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The explosive growth in knowledge of the genome of humans and other organisms leaves open the
question of how the functioning of genes in interacting networks is coordinated for orderly activity.
One approach to this problem is to study mathematical properties of abstract network models that
capture the logical structures of gene networks. The principal issue is to understand how particular
patterns of activity can result from particular network structures, and what types of behavior are
possible. We study idealized models in which the logical structure of the network is explicitly
represented by Boolean functions that can be represented by directed grapbshms, but which

are continuous in time and described by differential equations, rather than being updated
synchronously via a discrete clock. The equations are piecewise linear, which allows significant
analysis and facilitates rapid integration along trajectories. We first give a combinatorial solution to

the question of how many distinct logical structures

existfaimensional networks, showing that

the number increases very rapidly with We then outline analytic methods that can be used to
establish the existence, stability and periods of periodic orbits corresponding to particular cycles on
the n-cube. We use these methods to confirm the existence of limit cycles discovered in a sample
of a million randomly generated structures of networks of 4 genes. Even with only 4 genes, at least
several hundred different patterns of stable periodic behavior are possible, many of them
surprisingly complex. We discuss ways of further classifying these periodic behaviors, showing that
small mutationgreversal of one or a few edges on tlieube need not destroy the stability of a

limit cycle. Although these networks are very simple as models of gene networks, their
mathematical transparency reveals relationships between structure and behavior, they suggest that
the possibilities for orderly dynamics in such networks are extremely rich and they offer novel ways
to think about how mutations can alter dynamics. 2600 American Institute of Physics.
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Tremendous progress has been made in mapping genetic
structures in humans and other organisms. This wealth
of information will necessitate new analytic tools to de-
duce function from structure in gene regulatory net-
works. One way to begin tackling this problem is to in-
vestigate simple idealized switching networks that
capture the various possible logical structures of real
gene networks (or other networks characterized by
strong switching). Discrete-time Boolean switching net-
works have been used for this purpose, but we study
model networks that are continuous in time, represented
by differential equations, though interactions between
genes are still modeled by Boolean functions. Steady
states and simple stable oscillations have been shown to
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exist in networks of this type with 3 genes and it is known
that more than one pattern of oscillation is possible with
4 genes, as well as irregular behavior. We show here that
there is actually a combinatorial explosion of different
logical structures possible as the number of genes in-
creases and a corresponding explosion of dynamical pos-
sibilities. Even with only 4 genes, at least hundreds of
different stable periodic patterns are possible, some of
them surprisingly long and complex. The existence of
these stable periodic behaviors is proven analytically,
though we searched for these cycles by numerically inte-
grating solution trajectories in a million randomly gener-
ated network structures. The results and methods of this
study provide a way to organize thinking about the rela-
tion between structure and function as well as the effects
of mutation in real gene networks whose structures are
being revealed by current research. They also suggest
that the range of possibilities for orderly dynamics in
gene networks is extraordinarily rich.
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I. INTRODUCTION n 10 11 110

The explosive growth in knowledge of the sequence of o1 w0
the nucleotides in the genome of humans and other organ
isms leaves open the question of how the functioning of the
genes is coordinated to lead to orderly development and or-
derly function. New technologies, including gene expression Yy
chips that enable one to determine simultaneously the activi-
ties of thousands of genes, promise to expand greatly our
information concerning the coordinated function and dynam-
ics of networks of genek? It seems likely that mathematical
techniques, of comparable power and generality to the newl!G. 1. (a) Hypercube structure of a 2-net with two stable fixed points.

experimental methods, will be essential to interpret andVertices corresponds to states of the system, so, e.g., 10" represents the
codify the expanding d:’ita state in which the first gene’s product is above the threshold concentration

. where its presence is felt by the other gene, while the second is below its
Two complementary mathematical approaches havenreshold.(b) Hypercube structure of a 3-net with a cyclic attractor marked

emerged. In one, detailed mathematical models are devely bold lines. Again, vertices correspond to stegane product concentra-
oped for comparatively well-defined genetic networks. Forlions above or below threshold
example, mathematical models have been proposed for the

genetic circuits in lambda bacteriophatfe, drosophila  model genes mutually inhibit the production of each other. In
development, and arabidopsis® A second approach is 10 this case there are two steady states, represented by the ver-
study mathematical properties of abstract models of genetigces 10 and 01. The vertex labels correspond to states
networks, often with a focus on global properties of the dy-centrations of the gene products, so “10” means that the
namics of a class of models rather than an analysis of howst gene’s product is above the threshold where its presence
any particular organism works. For example, an early idealijs felt by the other gene, while the second is below its thresh-
zation of genetic networks as discrete time Booleary|d. Figure 1b) shows a 3-cube for a network in which there
networks]® led to the recognition that statistical aspects Un-are 3 model genes. The first gene inhibits production of the
derlying the structure of a network, such as the number o§econd, the second inhibits production of the third, and the
gene products that affect the expression of any given gengnird inhibits production of the first. In this network there is
have important consequences for the dynamics of the entirg cycle through the six states 160.01—001—011-010
network. The key issue unifying both approaches is to un--,110-100--. The approach blends concepts from combi-
derstand how some particular type of behavior can be gematorics and nonlinear dynamics. These dynamics appear
erated by a genetic network. both in the digraphs on thecubes, as well as in differential

Since real organisms do not have discrete clocking deequations that model these networks.
vices such as are hypothesized in switching network models, The following question underlies much of this work:
most attempts at realistic modeling of genetic networks forGijven a network with a certain logical structure (or equiva-
mulate the models as differential equatidns? The vari-  |ently, a certain directed graph on an n-cube), what are the
ables in the differential equations represent levels of gengossible dynamics that can be found in this netwol?
activity, for example, as monitored by levels of nucleic acidsnetworks with 2 and 3 variables, there can only be steady
or proteins coded by specific genes. Gene activities are regitates and limit cycles and the numbers of different networks
lated by a large variety of circulating factors. It is commonis comparatively smal(4 in 2 dimensions and 112 in 3
for biologists to imagine that genes are switched “on” or dimensions® For 4 dimensions, in addition to steady states
“off,” depending on the levels of factors regulating each and limit cycles, chaotic dynamics is possibfel®However,
particular gene. Consequently, one can imagine that a logic@revious work did not address the total number of different
structure underlies a differential equation modeling a gen@etworks in 4 or higher dimensions and only identified a
network. restricted class of limit cycles.

