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Chaos in two-loop negative feedback systems
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Multiloop delayed negative feedback systems, with each feedback loop having its own characteristic time
lag ~delay!, are used to describe a great variety of systems: optical systems, neural networks, physiological
control systems, etc. Previous investigations have shown that if the number of delayed feedback loops is
greater than two, the system can exhibit complex dynamics and chaos, but in the case of two delayed loops
only periodic solutions were found. Here we show that a period-doubling cascade and chaotic dynamics are
also found in systems with two coupled delayed negative feedback loops.
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I. INTRODUCTION

A variety of oscillatory phenomena are observed in bi
ogy with well known examples in neurology, cardiology, h
matology, and ecology. A fundamental characteristic of th
dynamical systems is that their behavior depend on time
lays @1–5#. Time delays arise as a consequence of intrin
biological and physical processes such as reproduction
cells and organisms, conduction of excitation, and diffus
of chemical signals. For instance, control in physiologi
systems is accomplished by multiple negative feedback lo
that are, in general, delayed. A basic question is whether
fluctuating dynamics observed in physiological and ot
biological systems are due to the instabilities in the ba
control systems, or may be due to other factors such a
fluctuating and noisy environment.

It is well known that a single-loop negative feedback s
tem with a time delay can display stable limit cycle oscil
tions, but it does not exhibit chaos@5–8# due to the mono-
tonicity of the feedback function. A single-loop system w
exhibit chaotic dynamic only if it has mixed~the correspond-
ing function has an extremum! feedback@2,8–12#. Most
physiological control systems have multiple negative fe
back loops~heart rate@13–15#, blood pressure@16,17#, motor
activity @18–22#!, and the dynamics result from the interpla
of the various feedback controls. Although it would appe
that multiple delayed feedback loops could provide bene
to the organism, with some feedbacks operating quic
~short delay! and others slowly~longer delay!, mathematical
properties of systems with multiple delays are not well u
derstood. Somewhat in opposition to the view that multi
delayed feedback loops are more stable than single lo
@4,20#, it has been shown that multilooped delayed nega
feedback systems may exhibit complex dynamics, includ
period-doubling bifurcations leading to chaos, if the numb
of delayed negative feedback loops is greater than
@18,23#. However, the conditions needed for chaos are
known, and chaos has not been found to date in systems
two negative feedback delayed loops@18,23#.

The mathematical analysis of multiple-delay different
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equations has to be restricted to special cases due to the
dimensionality of the problem. The linear stability of sy
tems with two time delays has been studied by several
thors @24–29#, but there is not a complete analysis sin
different authors consider different subsets of the param
space. As parameters are varied, one usually observes a
bifurcation leading to oscillations. The current work was u
dertaken to search for chaotic dynamics in a system with
delayed negative feedback loops. A nonlinear model withN
delayed negative feedback loops is presented in Sec. I
Sec. III we present a linear stability analysis forN52, and in
Sec. IV we demonstrate bifurcations and chaotic dynamic
a system with two delayed negative feedback loops. We
cuss the results in Sec. V.

II. THE MODEL

We consider a system ofN delayed feedback loops de
scribed by the following equations:

ẋi5Fi~Pt i
!2xi , i 51, . . . ,N, ~1!

where the subscriptt i indicates the delayed time argume
(t2t i), and

P5N21(
i 51

N

xi ~2!

is the variable of primary interest controlled byN feedback
loops. The feedback control ofxi takes place only by way o
the variableP that we have assumed to be the average oxi
just for simplicity ~we could have considered a weighte
average with the weights being treated as parameters!.

The functionsFi(Pt i
) are nonlinear functions dependin

on P at timet2t i . Since we are interested in negative fee
back, we assume thatFi(Xt i

) is a monotonically decreasin
function,
©2002 The American Physical Society05-1
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Fi~Pt i
!5

u i
ni

u i
ni1Pt i

ni
, 0,u i,1, ~3!

whereni andu i are parameters governing the steepness
threshold of the sigmoidal functionFi , respectively. For
simplicity we shall considerni5n, ; i @18,23#. Under this
assumption Eqs.~1! lead to the following multidelayed dif-
ferential equation forP(t) ~2!:

Ṗ~ t !52P~ t !1
1

N (
i 51

N u i
n

u i
n1Pt i

n
. ~4!

The above Eq.~4! can also be used to describe one neu
havingN self-inhibitory delayed loops, and constitutes a ge
eralization of the equations used by Gopalsamy and Le
@30# to investigate the dynamical characteristics of a firi
neuron.

