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Combinatorial and topological techniques are developed to classify nonlinear chemical reaction networks in
terms of their qualitative dynamics. A class of N coupled equations, based on a hypothesis concerning
biological control by Monod and Jacob is derived. Transitions between volumes in concentration space for
these equations are represented as directed edges on N cubes (hypercubes in N dimensions). A classification
of the resulting state transition diagrams for N =2,3 is given. A version of a topological theorem by Poincaré
and Hopf is derived which is appropriate for application to chemical systems. This theorem is used to predict
the existence of critical points in continuous nonlinear equations with oscillation and bistability on the basis of
their state transition diagrams. A large number of nonlinear kinetic equations proposed in previous studies by
other authors are classified in terms of their state transition diagrams.

1. INTRODUCTION

Although chemical systems frequently display mono-
tonic decay to equilibrium or steady state, it has been
known for over fifty years that chemical systems can
also display such exotic behavior as periodic precipita-
tion! homogeneous oscillation,? and periodic wave prop-
agation® as they evolve in time. Modern interest in
these phenomena has been stimulated by a variety of
factors, for example, an observation by Turing that
reaction diffusion systems can be unstable with respect
to periodic spatial concentration perturbations,* a con-
jecture by Monod and Jacob concerning the structure of
gene control networks regulating oscillation and dif-
ferentiation in biological systems,® the discovery that
oxidation of malonic acid in acid medium (the Belousov—
Zhabotinsky reaction) can display rich geometries,“'8
and the discovery of diverse oscillations of biological
origin.?® A number of excellent reviews have recently
appeared which discuss the thermodynamic and kinetic
bases of these phenomena, 1712

There is a straightforward approach to the study of
complex chemical reaction systems, First, determine
the equations describing the system, and then solve the
equations. However, since there are invariably bi-
molecular collisions, the equations describing the ki-
netic systems are nonlinear, and no general methods
for finding analytic solutions are known, For example,
in studies of the Belousov~ Zhabotinsky reaction, com-
plicated kinetics involving a large number of interme-
diates were found.!® Further work has lead to a sim-
plification in which there are three nonlinear kinetic
equations.'* The steady states of these equations have
been found and a linear stability analysis (see Appendix)
carried out in the region of the steady state.'*™'® How-
ever, this analysis is cumbersome when only three spe-
cies are included, and becomes terribly unwieldy if a
more complete analysis is attempted, !” Moreover, a
linear stability theory necessarily gives no information
about the dynamics outside the neighborhood of the crit-
ical point. Numerical integration of the Field—Noyes
equations has been carried out, but differing time scales
can lead to difficulties.!* We believe that the compli-
cations arising in the analysis of the Belousov—Zhabotin-
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sky reaction are typical of what will be found when chem-
ical systems displaying rich kinetics are analyzed in
greater detail. Here, we attempt to bypass many of
these difficulties by making maximal use to combina-
torial and topological techniques to classify nonlinear
dynamics in a class of equations representing model
chemical networks, This approach is similar to the
application of group theoretical and topological tech-~
niques in studies of lattice vibrations in solids. 2 we
stress at the outset that the analysis and classification
in no sense obviates the need for a complete study of
realistic kinetic equations, It is meant to provide a
conceptual base from which a more detailed analysis
can be mounted.

This work has arisen from an attempt to unify two ap-
parently disparate theoretical approaches.

(1) In an analysis of the Field-Noyes equations it was
shown that all trajectories enter a volume in concen-
tration space, the eight boxes in Fig. 1(a).'® Further,
all trajectories in Boxes 5 and 4 (except for a singular
trajectory in each box) leave them and eventually cycle
through the remaining six boxes in the sequence?®

B3+-Bl-B2+-B6—+~B8~B7+B3~ ¢+
If we define the Boolean variables

%=1 ifx; =9 ‘
. ) 1)
X;=0 if x; <0 ,
where the concentrations §; are given by the vertex
common to all eight boxes, the transitions between vol-
umes in concentration space can be mapped on the edges
of a cube, as in Fig. 1(b). The representation in Fig.
1(b) is called a state fransition diagram.

(2) Several authors have argued that biological con-
trol networks bear strong similarities to discrete
switching networks, ™% In studies of the dynamics of
nounlinear networks, it was found by numerically inte-
grating the nonlinear equations that there was a strong
connection between the logical structure of an under-
lying switching network, and transitions in a discrete
phase space,? More recently, it was shown how the
state transition diagrams for a discrete system can be
embedded on a cube, as in Fig. 1(b), and a classifica-

Copyright © 1975 American Institute of Physics 1325

Downloaded 07 Aug 2003 to 132.216.11.185. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



1326 Leon Glass:

tion of the resulting state transition diagrams in two and
three dimensions was given. #

In the following we show how the transitions between
volumes in concentration space can be related to an un-
derlying logical network, and show how restrictions on
these transitions can be predicted once the structure of
the underlying network is known, Qur emphasis on
classification of the dynamics is similar to recent
studies in which the critical points of dynamical equa-
tions representing chemical® or ecological®®® systems
have been classified on the basis of the signs of the
linearized equations of motion in the region of the crit-
ical point (Appendix). However, by considering the
topological properties of chemical concentration space,
the number and types of critical points in different parts
of phase space can be related to one another, and a
better picture of the global dynamics can be achieved.