An idealized class of differential equations makes ex-  The current work investigates dynamics in the highly
plicit the logical structuré® These equations have certain simplified model gene networks proposed by GHsgve
mathematical properties that make them amenable to matlshow that even in networks with 4 interacting genes, large
ematical analysis{i) the equations are piecewise linear, andnumbers of distinct logical structures are possible leading to
can be integrated accurately and rapitflyii) the piecewise a correspondingly rich dynamics. In Sec. II, we present the
linear flows lead to dynamics described by the compositiorequations and give their main properties. In Sec. Ill, we de-
of fractional linear mapgsee definition beloyfacilitating  velop the combinatorial methods to count the number of dif-
analysis of periodit*? and chaotic dynamicki™*° (iii) the  ferent networks in a given dimension. Section IV summa-
underlying logical structure and the resulting dynamics argizes methods that have been developed to analyze the flows
both related to a directed graph on gimensional hyper- in any given network using fractional linear maps. Section V
cube (-cube, inviting classification of the possible network presents a numerical study of random networks in 4 dimen-
structures®® For example, in Fig. 1 we show the directed sions and shows that there are a large number of different
hypercube representation for two different netwofk5.Fig-  cycles present in these networks. Section VI describes ways
ure 1(a) shows the 2-cube representing a network in which 2n which different cycles may be related to each other. Fi-
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nally, in Sec. VII we discuss the relevance of this work tonamely that sigrif;) does not depend oy . Since the di-
biology and mention several questions that are left open byections of flows across orthant boundarigsjuivalently

the analysis. across edges in the state transition diagraepend on the
signs of theF;’s, there is a particularly simple network cor-

Il. PIECEWISE LINEAR EQUATIONS FOR MODEL responding to each state transition diagram; the one for

GENE NETWORKS which F;(y)=*1 for everyi andy. For these networks,

. . eachF; is a Boolean functiofjwe could equivalently have
Glass proposéd that complex biological networks, such takenF, =0 or 1 if we had used a threshold &in Eq. (2)].

as gene networks, can be classified in terms of an underlyin’g\S we show below. the values & define focal points in
“deep structure” of the dynamics represented by a state ' o ' p

- ) - . State space, where the flows at any time are directed towards
transition diagram. The state transition diagram for a system

of n interacting quantitieswhich we will call ann-net is a a focal point determined by the current orthant of state space.

. ) . . . Although it is a major question to determine the different
directed graptidigraph on ann-cube, in which vertices cor- ossible dynamics as a function of the position of the focal
respond to orthantgthe n-dimensional generalization of P y P

quadrants or octantsof state space and transitions along points for a given ;tate transition diagram, in the currept
edges between vertices correspond to flow across boundarif per unl_ess otherW|se_stated we assume that all focal points
between adjacent orthants. In general, this structure appli € at vert|ce§ of the unit hypercube, I.€;= i.l'

to any system oh ODEs whose state space can be decom- Anoth~e r important subclass of Eq) arlses.\./vherFi
posed into 2 regions homeomorphic to the” Drthants of = >j-1Wijy;— 7i. These have the form of additive neural
R", and for which flows from one region to another are innetworks, wherav; is the connection weight between neu-
one and only one directiolf. This structure emerges natu- fonsj andi and ; is the threshold of neuron Such equa-
rally from model systems representing switching networks ifions occur, for example, in Hopfield networks.

continuous time, The state transition diagrams can be used to define
. o ~ _ “structural equivalence classes” for switching networks;
Yi=—YitFi(y1,y2, - yn), i=1,...0n, (1) two networks are in the same class if their state transition

diagrams are the same, up to symmetry transformations on

. then-cube. Note that while each state transition diagram cor-

0 if yi<0 2 responds to exactly one Boolean switching network, several
1 if y;>0 @ of these may still be in the same equivalence class due to the

. . - symmetries of thar-cube. If we allow the focal point coor-
We think of y; as a protein producftranscription factor " . o :
: dinates to deviate fromx1, then the qualitative dynamical
produced by geneé, that may act to regulate the rates of . . .
. . ._behavior of networks in the same structural equivalence class
production of other gene products through the piecewise . .
. . . is not necessarily the same, but the structure does impose
constant functionsF;. Systems with a step function at

. _constraints on the possible dynamics and some results relat-
threshold values other than 0 reduce to the above equations ; .
) : . . ing structure to dynamics have been obtained. If a vertex has
without loss of generality. From the point of view of our . P . . )
_ ~ all adjacent edges pointing inward then there is a fixed point
later analysis, deca}y rates  that .depend M of the network dynamics in the corresponding orthamtce
=(Y1,Y2, .- yn)" (the’ denotes the matrix transpositlon 5 trajectory enters this orthant, it cannot leave and must con-

are manageable by the same techniques as long as the de‘?@(ge toF(y), whereF=(Fy,F, F.)’). Furthermore
l il H a9t n . H

ra_1tes are u_nlform across var_lgbles at any given tlm_e. Th%lass and Pasternadiproved that if the state transition dia-
piecewise linear functions facilitate analysis, but substltunorbram has a “cyclic attractor'(a cycle for which all adjacent
of sigmoidal control f(_)r step f“”C“"”.wc?P}go' in simple net- edges point towards the cygléhen the network either has a
works leads fo equivalent dynamics.”™ Furthermore,  gopq periodic orbit corresponding to this sequence of tran-

there is a more general result that, at least under some CoQl’tions, or its orbits spiral in to the origin. For example, there

d|t|g dns, i ta;] I'T't cyc(lel e>gstsf tll'r: a .netwlc()jrk .W'th steeptf]lg- are two stable steady states for the network represented in
moids as the  gain {slopg ot In€ Sigmoids Inereases, then Fig. 1(a). In this and subsequemtcube diagrams, vertices

it persists all the way to the step function it correspond to quadrantsrthants of phase space, and are

Since for the system specified by Eq$) and (2) there . ~ .
are a finite number of values, (in fact, n2" of them, it is labeled according tg, the sign structure of the quadrant

clear that solutions are globally bounded. In order to guarangorthan)' and directed edges show the direction of flow

tee that the flow across boundaries of orthants in phase Spaggross boundgries between orthants. Qne n_etwork with the
is unambiguously directed, we will impose two additional STucture of Fig. (8 (the Boolean oneis defined by the
conditions: focal points listed in Table(#). To see how the digraph is

. e~ A obtained from the focal points, consider the first line of the
Condftfon L F'(y)f 0, V'L vy, and~ ~ ~ table, for exampleF(0,0)=(1,1). Wheny;<0 andy,<0
Condition .2: Ry, - ¥i=0,... yn)=Fi(Y1, - Vi the focal point has both coordinates positive and the possible