It should be remarked that in the limitn→` the Eq.~4!
becomes piecewise linear and can be readily integrated.
limit is very useful to check the numerics of the finiten case
that requires numerical integration.

As already mentioned, Eq.~4! cannot exhibit chaos ifN
51 @5–8#, and it has been found to exhibit complex dynam
cal behavior ifN>3 @23#. We are here interested in the ca
N52 for which only periodic or quasiperiodic dynamic
have been found. In the following section we make the lin
stability analysis of Eq.~4! in the caseN52.

III. LINEAR STABILITY ANALYSIS

SettingN52 Eq. ~4! becomes

Ṗ~ t !52P~ t !1
1

2 (
i 51

2 u i
n

u i
n1Pt i

n
. ~5!

The steady-stateP̃ is obtained as a solution of

P̃5
1

2 (
i 51

2 u i
n

u i
n1 P̃n

. ~6!

Introducing the variable

dP~ t !5P~ t !2 P̃, ~7!

and keeping only the linear terms of the Taylor expansion
Eq. ~5! we obtain the linear delay differential equation,

d

dt
dP~ t !52dP~ t !2

1

2 (
i 51

2

gi~ P̃,n,u i !dPt i
, ~8!

where

gi~ P̃,n,u i !5n~ P̃!n21
u i

n

~u i
n1 P̃n!2

. ~9!
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The linear stability of the stationary state is then determin
by the roots of the associated characteristic equation

l1152
1

2 (
i 51

2

gi~ P̃,n,u i !exp~2lt i !. ~10!

The stationary stateP̃ is asymptotically stable if all roots o
Eq. ~10! have negative real parts. The stability analysis
particularly difficult due to the presence of two different e
ponential functions in the eigenvaluel. As one parameter is
varied a multiple delay differential equation can go throug
series of stability switches.

Several authors have investigated the stability regions
number of special cases. Hale and Huang@24# studied the
linear case using as parameters the delayst1 and t2, while
Mahaffy, Joiner, and Zak@26# considered the range 0
,(t1 /t2),1 and studied the stability region in a thre
dimensional parameter space. Be´lair and Campbell@25#, Li,
Ruan and Wei@28#, Shayer and Campbell@29# considered
the simpler case in which the left-hand side of the charac
istic Eq. ~10! is l instead ofl11. As stated by Be´lair and
Campbell@25# each of those works has filled in some pie
of the puzzle of the two delay stability problem.

The above characteristic Eq.~10! does not have real root
that are positive@simply because the right-hand side of E
~10! is negative# so that the stationary stateP̃ will become
unstable via Hopf bifurcation, thus giving rise to an oscill
tory solution. The systems with biological motivation a
mainly those with one feedback loop operating quick
~short delay! and another slowly~longer delay!. With this
consideration in mind, we have sett150.26,t252.00, and
we computed the stability region in the parameter spaceu1 ,n
for u2P@0.35,0.75#. The boundary at which the Hopf bifur
cation occurs corresponds to (u1 ,n) values for which Eq.
~10! has a single pair of roots that are pure imagina
Re (l)50. In Fig. 1 we display the results whenu2
50.491, and we can see that the stationary state is stabl
n<11. For the range of parameters considered by us, o

FIG. 1. Stability region in the plane (u1 ,n) for fixed parameters
value t150.26,t252.00,u250.491. The parameteru1 is in arbi-
trary units, andn is dimensionless.
5-2
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CHAOS IN TWO-LOOP NEGATIVE FEEDBACK SYSTEMS PHYSICAL REVIEW E65 051905
latory behavior is observed forn finite greater than 11. The
single feedback loop system with parameterst52.00,u
50.491 is stable forn<2.5 while the single feedback loo
system with parameterst50.26,u50.396 is stable forn
<11. Therefore the addition of the quick loop renders
system more stable.

IV. BIFURCATIONS AND CHAOS

In order to demonstrate the existence of chaos in a sys
with two delays, we shall first look for aperiodic solution
and then check if they result from a period-doubling casca
We shall consider the cases of finiten ~smooth functionF),
and then→` limit ~piecewise constant functionF).

A. Nonlinear equation „finite n…

For fixed values ofn, t1, andt2 Eq. ~5! is integrated for
each point of the plane (u1 ,u2), with u1 andu2 in the inter-
val @0.25,0.75#. A constant function@P(t)50.4 for t<0] has
been used as an initial function in all the calculations p
sented below. We used the three-step Gear integrator@31#,
double precision, using time step of 0.001 for each poin
the plane (u1 ,u2). Then, for each point (u1 ,u2), we consider
the time series formed by determiningP(t22.00) for suces-
sive crossings of the Poincare´ sectionP(t)5 P̃ with dP/dt
,0. We shall denote byPi the value ofP(t22.00) at thei th
crossing of this threshold.