In Sec. II we derive nonlinear kinetic equations for N
chemical species and show how the state transition di-
agrams for the equations when the discretization in Eq.
(1) is performed can be embedded on an N-cube (hyper-
cube in N dimensions). In Sec. III, we classify the
state transition diagrams into equivalence classes using
combinatorial and topological arguments, A type of
critical point, called the extremal steady states here,
can be predicted from the state transition diagrams.
However, in order to be consistent with topological re-
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FIG. 1, (a) A decomposition of a volume of concentration space
of the Field~Noyes equations! given by Hastings and Murray.
To aid presentation, the volume has been separated into upper
and lower halves, but these are contiguous. The variables x,y,
z are associated with the chemicals HBrO,, Br-, and Cew, re~
spectively. All trajectories enter the volume of concentration
space shown. All trajectories in Boxes 5 and 4 {except for a
singular trajectory in each box) leave these volumes and enter
into volumes B1, B7, B6 or B3, B8, B2, respectively. All
trajectories not in B5 and B4 cycle through the sequence B3

— B1— B2~ B6 — B8 B7—~ B3 —+++ The vertex common to all
eight boxes is an unstably steady state of the Field—Noyes
equations, (b) The statetransition diagram giving the transi~
tions described in Fig. 1(a), when Eq. (1) is applied. Each
vertex represents one of the eight boxes of concentration
space shown in Fig. 1(a). (c) The Boolean functions which when
substituted in Eq. (4) generate the state transition diagrams in
Fig. 1(b). Given either Fig. 1(b) or 1(c) the other can be gen~
erated unambiguously using the techniques described in Sec. II.
A verbal description of the interactions in Fig, l(c) is: x acti-
vates z, z activates y, y inhibits x. (cf. Ref. 16).

15,22
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quirements, it is often necessary that additional critical
points be present in the concentration space. The mini-

mum number and types of these critical points are given
in Sec. 1IV. In Sec. V, we illustrate these methods by

showing the connection between the abstract results and
nonlinear dynamics in two systems of biological and
chemical interest. A number of kinetic schemes pro-
posed in earlier work are classified into one of these
systems. The results are discussed in Sec, VI. In the
Appendix we review the topological index theorems
used in Secs. III and IV.

il. STATE TRANSITION DIAGRAMS FOR NONLINEAR
KINETIC EQUATIONS

Jacob and Monod discovered the genetic mechanisms
by which the synthesis of the enzyme galactosidase in
the bacteria E.coli is regulated by the concentration of
its substrate, lactose. %0 Subsequent studies have shown
that the dependence of synthetic rate on lactose con-
centration is roughly described by the Hill function®

Ax”
ffm , (2)

where X is a production constant, 6 is a “threshold,”
and n is a parameter which is approximately 2 for the
lactose-galoctosidase system. On the basis of their
studies, Monod and Jacob hypothesized that cellular
dynamics might be controlled by networks in which the
products from one enzyme serve to regulate the syn-
thesis of other enzymes in the cell,® Although this hy-
pothesis has not been either confirmed or repudiated,
it has stimulated a large body of theoretical work®®™3®
in which authors have studied the qualitative properties
of reaction networks described by the equations

dx ,
—(—1;1—: N filxiXao e gyt xy) - vixy, i=1, N (3)
where f; describes the kinetics of synthesis of the ith
compound and A and y; are production and decay con-
stants, respectively, for this compound.

Here, we show how the qualitative dynamics of Eq.
(3) can be determined and classified for a particularly
severe set of restriction on the f; . These restrictions
can be simply stated. For each of the N variables in
Eq. (3) we associate a Boolean variable %; defined in
Eq. (1) where we further require X, /v;>6,. We then
assume that f; is a Boolean function B so that the re-
sulting network can be written

s i1, ¥.
(4)
If there are N variables, there are 2¥ Boolean states.
A Boolean function assigns a value of 1 or 0 to each of
these states. Therefore there is a choice of 2 ¥ func-
tions for each B, and there are potentially 2¥*? ¥ gif-

ferent networks of the form in Eq. (4).

= NBy(EyZpe o e By Xy o0 Xy) - vi%y i=1,

We have given numerical evidence that the qualitative
dynamics of many equations based on Eq. (3) are in-
variant to a wide range of parametric changes in f; and
remain unchanged even when the f; are discontinuous as
in Eq. (4). %% Fpurther, as we shall see later, the
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qualitative dynamics of many nonlinear chemical sys-
tems which have been proposed to date fit neatly into
the classification scheme which we find for Eq. (4).

Equation (4) displays sharp restrictions on the tran-
sitions between the Boolean states found using Eq. (1). #
The nature of these restrictions can be easily deter-
mined. Assume that at some time f, x;<6;, H B;=0,
%; <0 and x; will remain smaller than 6;. Unless B;
changes, x; will be constrained to remain smaller than
8;. In contrast, if B;=1, £,>0, and it is possible that
at some future time, x; can cross its threshold. In a
similar way, if x; is initially greater than 6, it can only
pass through its threshold if B, = 0.