=1,...yn), Vi, Vy. transitions are toy=(1,0)" or (0,1), depending on which
Condition 2 states thdt; does not depend o, i.e., that variable becomes positive first. Thus, on the digraph, we
there is no self-input in the network. In fact a weaker condi-direct the edges 6801 and 00~ 10. Table Ib defines a net-
tion suffices to ensure unambiguous flow across boundariesjork with the structure of Fig. (b) and this has a cyclic

where

Yi=
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TABLE I. Focal points,F(y), for networks that correspond to the structure larly patterns of oscillation, or periodic orbits? To answer
2). . ) ) 1
@ analysi¢?*>1> and report on our numerical investigations

@ which include analytic confirmation of the existence of every
y F©) periodic orbit discovered.
00 1 1
01 -1 1 I1l. COMBINATORIAL BOUNDS
1 1 -1
1(1) -1 -1 In this section we compute the number of structural
(b) equivalence classes fon-nets. An n-cube has E(n)
y F(y) =n2""1 edges and there are 2 choices of direction on each
000 1 1 1 edge, so without considering symmetries there &(@ 2if-
001 -1 1 1 ferent directed graphs. However, many of these correspond
010 1 1 -1 to each other via symmetry transformations, such as rota-
011 -1 1 -1 tions, reflections and relabelings. Gl#ssised Burnside’s
o] L : lemm&??3to show that of the ¥=4096 possible directed
110 1 1 1 graphs on the 3-cube, there are only 112 structural equiva-
111 -1 -1 -1 lence classes.

Let U be the set of directed graphs on theube. Let
c(n) be the number of equivalence classes of such graphs
where the equivalence relation is defined by the group of
attractor that leads to a stable limit cycle, shown in Fig. 2. symmetry transformationd;; ,i=1, ... m, which do not al-

The number of possible cyclic attractdigp to symme-  ter the essential network structure. L¢T,) be the number
tries) in directed graphs on the 3-cube, 4-cube, and 5-cubef elements ofU left invariant by symmetry transformation
have been counted.There is only one for the 3-cube, there T;. Then Burnside’s lemma states that
are 3 for the 4-cube, and 18 for the 5-cube. For the situation m
in which F,= =1 the cyclic attractors in dimension 3 and c(n)= iE I(T) &)
higher imply limit cycles in Eq(1). Moreover, in dimension m<y Y
3, 4, and 5, each different cyclic attractor corresponds to
limit cycle with a distinct period. From the early work on
these networks, three different types of stable behajébr

tractors were known forn_:3, a _I|m|t cycle co_rrespo_ndlng leaves every element &f invariant, sol (T;)=16. The oth-
to the cyclic attractor, a fixed poiristable nodgin the inte- . . g .
rs leave 0, 2, or 4 directed graphs invariant and the sum in

rior of an orthant and a fixed point on a coordinate axis or aEq (3) is (1-16)+ (3-4)+ (2-2)+ (2-0)=32. Thus,c(2)

the origin (focus. For n=4, a similar set of behaviors was . .
. . =32/8=4. Similar arguments allow one to count the equiva-
known, except that three structurally different cyclic attrac- e . .
lence classes for the 3-cube. It becomes difficult to visualize

tors and therefore geometrically different stable periodic or—he symmetry transformations, however, foe 4.

bits are possible. Since then, numerical experiments witrtl : . .
Systematic combinatorial approaches have been devel-
randomly generated networks have shown that the range of

possible behaviors far=4 is much richer than was realized Gped for p_rol_alems of _this nature. The symmetry 9“)‘2’? for
in the early Worki3:14:2021 the n-cube is isomorphic to the hyperoctohedral grayp.

The number of symmetry transformations for this group is

In order to explore the range of possible behaviors in n L
. . . m(n)=n!2". One way to count these symmetries is to see
4-nets, we ask the following questions. First, how many

. . that there are 2 choices for where a given vertex will be
structural equivalence classes are there fomaret? This . .
) . . . .~ . taken under a transformation and th@nways of permuting
gives an idea of the size of the space we are investigatin :
he adjacent edges.

Then, what types of behavior are possible for 4-nets, particu- The problem of counting the number of distinct digraphs
on then-cube is relatedthrough the symmetry grouipo that
of counting the number of 2-colorings on the vertices of the
n-cube, or equivalently, the number of Boolean functions of
n variables?®>?* This problem was solvéd by building on
methods due to Polya in which the cycle polynomial and
cycle index polynomial code information about the cycle
structures of the group of transformations. Chenas ex-
tended this result to that of edge-colorings of theube.

0 2 4 6 8 10 However, the equivalence relation implied by 2-colorings of

Time the edges is not the same as that implied by digraphs. Con-

FIG. 2. Limit cycle for the network in Table(h) and Fig. 1b). The period sider, for example, reflection of the 2-culsguare in a ver-

is 2.8872710. The activity of all three units is shown; the units of time andtical_ ”ne-_ There are eight 2'00|0rin9_5 of the edges t_hat are
activity are arbitrary. left invariant under this transformatiotihe left and right

%or the 2-cube, for example, there are=216 elements inJ.
The 4 rotations and their reflections give=8 symmetry
transformations. The identity transformatiom,, always

y1,y2,y3
0.0 04

-0.6
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edges need only be the same colout no digraph can be TABLE IL Numbers of transformations of digraphs on timecube f
invariant since the top and bottom edges will have their di-=3'4'5) leavingd choices of edge orientation to ensure invariance under
. the transformation. Totals include transformations that leave no digraph
rections reversed. invariant.
A good intuition about the problem of counting the num-
ber of distinct configurations under the symmetries of the n=3 n=4 n=5

directedn-cube can be obtained by computing a lower bound v(d) d v(d) d v(d)
on the number of different configurations. Suppose each > 8 4 48 8 704
symmetry operation of the-cube generated a distinct con- 3 12 6 64 10 480
figuration of directed edges on thecube. Then the total 4 8 8 132 16 944
number of distinct structural equivalence classeén), ? g 12 gé gg gig
would be the total number of configurations of the directed  ;, 1 20 12 32 80
n-cube divided by the number of symmetry operations in 32 1 40 106
O, . In other words, if none of the configurations are identi- 42 60
cal under a symmetry of the cube, then the number of sym- 52 20
metry operations times the number of different classes equals 80 !
the total number of digraphs. However, since some symme- total 48 total 384 total 3840
try operations leave the graph unchanged, we obtain
2n2nfl
c(n)> nion (4) There are other factors influencing the variety of limit

cycles. If a periodic orbit exists for the network, then it must

The inequality arises because not all symmetry operations dbllow a cycle of edges on the-cube. The converse is not
the n-cube necessarily generate a distinct configuration fonecessarily true, howevesee Sec. 1Y. Bistability or multi-
any particular directed graph. However, as we will see, thisstability also occurs in some networkSec. V).
lower estimate is amazingly accurate as the number of di- Furthermore, a given cycle structure, taking into account
mensions increases. the pattern of adjacent edges pointing toward or away from