The plot of Pi 11 vs Pi is called the Poincare´ map. The
number of points in the Poincare´ map indicates the period o
the corresponding orbit, i.e., one point corresponds to
orbit with period 1, two points to an orbit with period 2, et
An infinite number of points indicates the presence of q
siperiodicity or chaotic dynamics. In order to identify tho
points or regions in the space of parameters (u1 ,u2) that
may exhibit complex or chaotic dynamics, we discretize
Poincare´ section in segments of size 0.001@32#. For each
point on the plane (u1 ,u2), we count the number of seg
ments,K(u1 ,u2), that are visited by the trajectory of th
corresponding attractor. The gray scales @proportional to
K(u1 ,u2)# is used to representK at a point of the plane
(u1 ,u2): the maximum~minimum! value of K corresponds
to black ~white!. In Fig. 2 we display the results forn
545,t150.26,t252.00. The dark regions correspond to p
rameter values that may exhibit either complex dynamics
quasiperiodicity. In fact we expect the black regions to c
respond to quasiperiodicity as in this case the tw
dimensional embedding@33# obtained by plottingP(t) vs
P(t22.00) will fill the plane more uniformly than in the
case of complex dynamics, thus corresponding to larger
ues ofK.

In the dark gray regions in the neighborhood ofu1
50.400,u250.500, and in the neighborhood ofu1
50.600,u250.700, we found both complex dynamics a
quasiperiodicity. Figure 3 shows two examples of time de
embedding~left-hand side!, and the corresponding Poinca´
map ~right-hand side!. At the top of Fig. 3 we display the
caseu150.396,u250.491, and at the bottom we display th
caseu150.634,u250.704. The corresponding Poincare´ map
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displayed on the right-hand side of Fig. 3 indicates that
attractor for u150.634,u250.704 is quasiperiodic, while
the attractor foru150.396,u250.491 is chaotic. Figure 4
shows the bifurcation diagram of the system~5! on the plane
(P,n), with parametersu150.396, u250.491, t150.26,
andt252.00. For each value ofn the system is first allowed
to settle down~the transient is discarded! and then the suc-
cessive values ofPi are plotted for two hundred iterations
As n increases from 30 through 47, the bifurcation diagra
displays a cascade of period-doubling bifurcations and t
the inverse cascade that leads to period 3~that exists for 39
,n,43). The attractor forn546, displayed at the top o
Fig. 3, is inside the chaotic region existing beyond t
period-3 solution and is followed by another period-doubli
cascade. Figure 5 displays the attractor~time delay embed-
ding! and the corresponding Poincare´ map for n535. The
Poincare´ map has the extremum characteristic of chaotic
namics@34#.

Another way of characterizing a chaotic attractor is by t
correlation dimensionD2 and by a positive Lyapunov expo
nent.

1. Correlation dimension

The correlation dimensionD2 is estimated from the cor
relation sum@35#

Cd~r !5
1

Mpairs
(
j 51

M

(
k5 j 1w

M

Q~r 2uxj2xku!, ~11!

where xi are d-dimensional delay vectors,Mpairs5(M2d
11)(M2d2w11)/2 is the number of pairs of points cov
ered by the sums,M is the number ofd-dimensional delay
vectors,Q is the Heaviside step function andw will be dis-
cussed below. On sufficiently small length scale, and wh
the embedding dimensiond exceeds the dimension of th
attractor@36#, Cd(r )'r D2. Since the attractor dimension i
not knowna priori, one checks for convergence of the es
mated values ofD2 with d.

There are many practical problems associated with
computation of the correlation dimension@37,38#. In order to

FIG. 2. K(u1 ,u2) for fixed t150.26,t252.00,n545 plotted
on the plane (u1 ,u2) ~arbitrary units!. We used 100 crossings of th
Poincare´ section, soK5100 corresponds tos black. Integration
step 0.001.
5-3
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FIG. 3. Phase spaceP(t) vs P(t22.00) ~on the left!, and corresponding Poincare´ map ~on the right!. Parameter values used at the to
~bottom!: n545, u150.396,u250.491 (n546, u150.634,u250.704). The same delays were used in both cases:t150.26,t252.00.
Integration step 0.0001,P is in arbitrary units.
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provide a consistent estimate for the correlation integral,
correlation sum should cover a random sample of po
drawn independently according to the invariant measure
the attractor. Successive elements of a time series are
usually independent. In particular, for highly sampled flo
data, subsequent delay vectors are highly correlated.
important to exclude temporally correlated points from t
pair counting by ignoring all pairs of points in Eq.~11!
whose time indices differ by less thanw, wherew is called
the Theiler windoww @37#. With O(M2) pairs available, the
loss ofO(M ) pairs is not dramatic as long asw!M . At the
very least, pairs withj 5k ought to be excluded@39#. Other-
wise the strong bias towardsD250 ~the mathematically cor-
rect value for a finite set of points! will reduce the scaling
range drastically.

