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~Received 31 January 2000; accepted for publication 16 May 2000!

The explosive growth in knowledge of the genome of humans and other organisms leaves open the
question of how the functioning of genes in interacting networks is coordinated for orderly activity.
One approach to this problem is to study mathematical properties of abstract network models that
capture the logical structures of gene networks. The principal issue is to understand how particular
patterns of activity can result from particular network structures, and what types of behavior are
possible. We study idealized models in which the logical structure of the network is explicitly
represented by Boolean functions that can be represented by directed graphs onn-cubes, but which
are continuous in time and described by differential equations, rather than being updated
synchronously via a discrete clock. The equations are piecewise linear, which allows significant
analysis and facilitates rapid integration along trajectories. We first give a combinatorial solution to
the question of how many distinct logical structures exist forn-dimensional networks, showing that
the number increases very rapidly withn. We then outline analytic methods that can be used to
establish the existence, stability and periods of periodic orbits corresponding to particular cycles on
the n-cube. We use these methods to confirm the existence of limit cycles discovered in a sample
of a million randomly generated structures of networks of 4 genes. Even with only 4 genes, at least
several hundred different patterns of stable periodic behavior are possible, many of them
surprisingly complex. We discuss ways of further classifying these periodic behaviors, showing that
small mutations~reversal of one or a few edges on then-cube! need not destroy the stability of a
limit cycle. Although these networks are very simple as models of gene networks, their
mathematical transparency reveals relationships between structure and behavior, they suggest that
the possibilities for orderly dynamics in such networks are extremely rich and they offer novel ways
to think about how mutations can alter dynamics. ©2000 American Institute of Physics.
@S1054-1500~00!01103-4#
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Tremendous progress has been made in mapping genet
structures in humans and other organisms. This wealth
of information will necessitate new analytic tools to de-
duce function from structure in gene regulatory net-
works. One way to begin tackling this problem is to in-
vestigate simple idealized switching networks that
capture the various possible logical structures of real
gene networks „or other networks characterized by
strong switching…. Discrete-time Boolean switching net-
works have been used for this purpose, but we study
model networks that are continuous in time, represented
by differential equations, though interactions between
genes are still modeled by Boolean functions. Stead
states and simple stable oscillations have been shown
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exist in networks of this type with 3 genes and it is known
that more than one pattern of oscillation is possible with
4 genes, as well as irregular behavior. We show here tha
there is actually a combinatorial explosion of different
logical structures possible as the number of genes in
creases and a corresponding explosion of dynamical pos
sibilities. Even with only 4 genes, at least hundreds of
different stable periodic patterns are possible, some of
them surprisingly long and complex. The existence of
these stable periodic behaviors is proven analytically,
though we searched for these cycles by numerically inte
grating solution trajectories in a million randomly gener-
ated network structures. The results and methods of this
study provide a way to organize thinking about the rela-
tion between structure and function as well as the effects
of mutation in real gene networks whose structures are
being revealed by current research. They also sugges
that the range of possibilities for orderly dynamics in
gene networks is extraordinarily rich.
© 2000 American Institute of Physics
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I. INTRODUCTION

The explosive growth in knowledge of the sequence
the nucleotides in the genome of humans and other org
isms leaves open the question of how the functioning of
genes is coordinated to lead to orderly development and
derly function. New technologies, including gene express
chips that enable one to determine simultaneously the ac
ties of thousands of genes, promise to expand greatly
information concerning the coordinated function and dyna
ics of networks of genes.1,2 It seems likely that mathematica
techniques, of comparable power and generality to the n
experimental methods, will be essential to interpret a
codify the expanding data.

Two complementary mathematical approaches h
emerged. In one, detailed mathematical models are de
oped for comparatively well-defined genetic networks. F
example, mathematical models have been proposed for
genetic circuits in lambda bacteriophage,3,4 drosophila
development,5 and arabidopsis.6 A second approach is to
study mathematical properties of abstract models of gen
networks, often with a focus on global properties of the d
namics of a class of models rather than an analysis of h
any particular organism works. For example, an early ide
zation of genetic networks as discrete time Boole
networks,7,8 led to the recognition that statistical aspects u
derlying the structure of a network, such as the numbe
gene products that affect the expression of any given g
have important consequences for the dynamics of the e
network. The key issue unifying both approaches is to
derstand how some particular type of behavior can be g
erated by a genetic network.

Since real organisms do not have discrete clocking
vices such as are hypothesized in switching network mod
most attempts at realistic modeling of genetic networks f
mulate the models as differential equations.3–5,9 The vari-
ables in the differential equations represent levels of g
activity, for example, as monitored by levels of nucleic ac
or proteins coded by specific genes. Gene activities are r
lated by a large variety of circulating factors. It is comm
for biologists to imagine that genes are switched ‘‘on’’
‘‘off,’’ depending on the levels of factors regulating eac
particular gene. Consequently, one can imagine that a log
structure underlies a differential equation modeling a g
network.

An idealized class of differential equations makes e
plicit the logical structure.10 These equations have certa
mathematical properties that make them amenable to m
ematical analysis:~i! the equations are piecewise linear, a
can be integrated accurately and rapidly;10 ~ii ! the piecewise
linear flows lead to dynamics described by the composit
of fractional linear maps~see definition below! facilitating
analysis of periodic11,12 and chaotic dynamics;13–15 ~iii ! the
underlying logical structure and the resulting dynamics
both related to a directed graph on ann-dimensional hyper-
cube (n-cube!, inviting classification of the possible networ
structures.10,16 For example, in Fig. 1 we show the directe
hypercube representation for two different networks.10,17Fig-
ure 1~a! shows the 2-cube representing a network in whic
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model genes mutually inhibit the production of each other
this case there are two steady states, represented by the
tices 10 and 01. The vertex labels correspond to states~con-
centrations! of the gene products, so ‘‘10’’ means that th
first gene’s product is above the threshold where its prese
is felt by the other gene, while the second is below its thre
old. Figure 1~b! shows a 3-cube for a network in which the
are 3 model genes. The first gene inhibits production of
second, the second inhibits production of the third, and
third inhibits production of the first. In this network there
a cycle through the six states 100→101→001→011→010
→110→100̄ . The approach blends concepts from com
natorics and nonlinear dynamics. These dynamics app
both in the digraphs on then-cubes, as well as in differentia
equations that model these networks.

The following question underlies much of this wor
Given a network with a certain logical structure (or equiv
lently, a certain directed graph on an n-cube), what are t
possible dynamics that can be found in this network?For
networks with 2 and 3 variables, there can only be ste
states and limit cycles and the numbers of different netwo
is comparatively small~4 in 2 dimensions and 112 in 3
dimensions!.10 For 4 dimensions, in addition to steady stat
and limit cycles, chaotic dynamics is possible.13–15However,
previous work did not address the total number of differe
networks in 4 or higher dimensions and only identified
restricted class of limit cycles.