We now consider the exact computationcgh). Since a  the cycle, can occur on different hypercubes, since edges
closed-form solution has apparently not yet been obtainedyther than those adjacent to the cycle can vary without af-
we take a more direct, computational approach. Essentiallyfecting the cycle.
the problem boils down to counting the cycles induced by
each symmetry transformation @, . The number of invari- |y ANALYSIS
ant digraphs under a transformation will b&, avhered is
the number of cycles, because there is only one choice of The analysis of continuous-time switching networks was
orientation for each cycléafter the orientation of the first Pegun by Glass and Pasterngicind was further developed
edge is decided, the other edges of the cycle are)ixedhe ~ Mainly by Mestl, Plahte, and Omhdft,Mestl, Lemay, and
Appendix, we outline our method of counting these cyclesGlass:® and Edwards® What follows is a brief summary of
via an algorithm that traverses them, and then apply Burnthis work.

side’s lemma to obtain the result, which can be written The main property of continuous-time switching net-
works that makes them tractable is that trajectories are piece-
1 p S qv(d)2¢ wise linear. Foiy=(y,Y>, . ..,y¥,) in one orthant of phase
c(n)= m(n) 4 v(d)2%= nion (5 space(and therefore with one fixed sign structutke solu-

tion to Eq.(1) in vector form is
where v(d) indicates the number of transformations gener-

_ _ —t
ating exactlyd cycles. y(O)=f+(y(0)=fe™, ©)
Forn=3,4,5 the counts(d) are shown in Table Il. The which describes  exponential approach  tof
lower bound computed in Ed4) is the largest term in Eq. =(fy,f,, ... 7fn)=|:('§/)_ The trajectory inn-dimensional

(5), i.e., the one with the largest value dfcorresponding to  i4te space is a straight line betweg) andF(y). Thus,

the identity transformation. . . =
For largern these tables are easy to compute, but theeach orthant of phase spagaith sign structurey) has an

. . . ) o

numbers quickly become very large. The number of distinctassomat(ad focal point, somewhere iR". If trajectories in

digraphs(equivalence classgsn then-cube[from Eq. (5)]

forn=11to 5 is given in Table III. TABLE IIl. Numbers of distinct digraphs on the-cube, considering sym-
As a consequence of these calculations, we can say thatetries.

the random sampléwith replacementof a million 4-cube

.n Lower bound
structures reported below does not come close to exhausting c(m) werbod
the full set of 11223994 equivalence classes. The combina-1 1 1.000
torial explosion of structural equivalence classes leaves? 11‘; 825-%%%
plenty of room for many different limit cycles, though it does 11 223 994 11 184 810.666

not give a clear indication of how many there are. Not all 5 314 24 455 746 718 261 696 314 824 432 191 309 680 913.066
structures will have stable limit cycles.
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an orthant are directed to a focal pofnwithin that orthant Where R is a matrix with one row for each alternative exit

then once the orthant is entered no further switchings tak&ariable, ¥, around the cycle, each row being

place and is a stable fixed point of the network dynamics.

Otherwise, trajectories are formed of piecewise linear seg- e 0rk=-1). ..a0)

ments between orthant boundaries, with corners at the Ri.=— ﬂ—k)B BY B (10)

boundaries. Under Condition 2, there is no ambiguity in the :

direction of flow across an orthant boundary so trajectorie% . -

) . : e allow equality,Ry=0, as a limiting case. These are tra-

are well defined there. Thus, given a point on an orthant . : ! . .

boundary, it is possible simply to calculate the next orthanfecmnes for which two variables cross their thresholds si-
' multaneously. Many of the inequalities generated by(EQ).

boundary crossing point directly, and to integrate along tra?ﬁill be redundant and can be weeded out in computation.

Jsetgt;nes it is only necessary to repeat this process at eac The domain of definition of the return map} is only
We now denote by thekth orthant boundary crossing CCO. Trajectories starting Ol_Jt5|de @, but in O, eventu-
. ) X -2 ally branch away from the given cycle. Note also tihat

on a trajectory and assume tH&?, the focal point associ- : S .
{napsC into O, not necessarily intcC. However, a fixed

ated with the orthant being entered, does not lie in tha oint of the map lying insid€ continues to return and cor-

orthant. The map from one boundary to the next can be rep- o : . . .
resented as an operatal (k):R“H R, responds to a periodic orbit for the differential equations. If

C is empty, no periodic orbit corresponding to timscube

By cycle exists.
yer =Myl =—— The following result establishes that fixed pointsvbfie
1+(yt,y®) on eigenvectors oA, gives criteria for their existence and
(g e (7)  allows calculation of their location.
BR—|— ] K__ " Proposition 2: Any nonzero (real) fixed point of M [Eq.
£ f(0 (8)] in C is a (real) eigenvector of A corresponding to an

I . . .
eigenvalue>1. Conversely, ifv is a real eigenvector of A

wherej is the variable that switches at thth step,g; denotes |, .+, eigenvalue\>1, andve C, then

the standard basis vector R", and the angle brackets de-
note the Euclidean inner produdt,y)='y). Thus,M® (A=1)V
is a fractional linear map with a vector numerator and scalar y*=————
denominator. The composition of such maps is again a frac- (dv)
tional linear map of the same form. Also, since these map
are between orthant boundaries where one ofytheis al-
ways 0, they can be reduced by one dimension, by removin
the appropriate row and column in eaBH?, y®, and y".

For a cycle(a trajectory that returns to its initial orthant
boundary, we arrive at(dropping the superscripts

(11)

ISS a fixed point of M, unique in the spanwfIf A =1, then
the only fixed point in the span wgfis 0.
¢ The stability of a fixed point oM depends on the cor-
responding eigenvalue & being dominant.
Proposition 3: A fixed pointy;* , of M corresponding to
the eigenvalue\; of A, is asymptotically stable if\;
Ay >|\j|, Vj#i, neutrally stable if\;=|\||, Vj#i, but equal-
My= T (o)’ (8 ity holds for some j, and unstable otherwise.