A graphical representation of these restrictions is
provided by embedding the allowable transitions on a
Boolean N-cube.?"* On a Boolean N-cube there are 2¥
vertices and N x 2¥ edges, The vertices can be labeled
by a Boolean state so that each veriex is connected to
the N vertices which differ from it in one locus. Tran-
sitions which are allowed by the B, are indicated by
drawing a directed arrow from the first state to all al-
lowed states. We exclude transitions in which more
than one variable changes simultaneously, so that each
allowable transition can be represented by a directed
edge on the N-cube. The restriction of no self-input on
the B; requires that each edge on the N-cube have an
arrow in one and only one orientation. In Fig, 1{c)we
give the Boolean functions which generate the state
transition diagram in Fig. 1(b).

Each network gives a unique assignment of orienta-
tions to the edges of the Boolean N-cube. As we have
noted there are 2¥*2¥™ different networks for N-chemi-
cal species, or 16 networks for N=2, 4096 networks
for N=3, and 2% networks for N=4. Two networks will
be said to be in the same structural equivalence class
if their state transition diagrams can be identically su-
perimposed under some symmetry operation of the N-
cube, By using the Polya enumeration theorem it is
possible to determine the number of structural equiva-
lence classes from the symmetry group of the N-cube.
We have shown that the number of structural equiva-
lence classes is 4 for N=2 and 112 for N= 3,27 The four
equivalence classes for N=2 are shown in Fig, 2. A

T 4

FIG. 2. The four structural equivalence classes for N=2. The
number of systems in each class is 2,4, 8,2, respectively.
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vertex which only has arrows entering (leaving) it will
be called an (un)stable node and a continuous path which
comes back on itself will be called acycle. For exam-
ple, in Fig, 1(b) there are two unstable nodes and one
cycle, If the stable nodes and cycles of two networks
can be superimposed under some symmetry operation
of the N-cube, they will be said to be dynamically equiv-
alent. We have shown that there are 13 dynamical
equivalence classes for N =3 for systems with at least

a single stable node, ?” In the following section we use
topological properties of the directed graphs on the cube
to give a finer enumeration of the equivalence classes
for N=3.

Hl. EQUIVALENCE CLASSES OF NONLINEAR
KINETIC EQUATIONS

By embedding the directed graph on the skeleton of
the cube on the surface of the sphere, we can apply a
combinatorial version of the topological index theorems
(Appendix), ®'** For this case the theorem states

Y+Y+ j—D =2, 6

where each diagram in Eq. (5) represents the number
of times each configuration appears on the state transi-
tion diagram, (This relationship is a direct conse-
quence of the familiar Euler theorem for simple poly-
hedra, F~E+ V=2, where F, E, V are the numbers of
faces, edges, and vertices, respectively, of a poly-
hedron).

Two dynamical systems given in Eq. (4) will be con-
sidered to be in the same surface equivalence class if
all the configurations in Eq. (5) in one state transition
diagram can be superimposed identically on the same
configurations of the other system under some sym-
metry operation of the cube. We enumerate all the sur-
face equivalence classes for Eq. (4) with N=3. The
combinatorial techniques to do this are well established
and will only be briefly given, 27-42:44:45

Starting with the system with four stable nodes we
generate in turn the various surface equivalence
classes. The location of stable and unstable nodes for
each structure is indicated in Table I by giving the ver-
tex where each configuration appears. The faces on
which cycles and saddles appear is specified by giving
the one Boolean variable which is constant on a face with
xs in the other two loci (as in Oxx). Several of the
structures have saddles and cycles on identical faces
but the loci of the stable and unstable nodes are inter-
changed. For these structures, one of the structures
is indicated by a prime in Table I. In addition, we com-
pute the number of dynamical systems C; (out of 4096)
that are in each surface equivalence class. C; is com-
puted as follows. Given the location of the configura-
tion in Table I and the fact that no other configurations
in Eq. (5) can appear in the state transition diagrams,
we generate the state diagram for each equivalence
class. Each of the 48 symmetry elements of the cube
will leave a state transition diagram invariant or map
it to another orientation on the cube. The number of
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TABLE I, A listing of the surface equivalence classes for N=3. Each structure is listed at the left followed in parentheses by
the number of structural equivalence classes for the structure where this number is different from 1. For each structure, the
vertex or face on which the four symbols in Eq. (5) are located are given. On the basis of this information, and the fact that
the structures in Eq. (5) are found in no other loci besides those listed, state transition diagrams of the sort shown in Fig. 1b
can be constructed. The remaining columns summarize the computations which were performed to determine C; the number
of networks (out of 4096) falling in each surface equivalence class, as described in the text. In structures XLI and XLII, the
cycles on opposite faces are in the same and opposite orientations, respectively. One orientation of structure XII’ is shown in
Fig. 1 (b). The 13 dynamical equivalence classes for structures having at least a single steady state are given in Ref, 27.