The current work investigates dynamics in the high
simplified model gene networks proposed by Glass.10 We
show that even in networks with 4 interacting genes, la
numbers of distinct logical structures are possible leading
a correspondingly rich dynamics. In Sec. II, we present
equations and give their main properties. In Sec. III, we
velop the combinatorial methods to count the number of d
ferent networks in a given dimension. Section IV summ
rizes methods that have been developed to analyze the fl
in any given network using fractional linear maps. Section
presents a numerical study of random networks in 4 dim
sions and shows that there are a large number of diffe
cycles present in these networks. Section VI describes w
in which different cycles may be related to each other.

FIG. 1. ~a! Hypercube structure of a 2-net with two stable fixed poin
Vertices corresponds to states of the system, so, e.g., ‘‘10’’ represent
state in which the first gene’s product is above the threshold concentra
where its presence is felt by the other gene, while the second is below
threshold.~b! Hypercube structure of a 3-net with a cyclic attractor mark
by bold lines. Again, vertices correspond to states~gene product concentra
tions above or below threshold!.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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693Chaos, Vol. 10, No. 3, 2000 Model gene networks
nally, in Sec. VII we discuss the relevance of this work
biology and mention several questions that are left open
the analysis.

II. PIECEWISE LINEAR EQUATIONS FOR MODEL
GENE NETWORKS

Glass proposed10 that complex biological networks, suc
as gene networks, can be classified in terms of an underl
‘‘deep structure’’ of the dynamics represented by a st
transition diagram. The state transition diagram for a sys
of n interacting quantities~which we will call ann-net! is a
directed graph~digraph! on ann-cube, in which vertices cor
respond to orthants~the n-dimensional generalization o
quadrants or octants! of state space and transitions alo
edges between vertices correspond to flow across bound
between adjacent orthants. In general, this structure ap
to any system ofn ODEs whose state space can be deco
posed into 2n regions homeomorphic to the 2n orthants of
Rn, and for which flows from one region to another are
one and only one direction.16 This structure emerges natu
rally from model systems representing switching networks
continuous time,

ẏi52yi1Fi~ ỹ1 ,ỹ2 , . . . ,ỹn!, i 51, . . . ,n, ~1!

where

ỹi5H 0 if yi,0

1 if yi.0
. ~2!

We think of yi as a protein product~transcription factor!
produced by genei, that may act to regulate the rates
production of other gene products through the piecew
constant functionsFi . Systems with a step function a
threshold values other than 0 reduce to the above equa
without loss of generality. From the point of view of ou
later analysis, decay rates that depend onỹ
5( ỹ1 ,ỹ2 , . . . ,ỹn)8 ~the 8 denotes the matrix transposition!
are manageable by the same techniques as long as the
rates are uniform across variables at any given time.
piecewise linear functions facilitate analysis, but substitut
of sigmoidal control for step function control in simple ne
works leads to equivalent dynamics.10,17,18 Furthermore,
there is a more general result that, at least under some
ditions, if a limit cycle exists in a network with steep sig
moids as the ‘‘gain’’~slope! of the sigmoids increases, the
it persists all the way to the step function limit.19

Since for the system specified by Eqs.~1! and ~2! there
are a finite number of valuesFi ~in fact, n2n of them!, it is
clear that solutions are globally bounded. In order to guar
tee that the flow across boundaries of orthants in phase s
is unambiguously directed, we will impose two addition
conditions:

Condition 1: Fi( ỹ)Þ0, ; i , ; ỹ, and
Condition 2: Fi( ỹ1 , . . . ỹi50, . . . ,ỹn)5Fi( ỹ1 , . . . ỹi

51, . . . ,ỹn), ; i , ; ỹ.

Condition 2 states thatFi does not depend onyi , i.e., that
there is no self-input in the network. In fact a weaker con
tion suffices to ensure unambiguous flow across bounda
Downloaded 18 Aug 2003 to 132.216.11.185. Redistribution subject to AI
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namely that sign(Fi) does not depend onyi . Since the di-
rections of flows across orthant boundaries~equivalently
across edges in the state transition diagram! depend on the
signs of theFi ’s, there is a particularly simple network co
responding to each state transition diagram; the one

which Fi( ỹ)561 for every i and ỹ. For these networks
eachFi is a Boolean function@we could equivalently have
takenFi50 or 1 if we had used a threshold of1

2 in Eq. ~2!#.
As we show below, the values ofFi define focal points in
state space, where the flows at any time are directed tow
a focal point determined by the current orthant of state spa
Although it is a major question to determine the differe
possible dynamics as a function of the position of the fo
points for a given state transition diagram, in the curre
paper unless otherwise stated we assume that all focal p
lie at vertices of the unit hypercube, i.e.,Fi561.

Another important subclass of Eq.~1! arises whenFi

5( j 51
n wi j ỹ j2t i . These have the form of additive neur

networks, wherewi j is the connection weight between ne
rons j and i and t i is the threshold of neuroni. Such equa-
tions occur, for example, in Hopfield networks.20

The state transition diagrams can be used to de
‘‘structural equivalence classes’’ for switching network
two networks are in the same class if their state transit
diagrams are the same, up to symmetry transformations
then-cube. Note that while each state transition diagram c
responds to exactly one Boolean switching network, sev
of these may still be in the same equivalence class due to
symmetries of then-cube. If we allow the focal point coor
dinates to deviate from61, then the qualitative dynamica
behavior of networks in the same structural equivalence c
is not necessarily the same, but the structure does imp
constraints on the possible dynamics and some results r
ing structure to dynamics have been obtained. If a vertex
all adjacent edges pointing inward then there is a fixed po
of the network dynamics in the corresponding orthant~once
a trajectory enters this orthant, it cannot leave and must c

verge toF( ỹ), whereF5(F1 ,F2 , . . . ,Fn)8). Furthermore,
Glass and Pasternack11 proved that if the state transition dia
gram has a ‘‘cyclic attractor’’~a cycle for which all adjacen
edges point towards the cycle! then the network either has
stable periodic orbit corresponding to this sequence of tr
sitions, or its orbits spiral in to the origin. For example, the
are two stable steady states for the network represente
Fig. 1~a!. In this and subsequentn-cube diagrams, vertice
correspond to quadrants~orthants! of phase space, and ar

