A formal procedure for gener-
ating nonlinear ordinary differential equations from the
PL equations is given in reference 17, along with several
examples. One technique for analyzing nonlinear problems
is to search for a piecewise linear limit where explicit
results can be found [16,18,31,37]. It is then necessary
to demonstrate invariance of qualitative dynamics as the
limiting piecewise linear case was reached. There has
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recently been progress in this direction [37].

The mathematical techniques which have been presented
can be used to relate the qualitative dynamics of experi-
mental biological systems, expressed as relative phases of
activity of variables in a coarse grained phase space, to
the underlying interactions which generate these observed
patterns of activity. As noted, for many simple systems
with 2 or 3 interacting species, observed patterns of ac-
tivity can be classified using the techniques described.
The geometric and conceptual simplicity of the mathematics
should enable biologists to employ these techniques in an
experimental situation to help analyze the mechanisms gener-
ating and controlling biological oscillations.

APPENDIX [28, 38, 39]

To understand this article it is necessary to see the
connections between Boolean states, Euclidean N-space and
N-dimensional cubes, called N-cubes. A Boolean variable is
either 1 or 0. In this article Boolean variables are des-
ignated by a tilda, as in Xj. If there are N variables, a
Boolean state is an N-tuple of 1ls and Os. For N variables,
there are 2N Boolean states.

In N dimensional Euclidean space, the equation x4=0
determines an N-1 dimensional hyperplane called the coor-
dinate hyperplane. In N-dimensions there are N coordinate
hyperplanes. The N coordinate hyperplanes partition
Euclidean space into oN hypervolumes, called orthants. Each
orthant can be named by the Boolean N-tuple (xlx S SOE
where ¥;=0 if x;<0 and %;=1 if x4>0. Figure 4a shows the
partition of Euclidean 2-spaces into 4 orthants (called
quadrants in 2 dimensions). An N-cube can be constructed by:

1) Selecting a single point from each of the 2N or-
thants. These points are the vertices of the
Boolean N-cube and can be labelled by a Boolean
N-tuple designating the orthant from which they
came.

2) Drawing an edge between each pair of vertices coming
from orthants which share a common (N-1) dimen-
sional boundary. From this construction it is
clear that there are (Nx2N/2) edges on the N-cube.

The 2-cube with its vertices labelled is shown in figure 4b.
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01 1

01 1

00 10

00 10

Figure 4 -- (a) 2 dimensional Euclidean space.
(b) The geometric dual of (a) - the 2-cube.

In Section V, I refer to the distance between 2
Boolean states. The distance between 2 Boolean states is
equal to the number of loci which differ in the 2 states.
Geometrically, the distance corresponds to the minimum num-
ber of edges which must be traversed on the N-cube to go
from one vertex to another.

Equation (III.1) incorporates Boolean functions in a
differential equation. A Boolean function of N Boolean
variables designates a 1 or 0 to each of the 2N states of

the variables. There are 22" Boolean functions of N-vari-
ables. A Boolean function of N-variables can be neatly
represented on the N-cube. If the Boolean function asso-
ciates a 1 (or 0) to a state, the vertex corresponding to
that state is colored black (or white).

A classical combinatorial problem is to count the num-
ber of equivalence classes of Boolean functions under the
symmetry group of the N-cube, called the hyperoctahedral
group, Oy [38,39]. The number of elements (order) of Oy is
equal to N! 2N. Knowing the symmetry type of a Boolean
function is of practical interest since two logic elements
in the same symmetry class can be constructed out of the
same hardware. Extensive listings of the symmetry classes
of Boolean functions of 2,3, and 4 input variables have
been compiled [39].
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Polya has invented a technique to count the number of
symmetry classes under a group without listing the classes
[38,39]. If S is a finite set, h; is an element of a group
H, n is the order of H and I(hi) is the number of elements
of S left invariant under hj, the number C of equivalence
classes in S under H is

ln

This result has been used to count symmetry classes of
Boolean switching networks, and also in Section II to count
the symmetry classes of state transition diagrams.

There are two ways of thinking about the group ele-
ments of Oy. A geometric approach will be familiar to
those with standard training in chemistry and physics. The
group elements of Oy are the reflections, rotations and
combinations of rotations and reflections which leave the
N-cube invariant [38]. It is difficult to use the geometric
definitions for N4 and an algebraic approach is often
used [39]. Consider an N-cube in which the vertices are
labelled by Boolean states, as in figures 3 and 4. The
elements of Oy generate all possible relabellings of the
N-cube consistent with the constraint that vertices whose
distance is 1 share a common edge. The elements of Oy can
therefore be seen to comprise that N! permutations of the
coordinates, the 2N complementations of the coordinates
(changing a 1 to 0, and O to 1) and combinations of permu-
tations and complementations. The discussion in Section IV
makes use of this algebraic description of the elements of

ON'
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