O G I
Structure [_.__J L*q r Py i~ Py D; C

I 001, 010,100,111 000,011,101,110 L Oxx, 1xx, 60x 2 1 LR 1 2
xlx,xx0,xx1
11 001,010,111 000,011, 101 e Oxx,x0x, x1x 24 1 oo 1 24
xx1

I 001,010,111 011, 100 ve O, x L, xxl 8 1 cee 1 8
v 001,010,111 000, 011 oo Oxx,xlx,xxl 24 1 cee 1 24
o’ 011, 100 001,010,111 ce Oxx, x1x, xxl 8 1 ces 1 8
A% 011,100 010,101 e Oxx, lxx 24 1 LI 1 24
VI 011, 100 010, 101 ce 1xx, x0x 24 1 . 1 24
VI 011, 100 010,111 cee x0x, xlx 24 1 cee 1 24
VII 011,100 010,111 one xlx, xxl 48 1 ave 1 48
IX 011,100 110 oo xx 48 1 v 1 48
X 011, 100 110 see x0x 24 1 - 1 o4
XI 011,100 110 s Oxx 48 1 ce e 1 48
X11 011’100 o LAY e 8 1 LRI 1 8
v’ 010,111 000, 011,110 cee Oxx, xlu, xx0 24 1 vee 1 24
\214 010,111 011,100 e x0x,x1x 24 1 e 1 24
VIIT 010,111 011,100 e xlx,xxl 48 1 see 1 48
XII1 010,111 000, 101 .o x0x, x1x 12 1 e 1 12
X1iv 010,111 001, 100 L x0x,x1x 12 1 s 1 12
XV 010,111 011,110 cen %0x, x1x 12 1 oo 1 12
XVI 010,111 011,110 v Lux, xlx 48 1 e 1 18
XVII2) 010,111 000, 011 oo O, x1x 48 2 eee 9 96
XV 010,111 011, 110 x0x Oxx, 1xx, x1x 24 1 e 1 24
XIX 010,111 011 x0x Oxx, x1x 48 1 e 1 48
XX 010,111 LR x0x x1x 24 1 e 1 24
XXI(2) 010,111 011 b xlx 24 4 vIr-1 3 72
XXI1(2) 010,111 000 A x1lx 24 4 XI11-1 3 72
XXIII(2) 010,111 100 R xlx 24 4 X1v-1 3 72
X 010 011,100 e Oxx 48 1 LA 1 48
X 010 011,100 e xx1 24 1 s 1 24
X 010 011, 100 oo x0x 48 1 ER 1 48
XIx’ 010 011,110 x0x Oxx,x1x 48 1 LI 1 48
XXT'(2) 010 011,110 b xlx 24 4 VII-1 3 72
XXIU (2) 010 101,110 s 1xx 24 4 XIT-1 3 72
XXII1’(2) 010 100,111 e 1xx 24 4 XIv-1 3 72
XXIV 010 011 1xx,x0x xx0,xx1 24 1 L 1 24
XXV 010 011 Llxx, x0x Oxx,x1lx 24 1 LA 1 24
XXVI 010 LR lxx, x0x xx1l 24 1 ¢ 1 24
XXVII 010 see 1xx, x0x Oxx 48 1 L 1 48
XX VIII(2) 010 vee 1xx,x0x xx0 24 4 XX1v-1 3 72
XXIX(4) 010 011 x0x Oxx 48 4 e 4 192
XXX 010 011 x0x xx0 48 1 see 1 48
XX 010 011 x0x xx1 48 1 e 1 48
XXXT 010 011 x0x x1lx 48 1 e 1 48
XXXII 010 011 x0x 1xx 48 1 e 1 48
XXXIII(2) 010 111 x0x lxx 48 2 e 2 96
XXXIII'(2) 010 111 x0x xx0 48 2 v 2 96
XXXIV(7) 010 e x0x e 48 16 XIX-1 7 336

XX-1

XXVI-1

XXVII-1

XXX'~1

XXXI-1

XXXII-1

XXX -1
XXXV(6) 010 011 b e 24 32 VI-1 11 264

X-3
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N

P,

=Py b,

XXXVI(8)

XXXVII(5)

xar

)Q(I

XXV
XXVIT
XXVII'(2)
XXXIV'(7)

XXXVIIL

XXXIX
XL
XLI(4)
XLII

XLIII(6)

010

010

111

101

010,101
010,111
010
010
010
010

x0x
lxx,x0x
1xx,x0x
1xx, x0x
x0x

Oxx, 1xx, xx0
xx1

lxx,xx0, xx1
lxx,xx9,xx1
xx0,xx1
x%0,xx1

lxx, xx0

LN ) 8
x1lx 24
xx1 24
Oxx 48
xx0 24
LI ) 48

x0x,x1x 6

xlx 24
xlx 48

.
.
.
[- -]

e e 24

64

64

W e e

16

16
16

32

X'-3
XImn-1
XxX1-3
XX1'-3
XX1V-1
XXX-2
XXX'-2
XXXII-2
In-1 14
Im’-1

V-2

Vi-2

VII-2
vir'-2
VII-4
VIII'-4
IX-2
X'-2

X-1

X'-1

Xi-2
X1'-2
XIv-2
XX1n-6
XXIII' -6
XXXT11-4
XXX -4
I-1 18
11-6

~IV-3

V-3
XIN-3
XVII-12

LI ) 16
XXX VIII-2 2
XXXIX~12
XXav-1 11
XXV-1

XXVI-1

XXVr-1

XXVII-2

XXVII' -2

XX VII-3
XXVI'-3
XXXVIN-1
XXXIX-2

X1.-4

336

144

24
24
48
72
336
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orientations I'; in which the ith equivalence class can
appear is given by

T;=48/h; | (6)

where £; is the number of elements of the group which
leave any member of the ith equivalence class invariant,
Although in most cases the specification of the relative
locations of the configurations in Eq. (5) specify the
orientations of all edges in the cube, this is not always
the case, If there are wm; edges left unspecified, then
there are