Parameters in our correlation sum algorithm are, as us
the embedding dimensiond, the time delayt2, and the
Theiler window that was set tow52t2. All available pairs
that satisfy the Theiler criterion contribute to the sum in E
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FIG. 4. Bifurcation diagram of Eq.~5! by varyingn, with fixed
parameters valueu150.396, u250.491, t150.26, andt252.00.
Integration step 0.0001,P in arbitrary units,n dimensionless.
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FIG. 5. Phase spaceP(t) vs P(t22.00) ~on the left!, and corresponding Poincare´ map ~on the right!. Parameter values used:n535,
t150.26, t252.00, andu150.396,u250.491. Integration step 0.0001,P in arbitrary units.
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~11!. The slope of the curve log2 Cd(r) vs log2(r) is the cor-
relation dimensionD2. In the Fig. 6, we have plottedD2 vs
log2(r) of the attractor displayed in the Fig. 5, for seve
values of the embedding dimension with delay 2.00. W
increasing embedding dimension,D2 converges to a curve
with well defined plateau atD2'2.1 for the attractor shown
in the Fig. 5. We also did the calculation for the attrac
shown at the top of Fig. 3, and determinedD2'1.8.

2. Maximal Lyapunov exponent

Chaos arises from the exponential growth of infinitesim
perturbations, together with global folding mechanisms
guarantee boundedness of the solutions. This exponentia
stability is characterized by the spectrum of Lyapunov ex
nents@40#. If one assumes a local decomposition of the ph
space into directions with different stretching or contract
rates, then the spectrum of exponents is the proper avera

FIG. 6. D2 of the attractor shown in the Fig. 5. Each cur
corresponds to a different embedding dimensiond as indicated. In-
tegration step 0.000 02. Both axes are dimensionless.
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these local rates over the whole invariant set, and thus c
sists of as many exponents as there are space directions
most prominent problem in time series analysis is that
physical phase space is unknown, and that instead the s
trum is computed in some embedding space. Thus the n
ber of exponents depends on the reconstruction, and m
be larger than in the physical phase space. Such additi
exponents are called spurious, and there are several sug
tions to either avoid them@41# or to identify them. Moreover,
it is plausible that only as many exponents can be determ
from a time series as are entering the Kaplan-Yorke formu
A relevant, and positive, feature of the Lyapunov expone
is that they are invariant under smooth transformations
are thus independent of the measurement function or the
bedding procedure. They carry a dimension of inverse ti
and have to be normalized to the sampling interval.

The maximal Lyapunov exponent can be determin
without the explicit construction of a model for the tim
series. A reliable characterization requires that the indep
dence of embedding parameters and the exponential law
the growth of distances are checked explicitly@42,43#.

We implemented the algorithm introduced by Kantz@42#
by choosingM reference pointsxi of the time series in the
embedding space. Denoting byU(xi ,e) the set of reference
points xj with distanceuxj2xi u,e, we then compute, as
function of l, the average of distancesuxj 1 l2xi 1 l u over all
points in U(xi ,e). This is done for theM reference points,
and we finally compute

S~e,l !5
1

M (
i 51

M

lnS 1

uU~xi ,e!u (
xj PU(xi ,e)

uxj 1 l2xi 1 l u D ,

~12!

where uU(xi ,e)u denotes the cardinality ofU(xi ,e). If
S(e,l ) exhibits a linear increase with identical slope for a
embedding dimensionsd larger than somed0, and for a rea-
sonable range ofe, then this slope can be taken as an es
5-5
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mate of the maximal Lyapunov exponent@42#. Like other
quantities, the maximal Lyapunov exponent estimate may
affected by correlations between reference points and t
neighbors. Therefore, a minimum time intervalw for u i 2 j u
was considered in the computation~as in the calculation of
the correlation dimensionD2).

We have calculatedS(e,l ) for the attractors displayed in
Figs. 3 and 5, with 0, l ,200 and e52.331024,4.6
31024,9.231024,18.431024. We have observed a clea
linear increase ofSas function ofl, reflecting the exponentia
divergence of nearby trajectories. The slope is practically
same for 2<d<5 and the maximal Lyapunov expone
equals approximately 0.095 s21 for the attractor in Fig. 5.
We have obtained practically the same value for the maxi
Lyapunov exponent of the attractor in Fig. 3. We used
Theiler @37# window w55t2. The positive maximal
Lyapunov exponents confirm that the attractors in Figs. 3
5 are both chaotic.