This is proved by the standard linearizati@acobian at
whereA is (n—1)X(n—1), ¢eR" !t andyeR""*. We the fixed point. Wher has real, distinct eigenvalues at least,
call M the return map. This discrete map, along with thelines between fixed points &fl are their stable and unstable
crossing times, contains all information in the full manifolds, and the eigenvalues of the Jacobian are ratios of

continuous-time dynamics. eigenvalues oA.
We now list without proof key properties of the cycle  Proposition 4: A periodic orbit with cycle map M has
mapM [Eq. (8)] and corresponding periodic orbits. period P=log(\), where\ is the eigenvalue of the matrix A

Along a cycle on then-cube, there may be branching associated with the fixed point on the orbit.
vertices, i.e., vertices with more than one outgoing edge. The proof of this resutf depends on the demonstration
These correspond to orthants from which trajectories can exthat the denominator in the mdjgq. (7) or (8)] for any
by more than one boundary hyperplane, depending on whickequence of trajectory segments is the exponential of the
variable reaches zero first. Alternative exit variables imposeime taken to traverse them. Since the denominator at a fixed
constraints on the region of an orthant boundary that mapgoint of the map is also the associated eigenvalue of the
forwards through a specified sequence of boundaries. Thesgatrix A, the log of this eigenvalue is the period of the cor-
constraints take the form of linear inequalities, and the reresponding periodic orbit.
stricted regions are the interiors of “proper coneg®Ref. 26 Thus, given a network and a cycle on itscube, it is
p. 6). possible to determine the existence, stability and period of
Proposition 1: Given an n-cube cycle and initial orthant any associated periodic orbit explicitly, and these calcula-
boundary, O, the cone from which trajectories follow the tions can be automated, so that many cycles can be checked
cycle and return ta0 is given by quickly. The procedure is as follows.

C={ye O|Ry=0}, 9 (1) Select an orthant boundary on the cycle to start from.
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(2) Calculate the return matq. (8)] from the composition  TABLE IV. Numbers of randomly generated 4-nets with the five possible
of fractional linear mappings corresponding to the se-ehavior classes.

quence of orthants traversed from the starting orthant e 555633
boundary. foci 435410
(3) Find the eigenvalues and associated eigenvectors of the periodic orbits(nondegeneraje 5668
matrix A in the return map. periodic orbits(degenerate 2654
(4) For real eigenvalues>1, calculate the fixed points on __"eular 635
the corresponding eigenvectors from Eyl). Total 1000000

(5) Calculate the returning con€, for the return map from
Eq. (9), if it is nonempty.

(6) If a fixed point of the map lies i€, then it corresponds  yates for periodic orbits were then checked according to the

to a periodic orbit. In this case if its eigenvalue is the y5caqure outlined in Sec. IV. Given the hypercube structure
(unique dominant one then the periodic orbit is asymp-

A i ' (i.e., the set of focal pointsand the proposed cycle of
totically stable; if the modulus of other eigenvalues aSprthants (determined by the starting boundary and the

well as this one attain the spectral radius, the orbit iSgyitching sequengethe return map was calculated and the
neutrally stable; otherwise it is unstable. If the fixed gjgenvectors and eigenvalues of thenatrix, as well as the
point lies on the boundary & then the periodic orbitis  fyaq noints of the map. Then the returning cone was calcu-
“degenerate,” in the sense that two variables switch Si-jateq "and the fixed point associated with the dominant eigen-
multaneously. value checked to see whether it was in the returning cone.
Thus, we did not rely on the numerical integration as evi-
V. RANDOM SAMPLE OF A MILLION NETWORKS dence of periodicity, rather we used it to suggest candidate
cycles which were then verified analytically by checking that
To search for behaviors in 4-nets with focal points atthey satisfied the conditions of the result in Sec. IV.
=1, a million 4-cube structures were randomly generated |n no cases did we find that a candidate cycle was re-
(with the no-self-input restriction, Condition).2Each was jected by this verification process. However, in some cases,
numerically integrated from a random initial condition for a the fixed point of the return map fell exactly on the boundary
maximum of 36300 stepfess if convergence was detected of the returning congsometimes on the boundary of the
earlier—the results of the integration were checked after seVorthant boundary itself, indicating that two variables switch
eral stages of increasing length to catch fast convergenaggethey, within an epsilon to account for roundoff error.
sooney. If a fixed point within an orthant was reached, inte- Trajectories following these “degenerate” cycles follow an
gration stopped. Otherwise, the switching sequence, defingghambiguous sequence of switchings but converge towards
to be a sequential listing of the indéxf the variabley; that  an w-limit set in which two variables switch together. There
switches, was examined for periodic behavior. Periodic beis in this case a possibility of ambiguity if the trajectory near
havior is identified as a cycle of switching variables in whichthe double-switching depends sensitively on which of the
every variable switches an even number of tinies, e.g., two switches first. In that case thelimit set is not a limit
the sequence 1-2-1-4 would not be counted as a cycle, batcle, since a small perturbation on one side leads the trajec-
1-2-1-4-1-2-1-4 would If the end of the full sequence con- tory away. These are nevertheless identified by the program
sisted of at least three repetitions of such a cycle, the cyclas periodic orbits. In some cases of degenerate cycles, the
was considered a candidate for a periodic orbit. Cycles of aapproaching trajectory follows two different subcycles of
many as 7290 switchings were searched for and would havewitchings in alternation, both subcycles approaching the
been found by the program. All such candidate cycles wersame degenerate limiting cycle. In such cases the limiting
further checked for convergence of the values of the varicycle is taken as one circuit, not the twoow identica)
ables after each circuit. If all variables returned to withinsubcycles, and the period is half what the approaching cycle
10" % over the last circuit of the cycle, the cycle was retained(consisting of both subcyclesvould suggest.
as a candidate for a periodic orbit, otherwise the integration  This numerically based but analytically verified search
was continued or if the length of integration had reached itor stable periodic orbits in different 4-net structures pro-
maximum the network was stored for closer inspectionduced a huge variety of possibilities. Of course, many net-
manually. Cycles of 2 or more variables switching with cycleworks are identical to others under symmetry transforma-
times that decreased but did not converge were considered tions (rotations, reflections, relabelingsso apparently
be trajectories spiraling in to a fixed point and were not pur-different hypercube cycles may not be genuinely different.
sued further (It is possible that such a trajectory could be Cycles identical except for a symmetry transformation, how-
misclassified if it is actually converging very slowly towards ever, must at least have the same period and length of
a cycle, but slow convergence does not occur in networks iswitching sequence. The break-down of behaviors found in
the current situationIntegration was also stopped when two the 1000000 simulations are listed in Table IV.
variables switched at the same tinfeithin 10 ° time Those for which no convergence was detected were clas-
units). This was taken to be an indication of convergence tcsified as irregular. There is, of course, no proof from the
a cycle that in fact involved two variables switching togetherabove that these would not eventually converge to a fixed
(see below. point or a periodic orbit, but investigation of some examples
Cycles obtained by the numerical integration as candisuggests that they are in fact chadfi¢®
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oro 1110 Of the 1000000 random networks, 8322 converged to
periodic orbits. In order to determine how many truly differ-
ent cycles there are amongst these, we would need to com-
pare the switching sequences and the patterns of alternate
exit variables along the cycles, considering symmetries. We
0100 1100 can classify in a courser way, however, using simply the
period of the orbit, noting that one period can be associated
with many different switching sequences, even sequences of
different lengths. Among the 8322 periodic orbits we found
301 different periods. The shortest period was 1.4436355
il o, time units associated with switching sequences of length 8 or
more. The shortest switching sequence is the one of length 6
that occurs in the 3-element network represented by the
3-cube in Fig. 1b), and has period~2.8872710(Fig. 2).
o0 1010 Earlier analysis shows that this period is exactly 6 In((1
oors +/5)/2) 1518 This was also the most commonly occurring
o period, accounting for 2464 of the 8322 periodic orbits. The
000t longest period was 62.7563895 for a cycle of length 252,
o which was also the longest switching sequence.
It is surprising that such simple networks with only 4
0000 1000 elements can produce such a huge variety of different stable
FIG. 3. Hypercube structure of a 4-net with a periodic orbit following a periodic orbits, including some with sequences of up to 252