Py=2m (7

permutations of the remaining edges for each orienta-
tion of the state transition diagram. However, if Py,
of these permutations fall in the jth equivalence class,
the number of net permutations falling in the ith class
D, is

D!:Pi—z PU . (8)
i

C, is then computed,
C,=T;xD; . (9)

The computations are summarized in Table I. For
completeness we give in parentheses following each
structure the number of structural equivalence classes
(out of 112) in each surface equivalence class if this
number is different from 1,

In Table I, there are 2 structures with 4 stable nodes;
56 structures with 3 stable nodes; 844 structures with
2 stable nodes; 2232 structures with 1 stable node, and
962 structures with no stable nodes. This agrees with
previous computations. ®’ In addition, the total number
of structural equivalence classes is computed to be 112,
as it should be. In the following section we consider
some of the information about the qualitative dynamics
of Eq. (4) which can be found from the state transition
diagrams.

1V. CONSTRUCTION OF THE MINIMAL SET OF
CRITICAL POINTS FROM THE STATE TRANSITION
DIAGRAMS

The state transition diagrams give information about
flows between the volumes of concentration space for
the dynamical systems in Eq. (4). If there are one or
more arrows leaving a vertex, then for any initial point
in the volume, there will pass a trajectory which must
cross the threshold of one of the variables. Therefore,
there can be no steady states in any volume represented
by a vertex which has one or more arrows directed away
from it. A different situation arises for stable nodes,
which only have arrows directed toward the vertex.
From the construction given in Sec. II, a stable node
will be present for any set of states #;, such that

=By, i=1,N . (103

=2

No trajectories starting in the volume designated by the
stable node ever leaves this volume. By integrating
Eq. (4), we see that in the limit £~ %, the concentration
for each variable in Eq. (4) will be given

%=\ /y))B;, i=1, N . (11)

The set of values in Eq. (11) are a steady state of Eq.
(4) for any vertex at which Eq. (10) is satisfied. If Eq.
{4) is linearized at the steady state of Eq. (11) (see Ap-
pendix), the off diagonal elements of the stability ma-
trix will be zero, and the diagonal elements will be the
set —y;. Therefore, all the eigenvalues of the stability
matrix are negative, and the steady state in Eq. (11) is
stable. The steady states satisfying Eq. (10) will be
called extremal steady states. There are no steady
states in Eq. (4) corresponding to unstable nodes in the
state transition diagrams.

In the Appendix we give a version of the Poincaré-
Hopf theorem appropriate for application to chemical
kinetic systems. The theorem can be written

do(=1)i=1 (12)

where 74 is the number of positive eigenvalues of the

ith critical point and the sum is over all critical points
of the system. The theorem is only for systems in
which there are only isolated hyperbolic critical points
{see Appendix). The systems defined in Eq. (4) are
discontinuous and therefore physically unrealistic around
the threshold axes x;=6,. OQutside of this region, be-
havior is smooth and the only critical points which are
found are the extremal steady states. We assume with-
out proof that continuous analogues of the discontinuous
Boolean functions can be found such that when they are
substituted in Eq. (4), behavior will physically realistic
(mathematically generic) and isolated hyperbolic critical
points will be generated in the region of the threshold
axes without generating additional critical points in the
remainder of concentration space. For this new con-
tinuous system, mathematically and physically “close”
to Eq. (4), the Poincaré-Hopf theorem can be applied.
Say there are s extremal steady states. Since each ex-
tremal steady state is stable and has zero positive eigen-
values, from Eq. (12} we find

S (-1=1-s5 , (13)

where the sum is restricted to the set of new critical
points generated in the neighborhood of the threshold
axes by the smoothing operation. For s#1, the only
way for Eq. (13) to be satisfied is for additional critical
points to be generated by the smoothing operation. Call-
ing € the number of additional critical points with an
even number of positive eigenvalues, and w the number
of additional critical points with an odd number of posi-
tive eigenvalues, we find

€-w=1-5 . (14)

The minimal set of critical points is that set for which
€ and w assume their lowest values. For example, if
s =0, the minimal set is givenby € =1, w=0; if s =2,
the minimal set is given by € =0, w=1.

The results in this section depend on the existence of
smooth functions analogous to the discontinuous Boolean
functions. The Boolean switching function on one vari-
able is called the Heaviside function. A smooth analogue
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of this function is the Hill function, Eq. (2), where n as-
sumes some appropriately large value. In the following
section we consider the additional critical points which
are generated when Eq. (2) is substituted for the Heavi-
side function in systems of chemical interest.

V. CRITICAL POINTS FOR CHEMICAL SYSTEMS
WHICH DISPLAY OSCILLATION AND BISTABILITY

In Fig. 2 and Table I we give a census of possibilities
for the dynamics which are found for Eq. (4) for N=2,3.
Here we show how the state transition diagrams for
two chemically and biologically important reaction net-
works can be computed on the basis of a qualitative de-
scription of interactions between the reactants. From
the state transition diagrams it is then possible to make
predictions concerning the minimal set of critical points
for each reaction network. We then determine the crit-
ical points of a continuous nonlinear differential equa-
tion of the form in Eq. (3), and show how the critical
points correspond to the minimal set predicted on the
basis of the state transition diagrams.

