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Abstract 

Neural and gene networks are often modeled by differential equations. If the continuous threshold functions in the differential 
equations are replaced by step functions, the equations become piecewise linear (PL equations). The flow through the state 
space is represented schematically by paths and directed graphs on an n-dimensional hypercube. Closed pathways, called 
cycles, may/effect periodic orbits with associated fixed points in a chosen Poincar6 section. A return map in the Poincar6 
section can be constructed by the composition of fractional linear maps. The stable and unstable manifolds of the fixed 
points can be determined analytically. These methods allow us to analyze the dynamics in higher-dimensional networks as 
exemplified by a four-dimensional network that displays chaotic behavior. The three-dimensional Poincar6 map is projected 
to a two-dimensional plane. This much simpler piecewise linear two-dimensional map conserves the important qualitative 
features of the flow. 
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I. Introduction 

Complex networks are often characterized by their tremendous sizes and the nonlinear relationship between their 

components. A common characteristic is the occurrence of  'switch like' phenomena, i.e. intrinsic quantities may 
change rapidly when a threshold is crossed. For example, genes can be activated by circulatory metabolites and 

neurons become excited when a certain membrane potential is exceeded. For reviews stressing the importance of 

several types of networks see [1-3]. 

In order to handle networks of  at least small or moderate sizes, simplified descriptions of  them as switching 

networks or Markov processes have been developed [2,4-8]. But dynamical properties like steady states, periodicity 

or chaos do not always persist when passing between the different classes of  models [9-13]. For instance, an 
attractor in synchronous switching networks may often require the simultaneous crossing of  several thresholds. 

Such a behavior is not robust since, in general, in a continuous system only one threshold will be crossed at a time. 
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Even though asynchronous switching avoids the simultaneous crossing of several thresholds, the problem of which 

pathway will be followed remains. 

Previous work has explored the connections between the logical structure of model networks and their qualitative 

dynamics. Particular attention was focused on a class of piecewise linear (PL) equations. This class of equations 
is often used to describe biological systems, like gene regulatory- or neural-Hopfield networks [ 14-18], as well 

as electrical circuits [19]. A directed graph on an n-dimensional hypercube is constructed based on the logical 
structure of the network. The vertices on the directed graph correspond to orthants in state space and the edges 

correspond to transitions between orthants [ 11,20]. Previous work analyzed steady states [ 1,8,13,20,21 ] and limit 

cycles [11,12,20,22-25]. 

Theoretical models of gene and neural networks can also display chaotic behavior [21,26-32]. However, there is 

still scant theoretical insight into the origin of chaotic dynamics in these systems [26,27]. Ideally, one would wish to 

obtain a theoretical result that would enable us to assert whether chaotic dynamics is possible based on the logical 
structure of a given network. This paper attempts a more modest task. In the following we analyze chaotic dynamics 

in a particular four-dimensional PL equation that was discovered during searches of PL equations having random 

connectivities and parameters. Numerical results [30,31] and Glass (unpublished) indicate that chaotic dynamics 

is comparatively rare in low dimensions - of the order one network per 1000 randomly generated networks in four 

dimensions. 
Because of the simple nature of the PL equations, significant analysis is possible. In Section 2 we present the 

general class of equations under consideration. We review earlier work that gives analytic formulae for the integration 
of these equations. Section 3 presents the specific four-dimensional PL equation displaying chaotic dynamics. We 

present numerical simulations and emphasize the inadequacy of Boolean or Markovian approaches to capture the 

dynamics in the continuous four-dimensional state space. Section 4 presents general theoretical results for the class 

of PL equations. We show how one can analytically compute the Poincar6 section, the fixed points in the Poincar6 
section, and the stable and unstable manifolds of fixed points. Section 5 applies the analytical methods to the specific 

example presented in Section 3. We compute the Poincar6 map, show how to project it to two dimensions, and 

analyze the stable and unstable manifolds in this two-dimensional projection. We analytically compute a transverse 
homoclinic intersection. Moreover, we show that the attractor is dominated by a strong attraction to the unstable 

manifold of a fixed point. The general features of the two-dimensional map are captured in a simplified example 
which is presented in Section 6. We discuss the implications of the work in Section 7. 

2. Mathematical background 

In this section we summarize the flows in the PL equations based on [11,12]. Let x i be a continuous variable 
denoting the gene product concentration of gene i or the membrane potential of neuron i. Let X i  be a Boolean 

variable called the activi ty ,  defined as follows: if xi > 0 the gene or neuron activity is Xi  = 1, whereas if xi < 0 

then Xi  = 0, i.e. at xi -- 0 the activity has a threshold. 
Throughout the article we consider the general class of systems given by coupled first-order autonomous differ- 

ential equations 

dxi  
= c t i (X)  - y ( X ) x i ,  i = 1 . . . . .  n, (2.1) 

dt  

where o/i (X) and F (X) are piecewise constant functions whose values may change as the variables x j  crosses their 
thresholds. We use boldface to represent arrays. The relative destruction rates y(X) are always positive and are 
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taken to be equal for all variables in state X, hence y (X) is without index i. Since y (X) is the same for all variables 

in state X, the trajectories are piecewise straight lines in the state space. 