labeled according toỹ, the sign structure of the quadran
~orthant!, and directed edges show the direction of flo
across boundaries between orthants. One network with
structure of Fig. 1~a! ~the Boolean one! is defined by the
focal points listed in Table I~a!. To see how the digraph is
obtained from the focal points, consider the first line of t
table, for example,F(0,0)5(1,1). Wheny1,0 andy2,0
the focal point has both coordinates positive and the poss
transitions are toỹ5(1,0)8 or (0,1)8, depending on which
variable becomes positive first. Thus, on the digraph,
direct the edges 00→01 and 00→10. Table Ib defines a net
work with the structure of Fig. 1~b! and this has a cyclic
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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694 Chaos, Vol. 10, No. 3, 2000 R. Edwards and L. Glass
attractor that leads to a stable limit cycle, shown in Fig.
The number of possible cyclic attractors~up to symme-

tries! in directed graphs on the 3-cube, 4-cube, and 5-c
have been counted.16 There is only one for the 3-cube, the
are 3 for the 4-cube, and 18 for the 5-cube. For the situa
in which Fi561 the cyclic attractors in dimension 3 an
higher imply limit cycles in Eq.~1!. Moreover, in dimension
3, 4, and 5, each different cyclic attractor corresponds t
limit cycle with a distinct period. From the early work o
these networks, three different types of stable behavior~at-
tractors! were known forn53; a limit cycle corresponding
to the cyclic attractor, a fixed point~stable node! in the inte-
rior of an orthant and a fixed point on a coordinate axis o
the origin ~focus!. For n54, a similar set of behaviors wa
known, except that three structurally different cyclic attra
tors and therefore geometrically different stable periodic
bits are possible. Since then, numerical experiments w
randomly generated networks have shown that the rang
possible behaviors forn>4 is much richer than was realize
in the early work.13,14,20,21

In order to explore the range of possible behaviors
4-nets, we ask the following questions. First, how ma
structural equivalence classes are there for ann-net? This
gives an idea of the size of the space we are investigat
Then, what types of behavior are possible for 4-nets, part

FIG. 2. Limit cycle for the network in Table I~b! and Fig. 1~b!. The period
is 2.8872710. The activity of all three units is shown; the units of time a
activity are arbitrary.

TABLE I. Focal points,F( ỹ), for networks that correspond to the structu
of ~a! Fig. 1~a!, and~b! Fig. 1~b!. The networks are defined by Eqs.~1! and
~2!.

~a!

ỹ F„ỹ)

0 0 1 1
0 1 21 1
1 0 1 21
1 1 21 21

~b!

ỹ F„ỹ)

0 0 0 1 1 1
0 0 1 21 1 1
0 1 0 1 1 21
0 1 1 21 1 21
1 0 0 1 21 1
1 0 1 21 21 1
1 1 0 1 21 21
1 1 1 21 21 21
Downloaded 18 Aug 2003 to 132.216.11.185. Redistribution subject to AI
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larly patterns of oscillation, or periodic orbits? To answ
this question partially, we summarize techniques
analysis12,13,15 and report on our numerical investigation
which include analytic confirmation of the existence of eve
periodic orbit discovered.

III. COMBINATORIAL BOUNDS

In this section we compute the number of structu
equivalence classes forn-nets. An n-cube has E(n)
5n2n21 edges and there are 2 choices of direction on e
edge, so without considering symmetries there are 2E(n) dif-
ferent directed graphs. However, many of these corresp
to each other via symmetry transformations, such as r
tions, reflections and relabelings. Glass16 used Burnside’s
lemma22,23 to show that of the 21254096 possible directed
graphs on the 3-cube, there are only 112 structural equ
lence classes.

Let U be the set of directed graphs on then-cube. Let
c(n) be the number of equivalence classes of such gra
where the equivalence relation is defined by the group
symmetry transformations,Ti ,i 51, . . . ,m, which do not al-
ter the essential network structure. LetI (Ti) be the number
of elements ofU left invariant by symmetry transformatio
Ti . Then Burnside’s lemma states that

c~n!5
1

m (
i 51

m

I ~Ti !. ~3!

For the 2-cube, for example, there are 24516 elements inU.
The 4 rotations and their reflections givem58 symmetry
transformations. The identity transformation,T1 , always
leaves every element ofU invariant, soI (T1)516. The oth-
ers leave 0, 2, or 4 directed graphs invariant and the sum
Eq. ~3! is (1•16)1(3•4)1(2•2)1(2•0)532. Thus,c(2)
532/854. Similar arguments allow one to count the equiv
lence classes for the 3-cube. It becomes difficult to visua
the symmetry transformations, however, forn>4.

Systematic combinatorial approaches have been de
oped for problems of this nature. The symmetry group
then-cube is isomorphic to the hyperoctohedral groupOn .22

The number of symmetry transformations for this group
m(n)5n!2n. One way to count these symmetries is to s
that there are 2n choices for where a given vertex will b
taken under a transformation and thenn! ways of permuting
the adjacent edges.

The problem of counting the number of distinct digrap
on then-cube is related~through the symmetry group! to that
of counting the number of 2-colorings on the vertices of t
n-cube, or equivalently, the number of Boolean functions
n variables.22,24 This problem was solved22 by building on
methods due to Polya in which the cycle polynomial a
cycle index polynomial code information about the cyc
structures of the group of transformations. Chen25 has ex-
tended this result to that of edge-colorings of then-cube.
However, the equivalence relation implied by 2-colorings
the edges is not the same as that implied by digraphs. C
sider, for example, reflection of the 2-cube~square! in a ver-
tical line. There are eight 2-colorings of the edges that
left invariant under this transformation~the left and right

d

P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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695Chaos, Vol. 10, No. 3, 2000 Model gene networks
edges need only be the same color! but no digraph can be
invariant since the top and bottom edges will have their
rections reversed.

A good intuition about the problem of counting the num
ber of distinct configurations under the symmetries of
directedn-cube can be obtained by computing a lower bou
on the number of different configurations. Suppose e
symmetry operation of then-cube generated a distinct con
figuration of directed edges on then-cube. Then the tota
number of distinct structural equivalence classes,c(n),
would be the total number of configurations of the direc
n-cube divided by the number of symmetry operations
On . In other words, if none of the configurations are iden
cal under a symmetry of the cube, then the number of s
metry operations times the number of different classes eq
the total number of digraphs. However, since some sym
try operations leave the graph unchanged, we obtain

c~n!.
2n2n21

n!2n
. ~4!

The inequality arises because not all symmetry operation
the n-cube necessarily generate a distinct configuration
any particular directed graph. However, as we will see, t
lower estimate is amazingly accurate as the number of
mensions increases.

We now consider the exact computation ofc(n). Since a
closed-form solution has apparently not yet been obtain
we take a more direct, computational approach. Essenti
the problem boils down to counting the cycles induced
each symmetry transformation inOn . The number of invari-
ant digraphs under a transformation will be 2d, whered is
the number of cycles, because there is only one choic
orientation for each cycle~after the orientation of the firs
edge is decided, the other edges of the cycle are fixed!. In the
Appendix, we outline our method of counting these cyc
via an algorithm that traverses them, and then apply Bu
side’s lemma to obtain the result, which can be written

c~n!5
1

m~n! (d
n~d!2d5

(dn~d!2d

n!2n
, ~5!

wheren(d) indicates the number of transformations gen
ating exactlyd cycles.