In feedback inhibition, the last substance in a reaction
chain inhibits the production of the first substance. A
schematic representation of feedback inhibition can be
given by

A’fi_t xzitot x(j;-..ij . (15)

Networks of this sort often display oscilla-

tion, 16:3:2532,33,35-40.:46 y¢ there are two consecutive
inhibitory steps in a cyclic reaction chain, the network
can be represented

—

1
xl:xz_tio-x{iooo.}n . (16)

Networks of this sort often display bistabili-
ty. 5+16:23:25,34,37-30.46

A network in Eq. (4) can be constructed for each of
these schemes by identifying the interaction x;% x,,,
with the Boolean function

%y |Byn
111 17)
0 0

and the interaction x; = x;,, with the Boolean function

%, |Bin
1 0 (18)
0 1

Using the techniques described in Sec. II, the state
transition diagrams for Eqs. (15) and (16) can be com-
puted. For Eq. (15), the state transition diagram is
given in Fig. 2, structure IV for N=2, and Table I,
structure XII' [(Fig. 1(b)] for N=3. For Eq. (16), the
state transitiondiagram is given in Fig. 2, structure I for
N=2, and Table I, structure XII for N=3. For Eq. (15), ~
thereare no stable nodes in the state transitiondiagram,
$=0in Eq. (14), and in the minimal set of critical points
there is at least one critical point with an even number
of positive real parts. For Eq. (16), there are fwo sta-
ble nodes in the state transition diagram, so there must
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be at least one additional critical point with an odd num-
ber of positive real parts.

We can now construct the continuous nonlinear dif-
ferential equations of Eq. (3) by using Hill functions to
represent the interactions given in Eqs. (15) and (16).
For the interaction x;% x,,, we substitute

x5

f¢+1=0;;:x7 1 . (19)

and for the interaction x; Z x,,, we substitute

o1

fin= e (20)
In the limit n—~, Egs. (19) and (20) correspond to the
Boolean functions given in Eqs. (17) and (18), respec-
tively. To simplify computations we assume x ;j=y;=1,
6;=0.5 for all i.

The network corresponding to Eq. (15) is then,

dx;,  0.5" .
dt  x%+0.5" "t
(21)
dx, _ x’;, .
di X, 40.5" s ZSIsSN.
Corresponding to Eq. (18), we have
dy __0.5"
dt ~ x3+0.5"" "1
dx 0.5"
'Ea=x;'+o.5""x3 ’ (22)

d w050 Xy 3=EI=N,

where the third equation is needed if N=3. By inspec-
tion we see that there is a critical point at x;=0.5 for
all 7 in Eqs. (21) and (22). This is the additional critical
point whose existence was predicted on the basis of the
state transition diagrams using topological arguments.

If Eqs. (21) and (22) are linearized at x;=0.5 (see
Appendix), the characteristic equation is given by

-1-p -n/2

=0 (23)

+n/2  -1-p

for N=2, and is given by

-1-p 0 -n/2
£n/2 -1-p 0 =0 , (24)
] n/2 -1-p
where the positive sign in the determinant is taken for
Eq. (21) and the negative sign is taken for Eq. (22).
For Eq. (21) the eigenvalues are

Pa=—1xni/2 (25)
for N=2, and

Py=-1-n/2 ,

Pas=—14n/4+V3ni/4 (26)
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for N=3. For all values of n (except n=4), the critical
point has an even number of positive real parts, con-
firming the topological predictions. The value n=4, Eq.
(26) is a Hopf bifurcation by definition, since at this
value two of the eigenvalues cross the imaginary

axis, #4748 At the Hopf bifurcation, the critical point

is not hyperbolic.

For Eq. (22) the eigenvalues are

b1,2=-1xn/2 27)
for N=2, and
p1='—1+”/2 »

b= 1~n/8sV3ni/a (28)
for N=3. From n>2, this critical point has one eigen-
value with a positive real part, confirming again the
topological predictions. If a detailed study of the dy-
namics is made, it is found that the two extremal steady
states coalesce with the critical point at x;=0.5 for

n= 2, as in Ref. 37. For the examples in this section,
the topological predictions which are made for the crit-
ical point which are proven only in the limit - «, are
in fact confirmed provided n > 2.

A large body of previous work can be conveniently
classified into one of the classes just given on the basis
of transitions between coarse grained volumes of con-
centration space found using Eq. (1). In performing the
classification, we do not require that the differential
equations for the system be written in the form given in
Eq. (4). Kinetic equations displaying oscillation in two
dimensions have been given for autocatalysis,0r49751
glycolysis,*® % mitosis,* predator-prey.?® If the dy-
namics in all these systems is discretized by choosing
the central focus for the thresholds for the two vari-
ables, all these equations fall in structure IV in Fig. 2.
Oscillations in three dimensions have been found for the
Field-Noyes equations,!*1%2% and the feedback inhibition
equations, 333:35:36:38  A]] these systems can be identified
with structure XIV, Table I. Bistability in two dimen-
sions has been found in chemical systems with mutual
activation,?” % mutual inhibition,?'3%37'57 35 well as in
ecological systems with competitive exclusion®® and
lasers with mode competition.®® By choosing the cen-
tral saddle point as the threshold for the two variables,
all these systems can be identified with structure I in
Fig. 2.