cycle of length 174. The edges traversed by the cycle are marked by boI§WitChir.‘gS- Tlhe Frajectories of t.hese |Qng limit CyC|(.3$ are
lines. also quite varied in appearance, in amplitude, and period. For

0101 1101

FIG. 4. Phase space projections of a periodic orbit with switching sequence of length 174 on the 4-net of Fig. 3.
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example, one limit cycle consisting of 174 switchin@sgs.

3 and 4 has a period of only 6.1517884 and has very small
amplitude, whereas another of length {Eigs. 5 and $has
period 22.1535440 and an amplitude comparable to those of
most shorter cycles. Furthermore, the basins of attraction of
these long-periodand long switching sequencerbits ap-
pear to be large: Many initial conditions lead to the same
cycles. For example, we integrated each of 3 particular net-
works from 20 differentrandomly generatednitial condi-
tions and found that trajectories from 14 of the initial points
converged on a length-110 cycle in one network; 11 of the
initial points converged on a length-252 cycle in the second
network; and all 20 initial points converged on a length-174
cycle in the third.

Bistability and multistability are possible in Boolean
4-nets, though we did not look for it in our random sample.
It is clearly possible to have two stable fixed points even in a
2- or 3-nefle.g., Fig. 1a)], or to have a stable fixed point and
a stable periodic orbit in a 4-net. It is also possible to have
two stable periodic orbits in a 4-net. A simple possibility is
that of two isolated cycles of length 4. Such cycles can have
stable periodic orbits if the focal points are notall.!! The

cycle of length 110. The edges traversed by the cycle are marked by bol§X@mple in Fig. 7 is more interesting. It has two stable peri-

lines.
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FIG. 6. Phase space projections of a periodic orbit with switching sequence of length 110 on the 4-net of Fig. 5. Note that the amplitude of thiscycle is m
larger than for the cycle of length 174 in Fig. 4.
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0110 1110 TABLE V. Canonical switching sequences of length 8.
Switching sequence Interval sequence

12121313 (15)(15)(1111)
12123434 (15)(15)(15)(15)

12131213 (33)(33)(111)
0100 1100 12132434 (15)(15)(24)(24)
12134234 (15)(24)(24)(33)
12134243 (15)(15)(33)(33)
12314234 (24)(24)(33)(33)
12314324 (24)(24)(24)(24)
o 12341234 (33)(33)(33)(33

1111
0101 1101
oo structure may have the same interval sequeicoasider a

e sequence and its reverse, which we must consider as differ-
ent sequences
Another way to identify structurally identical switching
= . sequences is to transform each sequence into a canonical
form, unique for its equivalence class. The simplest way to
do this is to find the member of an equivalence class that is

1011

0000 1000 lexicographically minimal, or in this context, smallest con-
FIG. 7. Hypercube structure of a 4-net with two stable periodic orbits fol-Sidered as an integer. For example, the sequences
lowing cycles marked by bold lines. 1213124314 and 1213421413
i are structurally equivalent, the first being the canonical form
of their path on the 4-cube, namely for this class.(To transform the second to canonical form,
0000—0001—0011—1011—-1010—1000 change 2’s to 3's and vice versa and start from the second-

to-last digit in the sequenoe.
Structurally distinct switching sequences were listed

0000—0001-0011-0111-0110-0100. long ago by Gilbe/’ but he counts only elementary cycles

. . . (those that pass through each vertex only ¢reel does not
In th'S. case, b.OIh orbits are equn{alent to the three'consider cycles traversed in opposite directions to be distinct.
dimensional cyclic attractor shown in Figlhl, and have the

. The sequence of length 10 above, for example, has a differ-
same period, 2.8872710. ent canonical form when reversed. There is one canonical
switching sequence of length 4 (1212) and there are two of
VI CLASSES OF CYCLES length 6 (121323 and 123123). Table V lists the nine pos-

One way to classify cycles is by their periods, as in thesible canonical forms of switching sequences of length 8.
results of the random networks reported above. Another is by  All but the first two (which are not elementary cycles
switching sequences, which do not correspond one-to-onare as listed by Gilbert. According to our present definition
with periods. Many different switching sequences may haveof equivalence, we find 33 canonical forms for switching
the same period, and a given switching sequence may correequences of length 10, rather than the 10 given by Gilbert.
spond to periodic orbits with different periods. To specify In our random sample of 1000000 networks, the 8322 stable
completely a cycle on a directed graph on the 4-cube, it igperiodic orbits that we found represent 370 different canoni-
necessary to give both the switching sequence and the patal switching sequences.
tern of alternate exit variables, i.e., directions of edges adja- For a given switching sequence there are many possible
cent to the cycle. Thus, a given switching sequence magrrangements of adjacent edge orientations, but most of these
belong to more than one different periodic orfuiith differ-  we do not expect to correspond to periodic orbits. For ex-
ent period, depending on the pattern of adjacent edges. ample, for the sequence 123123 on the 3-cube there are 6