For n53,4,5 the countsn(d) are shown in Table II. The
lower bound computed in Eq.~4! is the largest term in Eq
~5!, i.e., the one with the largest value ofd, corresponding to
the identity transformation.

For largern these tables are easy to compute, but
numbers quickly become very large. The number of disti
digraphs~equivalence classes! on then-cube@from Eq. ~5!#
for n51 to 5 is given in Table III.

As a consequence of these calculations, we can say
the random sample~with replacement! of a million 4-cube
structures reported below does not come close to exhau
the full set of 11 223 994 equivalence classes. The comb
torial explosion of structural equivalence classes lea
plenty of room for many different limit cycles, though it doe
not give a clear indication of how many there are. Not
structures will have stable limit cycles.
Downloaded 18 Aug 2003 to 132.216.11.185. Redistribution subject to AI
i-

e
d
h

d

-
-
ls

e-

of
r

is
i-

d,
ly,
y

of

s
-

-

e
t

at

ng
a-
s

l

There are other factors influencing the variety of lim
cycles. If a periodic orbit exists for the network, then it mu
follow a cycle of edges on then-cube. The converse is no
necessarily true, however~see Sec. IV!. Bistability or multi-
stability also occurs in some networks~Sec. V!.

Furthermore, a given cycle structure, taking into acco
the pattern of adjacent edges pointing toward or away fr
the cycle, can occur on different hypercubes, since ed
other than those adjacent to the cycle can vary without
fecting the cycle.

IV. ANALYSIS

The analysis of continuous-time switching networks w
begun by Glass and Pasternack11 and was further develope
mainly by Mestl, Plahte, and Omholt,12 Mestl, Lemay, and
Glass,13 and Edwards.15 What follows is a brief summary o
this work.

The main property of continuous-time switching ne
works that makes them tractable is that trajectories are pi
wise linear. Fory5(y1 ,y2 , . . . ,yn) in one orthant of phase
space~and therefore with one fixed sign structure! the solu-
tion to Eq.~1! in vector form is

y~ t !5f1~y~0!2f!e2t, ~6!

which describes exponential approach to f
5( f 1 , f 2 , . . . ,f n)5F( ỹ). The trajectory inn-dimensional
state space is a straight line betweeny(0) andF( ỹ). Thus,
each orthant of phase space~with sign structureỹ) has an
associated focal point,f, somewhere inRn. If trajectories in

TABLE II. Numbers of transformations of digraphs on then-cube (n
53,4,5) leaving d choices of edge orientation to ensure invariance un
the transformation. Totals include transformations that leave no digr
invariant.

n53 n54 n55
d n(d) d n(d) d n(d)

2 8 4 48 8 704
3 12 6 64 10 480
4 8 8 132 16 944
6 4 12 32 20 680
7 6 16 35 22 240

12 1 20 12 32 80
32 1 40 106

42 60
52 20
80 1

total 48 total 384 total 3840

TABLE III. Numbers of distinct digraphs on then-cube, considering sym-
metries.

n c(n) Lower bound

1 1 1.000
2 4 2.000
3 112 85.333
4 11 223 994 11 184 810.666
5 314 824 455 746 718 261 696 314 824 432 191 309 680 913.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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696 Chaos, Vol. 10, No. 3, 2000 R. Edwards and L. Glass
an orthant are directed to a focal pointf within that orthant
then once the orthant is entered no further switchings t
place andf is a stable fixed point of the network dynamic
Otherwise, trajectories are formed of piecewise linear s
ments between orthant boundaries, with corners at
boundaries. Under Condition 2, there is no ambiguity in
direction of flow across an orthant boundary so trajecto
are well defined there. Thus, given a point on an orth
boundary, it is possible simply to calculate the next orth
boundary crossing point directly, and to integrate along
jectories it is only necessary to repeat this process at e
step.

We now denote byy(k) thekth orthant boundary crossin
on a trajectory and assume thatf(k), the focal point associ-
ated with the orthant being entered, does not lie in t
orthant. The map from one boundary to the next can be
resented as an operator (M (k):Rn→Rn),

y(k11)5M (k)y(k)5
B(k)y(k)

11^c (k),y(k)&
,

~7!

B(k)5I 2
f(k)ej8

f j
(k)

, c (k)5
2ej

f j
(k)

,

wherej is the variable that switches at thekth step,ej denotes
the standard basis vector inRn, and the angle brackets de
note the Euclidean inner product (^c,y&5c8y). Thus,M (k)

is a fractional linear map with a vector numerator and sca
denominator. The composition of such maps is again a f
tional linear map of the same form. Also, since these m
are between orthant boundaries where one of theyi ’s is al-
ways 0, they can be reduced by one dimension, by remo
the appropriate row and column in eachB(k), y(k), andc (k).
For a cycle~a trajectory that returns to its initial orthan
boundary!, we arrive at~dropping the superscripts!

My5
Ay

11^f,y&
, ~8!

where A is (n21)3(n21), fPRn21 and yPRn21. We
call M the return map. This discrete map, along with t
crossing times, contains all information in the fu
continuous-time dynamics.

We now list without proof key properties of the cyc
mapM @Eq. ~8!# and corresponding periodic orbits.

Along a cycle on then-cube, there may be branchin
vertices, i.e., vertices with more than one outgoing ed
These correspond to orthants from which trajectories can
by more than one boundary hyperplane, depending on w
variable reaches zero first. Alternative exit variables imp
constraints on the region of an orthant boundary that m
forwards through a specified sequence of boundaries. T
constraints take the form of linear inequalities, and the
stricted regions are the interiors of ‘‘proper cones’’~Ref. 26
p. 6!.

Proposition 1: Given an n-cube cycle and initial ortha
boundary,O, the cone from which trajectories follow th
cycle and return toO is given by

C5$yPOuRy>0%, ~9!
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where R is a matrix with one row for each alternative e
variable, yi

(k) , around the cycle, each row being

Ri ,•52
ei8

f i
(k)

B(k)B(k21)
¯B(0). ~10!

We allow equality,Ry50, as a limiting case. These are tr
jectories for which two variables cross their thresholds
multaneously. Many of the inequalities generated by Eq.~10!
will be redundant and can be weeded out in computation

The domain of definition of the return map,M is only
C,O. Trajectories starting outside ofC, but in O, eventu-
ally branch away from the given cycle. Note also thatM
mapsC into O, not necessarily intoC. However, a fixed
point of the map lying insideC continues to return and cor
responds to a periodic orbit for the differential equations
C is empty, no periodic orbit corresponding to thisn-cube
cycle exists.