Vi. DISCUSSION

We have given a classification of chemical systems
based on restrictions in the transitions between volumes
of concentration space. Although for the systems in
Eq. (4) there can only be transitions in one direction
between adjacent volumes of phase space, in an arbi-
trarily complex chemical system there is no guarantee
that such a restriction holds. However, the Hastings
and Murray analysis!® 2 of the Field—Noyes equations,*
which cannot be written in the form displayed in Eq. (3),
indicates that there are, nevertheless, restrictions on
transitions between volumes in this system of precisely
the same sort found for Eq. (4). If it develops that
transitions between adjacent volumes in concentration
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space occur in one direction for a large class on non-
linear chemical systems, then the classification we have
given will be of broad general interest.

Recent studies of nonlinear dynamics in ecological and
chemical systems have provided a classification of hy-
perbolic critical points in terms of signs and locations
of the nonzero terms in the matrix of the linearized
equations at the steady state.!®%%2? By embedding the
dynamical system on a manifold and applying the Poin-
caré-Hopf theorem, we have extended this earlier work
by giving restrictions on the entire set of critical points
which are provided by the topological properties of the
manifold. These restrictions are of particular interest
in the analysis of complex systems, such as the bistable
system in Eq. (22) in which there is more than one criti-
cal point. For any dynamical system with isolated hy-
perbolic critical points obeying the boundary conditions
given in the Appendix, there must always be an odd num-
ber of critical points.

QOur emphasis on classifying chemical networks by
their qualitative dynamics can be contrasted with studies
in which nonlinear chemical networks were classified on
the basis of the structure of the mass action kinetic
equations. 3% Although in both approaches similar math-
ematical techniques are used, the equivalence classes
which are generated using the two approaches are very
different. In the Horn analysis, 41 of 43 “isomorphism
classes” which were enumerated in a recent study®® had
a single unique steady state. We have shown in Sec. IV
that the continuous analogues of about half the struc-
tures generated in Table I must have multiple critical
points.

We have used the Poincaré-Hopf theorem to aid in
the location of critical points in Eq. (3), but it clearly
can be used to give an enumeration of the various pos-
sibilities of the critical point structure for any chemical
system. The major drawback of the Poincaré-Hopf
theorem is that it gives 7o information about the dy-
namics in the remainder of phase space. It is therefore
of some interest to study the dynamics of Eq. (4) in the
limit as {— . There are at least three different be-
haviors in this limit.

(1) A trajectory can approach an extremal steady
state defined in Eq. (11).

(2) A trajectory can oscillate in the region of a
threshold of two or more variables. As it retraces its
path through the same sequence of volumes, the ampli-
tude of the oscillation decreases.

(3) A trajectory can reach a stable limit cycle oscil-
lation. For N=3, n—-, one can prove there is a global
limit cycle attractor in Eq. (21).%°

It is likely that for any given structure, the qualita-
tive dynamics remain invariant to changes in the param-
eters X ;, ¥,, 0, provided the inequalities X ;/y;> 9, are
preserved.

In the preceding, all spatial factors have been com-
pletely ignored, and homogeneous reaction kinetics were
assumed. However, heterogeneous catalysis and spa-
tial localization can lead to a variety of interesting ef-
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fects such as wave generation,’! and dependence of the
number and stability of critical points on the relative
location of the localized catalysis. "% Evidence has
been given that there are global limit cycle oscillations
in the simple feedback inhijbition network with two chem-
icals if the synthetic sites are spatially separated but
coupled by diffusive interactiouns.3”'** Numerical evi-
dence has been given that there can be both an extremal
steady state and stable limit cycle oscillation in one of
the equivalence classes given by structure XXXIV, Ta-
ble I if the synthetic sites are spatially separated.?'%?

The state transition diagrams can be computed di-
rectly from experimental data, by applying Eq. (1) with
some appropriate choice of the 6;. The classification
scheme and the structure of the underlying network may
thus provide a simple scheme for idealizing the qualita-
tive dynamics and nonlinear interactions in complex
chemical networks.
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APPENDIX: TOPOLOGICAL INDEX THEOREMS

We assume that there is a nonlinear dynamical sys-
tem designated

x=flx) . (A1)

A critical point of this system is any point for which
%x=0. We assume that Eq. (Al) can be linearized in the
neighborhood of x., and that the linearized equations
are given by

x=AX-X.) , (A2)
where the elements of the matrix A are given by
a
= 5%‘— (A3)
i

xcn

The eigenvalues of the matrix designated p; can be com-
puted by solving the characteristic equation,

det|A-pI|=0 . (A4)

If the Rep,;#0 for all i, x., is called a hyperbolic criti-
cal point, We assume that the dynamical system Eq.
(A1) only has isolated hyperbolic critical points,

The eigenvalues of the characteristic equation deter-
mine the local dynamics in the region of the critical
point. For example, if Rep;<0 for all ¢, the critical
point is called stable, and all trajectories in the neigh-
borhood of the critical point approach the critical point
as {—=, If Rep;>0 for at least one i, the critical point
is unstable. A classification of the hyperbolic critical
points of two dimensional dynamical systems was given
by Poincaré. The various cases were named as fol-
lows: focus, p, and p, are real complex conjugates;
node, p, and p, are real with the same sign; saddle .
point, 2, and p, are real with opposite signs. Foci and
nodes can further be either stable or unstable. Saddle

points are always unstable.