B. Piecewise linear equation

In the limit whenni→`, the nonlinear sigmoidal function
F in Eq. ~3! is a step function, and Eq.~5! is a piecewice
linear equation and can be integrated explicitly. Compar
the dynamics obtained by explicit integration of the piec
wise linear equation with the dynamics using the numer
methods forni large but finite provides a way to check th
numerics.

For the parameter values used in Sec. III A, the piecew
linear equation exhibits only periodic solutions. Likewis
the nonlinear Eq.~5! with those parameters value exhibi
only periodic solutions forn.55. After making a search in
the parameter space~using the method described in the b
ginning of Sec. III A! we selected the parameter valuest1

50.65,u150.230,t252.30,u250.217. Keeping fixed u1

50.230,u250.217,t252.30, we constructed the bifurcatio
diagrams by varyingt1. The bifurcation diagrams fort1

P@0.67,0.72# are displayed in Fig. 7: the result for the piec
wise linear equation~step function! is displayed on the left,
and for the nonlinear Eq.~5! with n5400 is displayed on the
right. We selected the valuet150.715 as a possible cand
date for complex dynamics, and in Fig. 8 we display t
phase plane embedding~at the top!, and corresponding Poin
carémap ~at the bottom!, where the piecewise linear case
labeled~a!, and the nonlinear case withn5400 is labeled
~b!. Figures 7 and 8 show that the piecewise linear equa
~limit n→`) and the nonlinear equation with finite largen
exhibit similar dynamics. The Poincare´ maps displayed in
Fig. 8 are not typical of those found in systems with chao
dynamics, but are similar to those found in quasiperio
dynamics. Indeed, the solutions with initial conditionsP(t)
50.40 for t<0, and P(t)50.39 for t<0 do not separate
exponentially, thus confirming quasiperiodicity. Although f
the parameter ranges considered here the piecewise l
equation exhibit only periodic and quasiperiodic solutio
we cannot exclude the possibility of it exhibiting chao
dynamics for other parameters values.
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FIG. 7. Bifurcation diagrams varyingt1: ~a! using the step func-
tion; ~b! using function F ~3! with n5400 ~integration step
0.000 05!. Parameters kept fixed:t252.30,u150.230,u250.217.P
is in arbitray units, andt1 is in arbitrary time units.

FIG. 8. Phase plane embedding and corresponding Poin´
map for the fixed parameters valuet150.715,t252.30,u1

50.230,u250.217: ~a! piecewise linear system (n→` limit !; ~b!
nonlinear system~4! with n5400 ~integration step 0.000 001!. P in
arbitrary units.
5-6
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V. DISCUSSION AND CONCLUSION

The results presented here show that two-looped dela
negative feedback systems can display low dimensional
otic dynamics in the case of smooth functionF @Eq. ~3!#. As
the steepness of the delayed feedback is changed by va
n, there is a sequence of period doubling bifurcations
shown in Fig. 4, and chaotic solutions~low dimensional cha-
otic attractor! found for n,50 as indicated by the positiv
maximal Lyapunov exponent. For larger values ofn, periodic
and quasiperiodic dynamics were observed.

Biological systems display complex dynamics and th
also contain multiple-delayed feedbacks that play a role
controlling the system dynamics. In most cases, the origin
the complex dynamics is not well known. With the excepti
of a comparatively small number of cases in which syst
parameters can be carefully manipulated and controlled
tempts to demonstrate low dimensional chaotic dynamic
biology are rarely convincing. The current work demo
strates the possibility of chaotic dynamics in a system w
two delayed negative feedback loops. We have conside
the same mathematical model used in@23#, for which it was
found that in the case with the number of delayed nega
J,
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feedback loopsN>3 chaos only exists in a very small rang
of parameter values. Likewise we find that forN52, in this
class of mathematical model, chaos appears to be a comp
tively rare phenomenon. Nevertheless it is important to str
that our mathematical model assumed the variableP(t) to be
given by the simple average~2!, and we cannot say tha
chaos is a rare phenomenon if a weighted average is u
the weight also being a parameter that can be varied.

In conclusion, in a situation such that chaos is not a r
phenomenon, it becomes a possible explanation for the fl
tuations observed in physiological control systems. Fina
as the equation of the type~5! is used in neural networks
@usually in this case the function tanh is used instead of
function ~3!# our results might play an important role in de
signing artificial networks.
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