However, symmetries imply that apparently different adjacent edges and thereforedifferent patterns of adjacent
switching sequences may be structurally the s&hRelabel-  edge orientations. Many of these are equivalent by symme-
ing the variables or changing the starting point of the cycletry, but in the end only one of these patterns gives a cycle
will give an apparently different sequence that is neverthewith a periodic orbit, namely, the one with all adjacent edges
less structurally unchanged. This is still true when adjacenpointing inwards to the cycle, i.e., the cyclic attract@rhis
edges are taken into account. One way to extract the strués not true, of course, for the more general class of switching
ture of a switching sequence is to use the “intervalnetworks with focal points not necessarily aatl.) To illus-
sequence.’® The interval sequence gives the number of in-trate a class of cycles on the 4-cube with a given switching
tervening digits in the switching sequence between consecisequence, consider Fig. 8. This has a cycle that is not quite a
tive occurrences of each variable. However, the interval seeyclic attractor, since there is a chord from (0111) to (0101)
guence is still not a unique identifier, in that more than oneand since the edge (0118)(1110), which is adjacent to the

and
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0110 1110 TABLE VI. Edge reversal patterns producing stable period orbits for the
cycle in Fig. 8(binary vertex labels are represented by their decimal equiva-
lents.

Edges reversed Period
none 3.763906
0100 1100 11-10 3.552914
9—-8 3.302676
1—0 2.936174
6—2 2.958148
7—3 3.137461
o1t 11-10, 6—2 2.712756
i 1110, 7—3 2.936174
938, 6—2 2.437511
9—-38, 7—3 2.712756
oo e 1-0, 5-13 2.854426
0010 1010 1—’0, 6—’2 1968397
oot 1-0, 7—3 2.372957
o 1-0, 5—13, 6—2 1.691689
1-0, 5-13, 7—3 2.580393

0001

1001
5000 1000 able set of periodic orbits associated with it, determined by

, o ~ the adjacent edge orientations.
FIG. 8. A cycle on a 4-cube with switching sequence 43412312, having a |y 'some cases relationships between networks can be
stable periodic orbit. Reversing some of the edges that point inward toward L .
the cycle can still produce a periodic orbit, but with a different period.  Understood from structural principles. For example, consider

a 4-element network in which one element has no outputs to
other elementsge.g.,y; does not depend oy, for i #4). In

cycle, points away from the cycle. Everywhere else, adjacent _ _ _
edges point inwards to the cycle. The switching sequence foﬁ?ﬁnvlﬂi' Eggv‘sitrhe‘;ﬁresi"hg‘:‘;tegi p:gs:rcs'gg(;f‘:r'e sgrrt'gf Ic;rsglss f;’:ethe
this cycle is 43412312, which has canonical form 12134234fy g vl Y

epresented by their decimal equivalents
and the methods of Sec. IV can be used to show that the

cycle corresponds to a stable periodic orbit of periodEdges reversed Period
~3.763906. If the edge (0116)(1110) is reversed, so that 4_ 4 2.887271
it also points in towards the cycle, then no periodic orbit1—o 2.887271
exists for the cycle[Intuitively, (0110)—(1110) needs to 9—8, 4-0 2.712756
point outward, i.e.y; has to be pulled in the positive direc- 9—8 4-12 2.528355
tion, so that at the next step the chord is not followed, bugjg' g:il gg%?g
(0111)—(1111) ] 10, 5-13 2.712756
However, some of the adjacent edges that point in to4—0, 6-2 2.292432
wards the cyclgor some combinations of severalan be 1-0, 6-14 3.418036
turned outwards and still leave a stable periodic orbit for thet—0,  7—3 2.292432
. . . —8, 40, 4-12 2.292432
resulting cycle. There are 14 adjacent edges to this cyclqg%s 4-0 62 2 538797
excluding the chord, and so2patterns of adjacent edge 9.8 4.0, 6-14 2078774
orientations for each orientation of the chord. There are n@—sg, 4-12, 6-2 2.292432
symmetries for this cycle to reduce this number of patterns9—8, 4—12, 6-14 2.887271
Leaving the direction of the chord as depicted, 15 differen®—8 6-2, 614 2.978774
patterns of adjacent edge orientations give stable periodiifjo' g:g 2:? 4 g'gggz%
orbits. These are listed in Table VI where edges are specified .o 5 .13 7.3 2372057
by their endpoint vertices expressed as decimal equivalents.o, 4—12, 6-14 2.88727(degenerate
of their binary labels. Thus, the edge from (1011) to (1010)1—0, 6—2, 6—14 3.122078
is written 11-10. Cycles with other inward-pointing adja- =0, 7-3, 15213 1.443635
- . 198, 4-0, 4-12, 6-2 2.094713
cent edges turned out do not have corresponding periodi N 4-0 4-12 6514 2712756
orbits. If the chord is reversed, another set of 31 differeny g 4.0 .2  6-14 2 830288
cycles with stable periodic orbit8 of them degenerat®c- 9.8, 4-12, 6-2,  6-14 2.712756
cur (Table VII). In addition, we can reverse more edges andl—0, 5—13, 6-2, 6—14 2.958148
end up with an unstable cycle, e.g., without the chord rel—0. 4-12, 6-2,  6-14 2.29243%degenerafe
versed, reversing %0, 513, 62, and 1513 to givea .0 4~12 6214 73 2.29243%egenerate

. s : _ 9—8, 4-0, 4-12, 6-2, 614 2538797
cycle with an unstable periodic orbit of period 0.957001. ;_ 5 4.12 6514 753 15513 1443635