But Poincaré went much further.® He proved a pow-
erful and elegant theorem for dynamical systems em-
bedded on two dimensional surfaces. He showed that

N+F - s=x(M) , (A5)

where 91, F, § are the numbers of nodes, foci, and sad-
dle points, respectively, of the dynamical system, and
y(M) is the Euler-Poincaré characteristic of the sur-
face [x(M) is 2 for a sphere, 0 for a torus, —2for a
torus with a handle, et'c]. This theorem gives the in-
terrelationships between the dynamics in different re-
gions of phase space, and shows how they are connected
to a topological invariant of the surface. The number
and distribution of critical points in a dynamical system
give information about the global dynamics in that sys-
tem. Topological arguments have been used recently in
the study of reaction mechanisms leading to oscillations
in two dimensions. 5!

The generalization of Eq. (A5) to dynamical systems
in arbitrary manifolds is called the Poincaré-Hopf the-
orem.% The index of a critical point is defined by

I=(-1)* (A6)

where u is the number of eigenvalues of a critical point
for which Rep;<0. The Poincaré—Hopf theorem is then

oI=x(M) (AT)

where y(M) is the Euler-Poincaré characteristic of the
manifold.

As chemical kineticists, we are interested in a very
simple manifold, the positive orthant of concentration
space x;=0 for all i, Further, since the concentrations
in any real chemical system are bounded, we can choose
a sufficiently large concentration C such that x;< 0 for
[x1>C. Since all chemical reactions are reversible,
we further assume there will never be nonvanishing con-
centrations of any reagents, and that consequently all
trajectories leave the axes x;=0 and enter the positive
orthant. Qur chemical phase space for N chemicals is
therefore homeomorphic to a solid ball in N dimensions.
Along the boundaries of the ball, trajectories only enter
the ball. By identifying the boundary with a single point,
a source at the south pole, the trajectories can be em-
bedded on an N-sphere (the set of points § 3 x%=con-
stant). The Euler-—Poincaré characteristic for an N-
sphere is given by®®

x(M)=14+(-1)¥ . (A8)

Since there are no negative eigenvalues for the source
at the south pole, its index is 1. Combining Eqs. (A6),
(A7), (A8) gives

2o (=1M=(-1¥ (A9)

where the sum is over all the critical points inside the
ball in concentration space. If 7, is the number of posi-
tive eigenvalues at the ith critical point, we have p;
+m;=N, Equation (A9) can then be rewritten
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o (-1)m=1

In Sec. IV we show how this theorem can be used to de-
duce the existence of critical points for some of the
structures in Fig. 2 and Table I.

(A10)

In many equations which have been proposed to model
chemical networks, a critical point falls on a boundary
of the positive orthant so that (x;).,=0 for some subset
of the variables. The following mathematical test is
proposed to determine whether these critical points on
the boundary should be included in the summation in Eg.
(A10). Consider all perturbations away from the bound-
ary in the neighborhood of the critical points. If all
trajectories return to the boundary, then the critical
point must be included in the summation. For example,
in Eq. (4) the extremal steady states which represent
physically important critical points satisfy this test and
must be included in the summation. If, however, all
perturbations {except for a set of measure zero) do not
return to the boundary, the critical point should not be
included in the summation. For example, in the Field—
Noyes equations®! there is a critical point at the origin
which is unstable. In applying the Poincaré—Hopf theo-
rem to this system, this critical point must not be in-
cluded. A justification for this exclusion comes from
the observation that when the equations are mapped on
the 3-sphere as described in the previous paragraph,
this unstable critical point at the origin can be identified
with the source at the south pole.

In Sec. III, a combinatorial version of Eq. (A5) was
applied which is appropriate for directed graphs em-
bedded on surfaces.*® For each vertex and face of a
directed graph, we define the number of reversals R at
that vertex or face as follows. For a vertex, we exam-
ine each adjacent pair of edges terminating at the ver-
tex. The number of adjacent pairs of edges at a vertex
is equal to the number of edges terminating at a vertex.
If both edges of an adjacent pair are either both directed
towards, or away from, the vertex, the pair makes no
contribution to the reversals at the vertex. Otherwise
the pair makes a contribution of 1 to the reversals at
the vertex. In asimilar fashion, an adjacentpair of edges
bounding a face makes no contribution to the reversals
of the face if both edges are directed in a clockwise or
counterclockwise orientation. Otherwise the pair makes
a contribution of 1 to the reversals at the face. For
each vertex and face, R is found by summing over all
adjacent pairs of edges terminating at the veriex, or
all adjacent pairs of edges bounding the face, respec-
tively. R is always even. The index at each vertex and
face is then

I=1-%R , (A11)

and the combinatorial index theorem is

S I=x(M) , (A12)
.V

where x(M) is the Euler-Poincaré characteristic of the
surface on which the graph is embedded. The symbols
in Eq. (5) give the only nonzero contributions to the in-
dex for the directed graph on the skeleton of the cube,

embedded on the sphere. I[u the text we refer to the
symbols in Eq. (5) as stable nodes, unstable nodes,
cycles, and saddles, respectively.
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