The following result establishes that fixed points ofM lie
on eigenvectors ofA, gives criteria for their existence an
allows calculation of their location.

Proposition 2: Any nonzero (real) fixed point of M [Eq
(8)] in C is a (real) eigenvector of A corresponding to a
eigenvalue.1. Conversely, ifv is a real eigenvector of A
with eigenvaluel.1, and vPC, then

y* 5
~l21!v

^f,v&
~11!

is a fixed point of M, unique in the span ofv. If l51, then
the only fixed point in the span ofv is 0.

The stability of a fixed point ofM depends on the cor
responding eigenvalue ofA being dominant.

Proposition 3: A fixed point,yi* , of M corresponding to
the eigenvaluel i of A, is asymptotically stable ifl i

.ul j u, ; j Þ i , neutrally stable ifl i>ul j u, ; j Þ i , but equal-
ity holds for some j, and unstable otherwise.

This is proved by the standard linearization~Jacobian! at
the fixed point. WhenA has real, distinct eigenvalues at lea
lines between fixed points ofM are their stable and unstab
manifolds, and the eigenvalues of the Jacobian are ratio
eigenvalues ofA.

Proposition 4: A periodic orbit with cycle map M ha
period P5 log(l), wherel is the eigenvalue of the matrix A
associated with the fixed point on the orbit.

The proof of this result15 depends on the demonstratio
that the denominator in the map@Eq. ~7! or ~8!# for any
sequence of trajectory segments is the exponential of
time taken to traverse them. Since the denominator at a fi
point of the map is also the associated eigenvalue of
matrix A, the log of this eigenvalue is the period of the co
responding periodic orbit.

Thus, given a network and a cycle on itsn-cube, it is
possible to determine the existence, stability and period
any associated periodic orbit explicitly, and these calcu
tions can be automated, so that many cycles can be che
quickly. The procedure is as follows.

~1! Select an orthant boundary on the cycle to start from
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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~2! Calculate the return map@Eq. ~8!# from the composition
of fractional linear mappings corresponding to the
quence of orthants traversed from the starting orth
boundary.

~3! Find the eigenvalues and associated eigenvectors o
matrix A in the return map.

~4! For real eigenvaluesl.1, calculate the fixed points o
the corresponding eigenvectors from Eq.~11!.

~5! Calculate the returning cone,C, for the return map from
Eq. ~9!, if it is nonempty.

~6! If a fixed point of the map lies inC, then it corresponds
to a periodic orbit. In this case if its eigenvalue is t
~unique! dominant one then the periodic orbit is asym
totically stable; if the modulus of other eigenvalues
well as this one attain the spectral radius, the orbit
neutrally stable; otherwise it is unstable. If the fixe
point lies on the boundary ofC then the periodic orbit is
‘‘degenerate,’’ in the sense that two variables switch
multaneously.

V. RANDOM SAMPLE OF A MILLION NETWORKS

To search for behaviors in 4-nets with focal points
61, a million 4-cube structures were randomly genera
~with the no-self-input restriction, Condition 2!. Each was
numerically integrated from a random initial condition for
maximum of 36300 steps~less if convergence was detecte
earlier—the results of the integration were checked after s
eral stages of increasing length to catch fast converge
sooner!. If a fixed point within an orthant was reached, int
gration stopped. Otherwise, the switching sequence, defi
to be a sequential listing of the indexi of the variableỹi that
switches, was examined for periodic behavior. Periodic
havior is identified as a cycle of switching variables in whi
every variable switches an even number of times~so, e.g.,
the sequence 1-2-1-4 would not be counted as a cycle,
1-2-1-4-1-2-1-4 would!. If the end of the full sequence con
sisted of at least three repetitions of such a cycle, the c
was considered a candidate for a periodic orbit. Cycles o
many as 7290 switchings were searched for and would h
been found by the program. All such candidate cycles w
further checked for convergence of the values of the v
ables after each circuit. If all variables returned to with
10210 over the last circuit of the cycle, the cycle was retain
as a candidate for a periodic orbit, otherwise the integra
was continued or if the length of integration had reached
maximum the network was stored for closer inspect
manually. Cycles of 2 or more variables switching with cyc
times that decreased but did not converge were considere
be trajectories spiraling in to a fixed point and were not p
sued further.~It is possible that such a trajectory could b
misclassified if it is actually converging very slowly toward
a cycle, but slow convergence does not occur in network
the current situation.! Integration was also stopped when tw
variables switched at the same time~within 10215 time
units!. This was taken to be an indication of convergence
a cycle that in fact involved two variables switching togeth
~see below!.

Cycles obtained by the numerical integration as can
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dates for periodic orbits were then checked according to
procedure outlined in Sec. IV. Given the hypercube struct
~i.e., the set of focal points! and the proposed cycle o
orthants ~determined by the starting boundary and t
switching sequence!, the return map was calculated and t
eigenvectors and eigenvalues of theA matrix, as well as the
fixed points of the map. Then the returning cone was cal
lated, and the fixed point associated with the dominant eig
value checked to see whether it was in the returning co
Thus, we did not rely on the numerical integration as e
dence of periodicity, rather we used it to suggest candid
cycles which were then verified analytically by checking th
they satisfied the conditions of the result in Sec. IV.

In no cases did we find that a candidate cycle was
jected by this verification process. However, in some cas
the fixed point of the return map fell exactly on the bounda
of the returning cone~sometimes on the boundary of th
orthant boundary itself, indicating that two variables swit
together!, within an epsilon to account for roundoff erro
Trajectories following these ‘‘degenerate’’ cycles follow a
unambiguous sequence of switchings but converge tow
an v-limit set in which two variables switch together. The
is in this case a possibility of ambiguity if the trajectory ne
the double-switching depends sensitively on which of
two switches first. In that case thev-limit set is not a limit
cycle, since a small perturbation on one side leads the tra
tory away. These are nevertheless identified by the prog
as periodic orbits. In some cases of degenerate cycles
approaching trajectory follows two different subcycles
switchings in alternation, both subcycles approaching
same degenerate limiting cycle. In such cases the limit
cycle is taken as one circuit, not the two~now identical!
subcycles, and the period is half what the approaching cy
~consisting of both subcycles! would suggest.

This numerically based but analytically verified sear
for stable periodic orbits in different 4-net structures pr
duced a huge variety of possibilities. Of course, many n
works are identical to others under symmetry transform
tions ~rotations, reflections, relabelings! so apparently
different hypercube cycles may not be genuinely differe
Cycles identical except for a symmetry transformation, ho
ever, must at least have the same period and length
switching sequence. The break-down of behaviors found
the 1000000 simulations are listed in Table IV.