Thus, each possible switching sequence may have a siz
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this case, the dynamics of the network are essentially three- A more provocative issue is whether the current methods
dimensional, withy, being driven by the other three. How- are really appropriate to model real genetic networks found
ever, if the 3 driving elements oscillatg, may still switch  in nature. The current version of E(.) does not incorporate
and then the cycle on the 4-cube will not simply be themany factors that are important in the biological context in-
3-cube cycldFig. 1(b)] embedded into the 4-cube. It is not cluding: spatial structure, time delays associated with tran-
always so easy, however, to see an underlying simpler struscription and translation, differences in threshold for the
ture in a complicated cycle. same transcription factor at different loci, sigmoidal rather
than steplike changes in control of synthesis, variable decay
rates for different transcription factors. Although such factors
could be easily incorporated by modifying the current equa-
This work blends combinatorics and nonlinear dynamicgions, the mathematical transparency of the current formula-
to explore the properties in a class of piecewise linear differtion would be lost.
ential equations that model genetic and other networks in  Despite these potential objections to the current ap-
which switchlike interactions are believed to dominate theproach, two factors stand out. First, molecular biologists still
observed behaviors. The surprising result is that as the nethink of genes as being switched “on” or “off” based on
works become larger there in an astronomical increase in thihe presence or absence of the controlling transcription fac-
total number of different networks as defined by distinct con-tors (which at the current time are the focus of intense study
figurations in directech-cubes that capture network struc- in particular gene expression circyitSecond, even though
tures. Thus, in 3 dimensions there are 112 different netit was demonstrated long ago that the current equations could
works, in 4 dimensions there are“16ifferent networks, and generate a bistable toggle switch and stable oscillatiBius
in 5 dimensions there arex310?° different networks. Al- 1), it was not until 27 years later that networks having these
though we have not counted the number of distinct cycles odynamics were synthesized out of genetic comporferifs.
distinctly different chaotic dynamics in these networks, theThus, the path has been set to synthesize netwiarkgro,
current results indicate that there are thousands of differerdut of genetic components having predetermined logical
networks that show interestin@.e., limit cycles or chags structure and dynamical behavior.
dynamics. Cycles are related to one another. For example, The current work places the analysis of genetic networks
flipping a single edge in a network with a stable cycle oftenin a combinatorial context. Thus, this work may be helpful in
yields another stable cycle, with different dynamic proper-classifying and identifying genetic networks based on their
ties. Thus, many configurations leading to stable cycles maglynamics and on their logical structure. Moreover, since mu-
arise from small “mutations” in the network structure. Other tations in biological systems are associated with discrete
“mutations” might lead to other sorts of behaviors such asevents(e.g., change of a single base pair, transposition of

VIl. DISCUSSION

steady states or chaos. two segments of chromosome, deletion of a segment of a
This work raises a large number of intriguing questionschromosomg the current work offers novel ways to think
of a mathematical nature. We mention several. about the ways mutations can lead to altered dynamics in

genetic networks. It also offers a huge repertoire of dynamics
that might be possible using genetic components. Finally, the
enormous explosion in information about the structure of the
genome in man and other organisms will require new meth-
ods of analysis to help understand the orderly functioning of
the genetic networks underlying life.

(1) For a given dimensiom, what is the longest stable cycle
(in period and symbolic sequender networks in which
the focal points are at 1?

(2) For a given dimensionn, what is largest number of
stable attractors in a network for networks in which the
focal points are at-17? (It is easy to see that there is
always a network with 2 stable nodes.

(3) As the positions of the focal points in a network vary, ACKNOWLEDGMENTS

what are the generic ways in which stable attractors un-  we thank NSERC for partial support of this research,

dergo bifurcations? and one of our reviewers for the reference to the paper by
(4) For a given network, what possible behaviors can bechen.

found as a function of the position of the focal points?

The extent to which analysis of the current equations is'A‘PPE'\“:)IX

pursued will likely depend on the perceived relevance of  We wish to count the number of distinct digraphs on the
these equations to model real or artificial genetic networks.n-cube. We first review the construction of the group of sym-
The current networks are appropriate to analyze asynmetry transformations.

chronous switching networks. Although hypercube mappings It is known that the group of symmetrie®,,, consists

of dynamics were initially used in this conte®tye are not of signed permutations. We formulate this result as follows.
aware of exploitation of these methods in recent years. NevFhe vertices of the-cube are labeled bg-bit binary codes
ertheless, given the simple structure of these networks, theie.g., see Fig.)l or equivalentlyn-vectors with components
synthesis in silico would be comparatively straightforward.=1. We can think of each transformation as a choice of
Certainly it would be interesting to build analog networkswhich vertex will be taken to the+,+, ...,+) position
and study their dynamics using the theoretical methods ouiand then a choice of permutation of thevariables(vector
lined here. components corresponding to a permutation of the edges
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adjacent to the €,+, ... ,+) vertex. Each transformation Note that if the final if-block is removed.e., we allow re-

can be represented, therefore, as a ma$ whereSis a  versal of edges within the equivalence relajjome get the
signature similarity matriXa diagonal matrix with diagonal count of cycles for the edge-coloring problem considered by
entries=1) andP is a permutation matrix. To verify that Chen?

these matrice® S exactly correspond to the desired symme- ~ The number of equivalence classes can be computed by
try transformations, first note that there are cleary®ma-  looping through the possible transformationd; ,i
trices andn! P matrices. It is easy to check thatf; S,y =1,....m(n) (i.e., the possible pairs of matricsands),
=P,S,v for all vertex vectors/, thenP;=P, andS;=S,, c_omputlng the n_umber of cycleqT;) for each transforma-

so that all theP'S matrices are genuinely different transfor- tion, and counting how many transformations there are,
mations. Also, eacPS matrix is a valid transformation in »(d), for each value otl. This gives Eq(5),

the sense that it preserves the adjacency structure of vertices. 1 S w(d)2¢

Adjacent vertices are those whose label vectors differ in ex-  ¢(n)= —— ,,(d)zd:d—
actly one bit(or component and ifv andw are vertex vec- d n!2"
tors that differ in thejth bit, then PS(v) —PS(w)=P v
—w)=P§*g)=*¢g for somek.

For each choice oP S we need to count the number of
digraphs left invariant. Lef, denote(undirected edges of
the graph and leT represent a transformatidnS so that if 's. A7-) Fodor, “Massively parallel genomics,” Sciencr7, 393-395

; - : 1997.

a IS the edge bet\_’veen verticgsandw, thenT(al) is the 2R. Sapolsky, L. Hsie, A. Berno, G. Ghandour, M. Mittmann, and J. B.
edge between verticd3Sy andP Sw. Then, the edges of the  Fan, “High-throughput polymorphism screening and genotyping with
graph will be grouped into cycles such as, e.g(a;) high-density oligonucleotide arrays,” Genetic Analysis: Biomolecular En-
=a,,T(ay)=as,T(ag)=a; andT(as)=as,T(as)=a, and ~  9ineeringld, 187-192(1999.

| 2 ( 2')b| T3 (_3) Nl . ( ‘(‘j) t5 ( 52 4t t 3D. Thieffry and R. Thomas, “Dynamical behavior of biological regulatory
also possiblyT(ag) =ag. Now, in order O_COlm_ Inva”an_s' networks. Il. Immunity control in bacteriophage lambda,” Bull. Math.
we note that for each such cycle there is a single choice of Bjol. 57, 277-295(1995.
edge orientation. In the example just given, we can select théH. '; MgAdamSZ 6651;(:35'8 ggg(riig%a“(:ircuit simulation of genetic net-
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