Those for which no convergence was detected were c
sified as irregular. There is, of course, no proof from t
above that these would not eventually converge to a fi
point or a periodic orbit, but investigation of some examp
suggests that they are in fact chaotic.14,15

TABLE IV. Numbers of randomly generated 4-nets with the five possi
behavior classes.

nodes 555633
foci 435410
periodic orbits~nondegenerate! 5668
periodic orbits~degenerate! 2654
irregular 635

Total 1000000
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 3. Hypercube structure of a 4-net with a periodic orbit following
cycle of length 174. The edges traversed by the cycle are marked by
lines.
Downloaded 18 Aug 2003 to 132.216.11.185. Redistribution subject to AI
Of the 1000000 random networks, 8322 converged
periodic orbits. In order to determine how many truly diffe
ent cycles there are amongst these, we would need to c
pare the switching sequences and the patterns of alter
exit variables along the cycles, considering symmetries.
can classify in a courser way, however, using simply
period of the orbit, noting that one period can be associa
with many different switching sequences, even sequence
different lengths. Among the 8322 periodic orbits we fou
301 different periods. The shortest period was 1.4436
time units associated with switching sequences of length
more. The shortest switching sequence is the one of leng
that occurs in the 3-element network represented by
3-cube in Fig. 1~b!, and has period'2.8872710~Fig. 2!.
Earlier analysis shows that this period is exactly 6 ln
1A5)/2).15,16 This was also the most commonly occurrin
period, accounting for 2464 of the 8322 periodic orbits. T
longest period was 62.7563895 for a cycle of length 2
which was also the longest switching sequence.

It is surprising that such simple networks with only
elements can produce such a huge variety of different st
periodic orbits, including some with sequences of up to 2
switchings. The trajectories of these long limit cycles a
also quite varied in appearance, in amplitude, and period.
ld
FIG. 4. Phase space projections of a periodic orbit with switching sequence of length 174 on the 4-net of Fig. 3.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 5. Hypercube structure of a 4-net with a periodic orbit following
cycle of length 110. The edges traversed by the cycle are marked by
lines.
Downloaded 18 Aug 2003 to 132.216.11.185. Redistribution subject to AI
example, one limit cycle consisting of 174 switchings~Figs.
3 and 4! has a period of only 6.1517884 and has very sm
amplitude, whereas another of length 110~Figs. 5 and 6! has
period 22.1535440 and an amplitude comparable to thos
most shorter cycles. Furthermore, the basins of attractio
these long-period~and long switching sequence! orbits ap-
pear to be large: Many initial conditions lead to the sa
cycles. For example, we integrated each of 3 particular n
works from 20 different~randomly generated! initial condi-
tions and found that trajectories from 14 of the initial poin
converged on a length-110 cycle in one network; 11 of
initial points converged on a length-252 cycle in the seco
network; and all 20 initial points converged on a length-1
cycle in the third.

Bistability and multistability are possible in Boolea
4-nets, though we did not look for it in our random samp
It is clearly possible to have two stable fixed points even i
2- or 3-net@e.g., Fig. 1~a!#, or to have a stable fixed point an
a stable periodic orbit in a 4-net. It is also possible to ha
two stable periodic orbits in a 4-net. A simple possibility
that of two isolated cycles of length 4. Such cycles can h
stable periodic orbits if the focal points are not all61.11 The
example in Fig. 7 is more interesting. It has two stable pe
odic orbits~proven by methods in Sec. IV! which share part
ld
le is m
FIG. 6. Phase space projections of a periodic orbit with switching sequence of length 110 on the 4-net of Fig. 5. Note that the amplitude of this cycuch
larger than for the cycle of length 174 in Fig. 4.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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700 Chaos, Vol. 10, No. 3, 2000 R. Edwards and L. Glass
of their path on the 4-cube, namely

0000→0001→0011→1011→1010→1000

and

0000→0001→0011→0111→0110→0100.

In this case, both orbits are equivalent to the thr
dimensional cyclic attractor shown in Fig. 1~b!, and have the
same period, 2.8872710.

VI. CLASSES OF CYCLES

One way to classify cycles is by their periods, as in t
results of the random networks reported above. Another is
switching sequences, which do not correspond one-to-
with periods. Many different switching sequences may ha
the same period, and a given switching sequence may co
spond to periodic orbits with different periods. To spec
completely a cycle on a directed graph on the 4-cube, i
necessary to give both the switching sequence and the
tern of alternate exit variables, i.e., directions of edges a
cent to the cycle. Thus, a given switching sequence m
belong to more than one different periodic orbit~with differ-
ent period!, depending on the pattern of adjacent edges.

However, symmetries imply that apparently differe
switching sequences may be structurally the same.16 Relabel-
ing the variables or changing the starting point of the cy
will give an apparently different sequence that is nevert
less structurally unchanged. This is still true when adjac
edges are taken into account. One way to extract the st
ture of a switching sequence is to use the ‘‘interv
sequence.’’16 The interval sequence gives the number of
tervening digits in the switching sequence between cons
tive occurrences of each variable. However, the interval
quence is still not a unique identifier, in that more than o

FIG. 7. Hypercube structure of a 4-net with two stable periodic orbits
lowing cycles marked by bold lines.
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structure may have the same interval sequence~consider a
sequence and its reverse, which we must consider as di
ent sequences!.

Another way to identify structurally identical switchin
sequences is to transform each sequence into a cano
form, unique for its equivalence class. The simplest way
do this is to find the member of an equivalence class tha
lexicographically minimal, or in this context, smallest co
sidered as an integer. For example, the sequences

1213124314 and 1213421413

are structurally equivalent, the first being the canonical fo
for this class.~To transform the second to canonical form
change 2’s to 3’s and vice versa and start from the seco
to-last digit in the sequence.!

Structurally distinct switching sequences were list
long ago by Gilbert27 but he counts only elementary cycle
~those that pass through each vertex only once! and does not
consider cycles traversed in opposite directions to be disti
The sequence of length 10 above, for example, has a di
ent canonical form when reversed. There is one canon
switching sequence of length 4 (1212) and there are two
length 6 (121323 and 123123). Table V lists the nine p
sible canonical forms of switching sequences of length 8

All but the first two ~which are not elementary cycles!
are as listed by Gilbert. According to our present definiti
of equivalence, we find 33 canonical forms for switchin
sequences of length 10, rather than the 10 given by Gilb
In our random sample of 1000000 networks, the 8322 sta
periodic orbits that we found represent 370 different cano
cal switching sequences.

For a given switching sequence there are many poss
arrangements of adjacent edge orientations, but most of t
we do not expect to correspond to periodic orbits. For
ample, for the sequence 123123 on the 3-cube there a
adjacent edges and therefore 26 different patterns of adjacen
edge orientations. Many of these are equivalent by sym
try, but in the end only one of these patterns gives a cy
with a periodic orbit, namely, the one with all adjacent edg
pointing inwards to the cycle, i.e., the cyclic attractor.~This
is not true, of course, for the more general class of switch
networks with focal points not necessarily at61.! To illus-
trate a class of cycles on the 4-cube with a given switch
sequence, consider Fig. 8. This has a cycle that is not qu
cyclic attractor, since there is a chord from (0111) to (010
and since the edge (0110)→(1110), which is adjacent to the

-

TABLE V. Canonical switching sequences of length 8.

Switching sequence Interval sequence

12121313 ~15!~15!~1111!
12123434 ~15!~15!~15!~15!
12131213 ~33!~33!~1111!
12132434 ~15!~15!~24!~24!
12134234 ~15!~24!~24!~33!
12134243 ~15!~15!~33!~33!
12314234 ~24!~24!~33!~33!
12314324 ~24!~24!~24!~24!
12341234 ~33!~33!~33!~33!
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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701Chaos, Vol. 10, No. 3, 2000 Model gene networks
cycle, points away from the cycle. Everywhere else, adjac
edges point inwards to the cycle. The switching sequence
this cycle is 43412312, which has canonical form 121342
and the methods of Sec. IV can be used to show that
cycle corresponds to a stable periodic orbit of per
'3.763906. If the edge (0110)→(1110) is reversed, so tha
it also points in towards the cycle, then no periodic or
exists for the cycle.@Intuitively, (0110)→(1110) needs to
point outward, i.e.,y1 has to be pulled in the positive direc
tion, so that at the next step the chord is not followed,
(0111)→(1111).]

However, some of the adjacent edges that point in
wards the cycle~or some combinations of several! can be
turned outwards and still leave a stable periodic orbit for
resulting cycle. There are 14 adjacent edges to this cy
excluding the chord, and so 214 patterns of adjacent edg
orientations for each orientation of the chord. There are
symmetries for this cycle to reduce this number of patter
Leaving the direction of the chord as depicted, 15 differ
patterns of adjacent edge orientations give stable peri
orbits. These are listed in Table VI where edges are spec
by their endpoint vertices expressed as decimal equival
of their binary labels. Thus, the edge from (1011) to (101
is written 11→10. Cycles with other inward-pointing adja
cent edges turned out do not have corresponding peri
orbits. If the chord is reversed, another set of 31 differ
cycles with stable periodic orbits~3 of them degenerate! oc-
cur ~Table VII!. In addition, we can reverse more edges a
end up with an unstable cycle, e.g., without the chord
versed, reversing 1→0, 5→13, 6→2, and 15→13 to give a
cycle with an unstable periodic orbit of period 0.957001.

Thus, each possible switching sequence may have a

FIG. 8. A cycle on a 4-cube with switching sequence 43412312, havin
stable periodic orbit. Reversing some of the edges that point inward tow
the cycle can still produce a periodic orbit, but with a different period.
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able set of periodic orbits associated with it, determined
the adjacent edge orientations.

In some cases relationships between networks can
understood from structural principles. For example, consi
a 4-element network in which one element has no output
other elements~e.g.,yi does not depend onỹ4 for iÞ4). In

a
rd

TABLE VI. Edge reversal patterns producing stable period orbits for
cycle in Fig. 8~binary vertex labels are represented by their decimal equ
lents!.

Edges reversed Period

none 3.763906
11→10 3.552914
9→8 3.302676
1→0 2.936174
6→2 2.958148
7→3 3.137461
11→10, 6→2 2.712756
11→10, 7→3 2.936174
9→8, 6→2 2.437511
9→8, 7→3 2.712756
1→0, 5→13 2.854426
1→0, 6→2 1.968397
1→0, 7→3 2.372957
1→0, 5→13, 6→2 1.691689
1→0, 5→13, 7→3 2.580393

TABLE VII. Edge reversal patterns producing stable period orbits for
cycle in Fig. 8 with the chord, 5→7, reversed~binary vertex labels are
represented by their decimal equivalents!.

Edges reversed Period

9→8 2.887271
1→0 2.887271
9→8, 4→0 2.712756
9→8, 4→12 2.528355
9→8, 6→2 2.712756
9→8, 6→14 3.122078
1→0, 5→13 2.712756
1→0, 6→2 2.292432
1→0, 6→14 3.418036
1→0, 7→3 2.292432
9→8, 4→0, 4→12 2.292432
9→8, 4→0, 6→2 2.538797
9→8, 4→0, 6→14 2.978774
9→8, 4→12, 6→2 2.292432
9→8, 4→12, 6→14 2.887271
9→8, 6→2, 6→14 2.978774
1→0, 5→13, 6→2 1.968397
1→0, 5→13, 6→14 3.302676
1→0, 5→13, 7→3 2.372957
1→0, 4→12, 6→14 2.887271~degenerate!
1→0, 6→2, 6→14 3.122078
1→0, 7→3, 15→13 1.443635
9→8, 4→0, 4→12, 6→2 2.094713
9→8, 4→0, 4→12, 6→14 2.712756
9→8, 4→0, 6→2, 6→14 2.830288
9→8, 4→12, 6→2, 6→14 2.712756
1→0, 5→13, 6→2, 6→14 2.958148
1→0, 4→12, 6→2, 6→14 2.292432~degenerate!
1→0, 4→12, 6→14, 7→3 2.292432~degenerate!
9→8, 4→0, 4→12, 6→2, 6→14 2.538797
1→0, 4→12, 6→14, 7→3, 15→13 1.443635
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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this case, the dynamics of the network are essentially th
dimensional, withy4 being driven by the other three. How
ever, if the 3 driving elements oscillate,y4 may still switch
and then the cycle on the 4-cube will not simply be t
3-cube cycle@Fig. 1~b!# embedded into the 4-cube. It is no
always so easy, however, to see an underlying simpler st
ture in a complicated cycle.

VII. DISCUSSION

This work blends combinatorics and nonlinear dynam
to explore the properties in a class of piecewise linear dif
ential equations that model genetic and other networks
which switchlike interactions are believed to dominate
observed behaviors. The surprising result is that as the
works become larger there in an astronomical increase in
total number of different networks as defined by distinct co
figurations in directedn-cubes that capture network stru
tures. Thus, in 3 dimensions there are 112 different n
works, in 4 dimensions there are 107 different networks, and
in 5 dimensions there are 331020 different networks. Al-
though we have not counted the number of distinct cycle
distinctly different chaotic dynamics in these networks, t
current results indicate that there are thousands of diffe
networks that show interesting~i.e., limit cycles or chaos!
dynamics. Cycles are related to one another. For exam
flipping a single edge in a network with a stable cycle oft
yields another stable cycle, with different dynamic prop
ties. Thus, many configurations leading to stable cycles m
arise from small ‘‘mutations’’ in the network structure. Oth
‘‘mutations’’ might lead to other sorts of behaviors such
steady states or chaos.

This work raises a large number of intriguing questio
of a mathematical nature. We mention several.

~1! For a given dimension,n, what is the longest stable cycl
~in period and symbolic sequence! for networks in which
the focal points are at61?

~2! For a given dimension,n, what is largest number o
stable attractors in a network for networks in which t
focal points are at61? ~It is easy to see that there
always a network with 2n21 stable nodes.!

~3! As the positions of the focal points in a network var
what are the generic ways in which stable attractors
dergo bifurcations?

~4! For a given network, what possible behaviors can
found as a function of the position of the focal points

The extent to which analysis of the current equations
pursued will likely depend on the perceived relevance
these equations to model real or artificial genetic networ

The current networks are appropriate to analyze as
chronous switching networks. Although hypercube mappi
of dynamics were initially used in this context,28 we are not
aware of exploitation of these methods in recent years. N
ertheless, given the simple structure of these networks, t
synthesis in silico would be comparatively straightforwa
Certainly it would be interesting to build analog networ
and study their dynamics using the theoretical methods
lined here.
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A more provocative issue is whether the current meth
are really appropriate to model real genetic networks fou
in nature. The current version of Eq.~1! does not incorporate
many factors that are important in the biological context
cluding: spatial structure, time delays associated with tr
scription and translation, differences in threshold for t
same transcription factor at different loci, sigmoidal rath
than steplike changes in control of synthesis, variable de
rates for different transcription factors. Although such facto
could be easily incorporated by modifying the current eq
tions, the mathematical transparency of the current formu
tion would be lost.

Despite these potential objections to the current
proach, two factors stand out. First, molecular biologists s
think of genes as being switched ‘‘on’’ or ‘‘off’’ based on
the presence or absence of the controlling transcription
tors ~which at the current time are the focus of intense stu
in particular gene expression circuits!. Second, even though
it was demonstrated long ago that the current equations c
generate a bistable toggle switch and stable oscillations~Fig.
1!, it was not until 27 years later that networks having the
dynamics were synthesized out of genetic components.29,30

Thus, the path has been set to synthesize networksin vitro,
out of genetic components having predetermined log
structure and dynamical behavior.

The current work places the analysis of genetic netwo
in a combinatorial context. Thus, this work may be helpful
classifying and identifying genetic networks based on th
dynamics and on their logical structure. Moreover, since m
tations in biological systems are associated with discr
events~e.g., change of a single base pair, transposition
two segments of chromosome, deletion of a segment o
chromosome!, the current work offers novel ways to thin
about the ways mutations can lead to altered dynamic
genetic networks. It also offers a huge repertoire of dynam
that might be possible using genetic components. Finally,
enormous explosion in information about the structure of
genome in man and other organisms will require new me
ods of analysis to help understand the orderly functioning
the genetic networks underlying life.
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APPENDIX

We wish to count the number of distinct digraphs on t
n-cube. We first review the construction of the group of sy
metry transformations.

It is known that the group of symmetries,On , consists
of signed permutations. We formulate this result as follow
The vertices of then-cube are labeled byn-bit binary codes
~e.g., see Fig. 1!, or equivalently,n-vectors with components
61. We can think of each transformation as a choice
which vertex will be taken to the (1,1, . . . ,1) position
and then a choice of permutation of then variables~vector
components! corresponding to a permutation of the edg
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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703Chaos, Vol. 10, No. 3, 2000 Model gene networks
adjacent to the (1,1, . . . ,1) vertex. Each transformation
can be represented, therefore, as a matrixPS, whereS is a
signature similarity matrix~a diagonal matrix with diagona
entries61) andP is a permutation matrix. To verify tha
these matricesPS exactly correspond to the desired symm
try transformations, first note that there are clearly 2n S ma-
trices andn! P matrices. It is easy to check that ifP1S1v
5P2S2v for all vertex vectorsv, thenP15P2 andS15S2 ,
so that all thePS matrices are genuinely different transfo
mations. Also, eachPS matrix is a valid transformation in
the sense that it preserves the adjacency structure of vert
Adjacent vertices are those whose label vectors differ in
actly one bit~or component!, and if v andw are vertex vec-
tors that differ in thejth bit, then PS(v)2PS(w)5PS(v
2w)5PS(6ej )56ek for somek.

For each choice ofPS we need to count the number o
digraphs left invariant. Letak denote~undirected! edges of
the graph and letT represent a transformationPS so that if
a1 is the edge between verticesv andw, thenT(a1) is the
edge between verticesPSv andPSw. Then, the edges of th
graph will be grouped into cycles such as, e.g.,T(a1)
5a2 ,T(a2)5a3 ,T(a3)5a1 and T(a4)5a5 ,T(a5)5a4 and
also possiblyT(a6)5a6 . Now, in order to count invariants
we note that for each such cycle there is a single choice
edge orientation. In the example just given, we can select
orientation of the edgea1 ~2 ways! but then if the graph is to
be invariant under the transformationT, the orientation ofa2

is determined by that ofa1 sinceT(a1)5a2 , and then the
orientation of a3 is determined by that ofa2 and so on
around the cycle. Thus, the number of choices of invari
graphs underT is I (T)52d, whered is the number of edge
cycles induced byT. It is also possible thatTj (a1)5a1 for
somej but that the vertices get reversed under this trans
mation, i.e., (PS) jv5w and (PS) jw5v, wherev andw are
adjacent. In such a case, no invariant digraphs are pos
for this transformation, since at least one edge must be
versed underT. The number of cycles,d, for a given trans-
formation,T, can be computed in a brute force manner
cording to the following algorithm:

d 5 0
nedge = n2 n21

for ( k = 1 to nedge) edge_visited[k]
= ‘‘false’’

for ( k = 1 to nedge) {
if ( ¯NOT(edge_visited[ k ])) {

d 5 d 1 1
edge_visited @k ] = ‘‘true’’
new_edge = T( a k )
whil¯e (new_edge Þa k ) {

edge_visited[new_edge] = ‘true’
new_edge = T(new_edge)

%
if (new_edge is reverse of a k ) {

d 5 0
break

%
%

%
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Note that if the final if-block is removed~i.e., we allow re-
versal of edges within the equivalence relation!, we get the
count of cycles for the edge-coloring problem considered
Chen.25

The number of equivalence classes can be compute
looping through the possible transformationsTi ,i
51, . . . ,m(n) ~i.e., the possible pairs of matricesP andS),
computing the number of cyclesd(Ti) for each transforma-
tion, and counting how many transformations there a
n(d), for each value ofd. This gives Eq.~5!,

c~n!5
1

m~n! (d
n~d!2d5

(dn~d!2d

n!2n

as desired.
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