The thresholds divide the state space into rectangular open orthants, called boxes.  The number of boxes in an 

n-dimensional system is 2 n. The unique labeling of  a box is given by the corresponding activity X = Xi X2 - •. X,,. 

For instance, the region {xl > 0, x2 < 0 . . . . .  Xn-  1 < 0, xn > 0} gives the box (10 . . .  01), whereas {xj > 0, x2 < 

0 . . . . .  x,~ < 0, gives (10 . . .  0). 

Inside a box the system evolves along a straight line which is directed towards a foca l  p o i n t , f  (X)  = [ f l  . . . .  fn ] 

[ 1 1 ]. The focal point coincides with the steady-state solution with the given parameter values valid in the box, i.e. 

f i  (X)  = oti ( X ) / v  (X) .  No matter where the system starts in that box all trajectories would meet at this point if they 

did not enter an adjacent box. Consequently, the location of  the focal point of  a box with respect to adjacent boxes 

determines which of  them can in principle be entered. 

The partition of the state space into boxes and the fact that inside such a box the system equation (Eq. (2.1)) is 

a first-order linear differential equation with nonvarying parameters, allows a piecewise analytical integration of 

d x i / d t  = et i (X) - y ( X ) x i .  The solution expressed in terms of  f i  ---- f i (X) and 2/ = y(X) in box X is 

x i ( t )  = f i  + (xi(O) -- f / )e  -?'t, (2.2) 

where xi (0) is the starting value (t = 0) inside a certain box. 

With this partition of  the state space, trajectories are always straight lines inside a box. However, they may 

show comers at the interface between two adjacent boxes. This interface is a part of  a threshold or hyperplane, 

and will simply be called a wall  W E R n - l .  For instance, the wall between box 10 . . .  01 and box 10 . . .  0 is 

]/V = {Xl > '0 ,  X2 < 0  . . . . .  Xn-1 < O ,  Xn----0}. 

NOW, suppose the trajectory leaves a box through threshold wall xj  = 0. Solving the corresponding equation with 

respect to time (the transit time is t* through that box) and substituting t* into the remaining equations eliminates time 

from all equations. The intersection point (denoted byy)  with the 'exit '  wall can either be given in component form 

xi  (o) - ( f ~ / f j ) x j  (o) 
3'i = , (2.3) 

1 -1- x j ( O ) / ( - f j )  

or in vector notation [ 1 1 ] 

Cx(O) 
y = M ( x )  -- 1 + ctx(0) ' (2.4) 

where matrix C 6 ~n ×n. The vector c t E R n has zero elements except cj = - 1 / f j ,  and is transposed. If no focal 

point is located exactly in the walls of its box then c t x  > 0 always. Eq. (2.4) is called a fractional linear map. 

The domain of definition of  M ( x )  is restricted to the region in wall W given by the backwards mapping of  a 

particular exit wall on W.  This is because starting at a different place in W the system may leave the box through 

a different exit wall. If the box is left through a single exit wall only, then M ( x )  is valid every where in W. 

The flows from box to box are computed by the composition of  fractional linear maps. Since the composition of 

two fractional linear maps is again a fractional linear map, significant analysis of  the flows is sometimes possible 

since the dynamics can be reduced to a matrix multiplication [11,12]. Consequently, the trajectories have a simple 

analytical representation. 
A convenient way of  visualizing the state space is by representing i tas a hypercube,  where each vertex denotes 

a box and each edge represents the walls between adjacent boxes, Fig. 1. Starting in a box the corresponding 

parameter values, ot and y,  determine whether or not an adjacent box can be entered. Thus we assign an arrow 
to each edge indicating whether at least some trajectories in a box can reach the corresponding adjacent box. The 
resulting directed graph is called a state transition diagram. The possible transitions between boxes may either be 
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Fig. 1. The state transition diagram for the PL equation in Eq. (3.1). The vertices correspond to boxes and directed edges represent allowed 
transitions between adjacent boxes. There are 29 cycles (four 4-vertex, six 6-vertex, ten 8-vertex and nine 10-vertex cycles. 

visualized as an arrow on an edge of  the hypercube, or may be given as a truth table specifying a possible next state, 

cf. Table 1. If  the sign of  o~ i (X) is not a function of  Xi, then each edge in the state transition diagram is oriented in 

one and only one direction [11 ]. 

3. Numerical studies of  a four-dimensional system 

In this paper we consider the following four-dimensional ordinary differential equation, 

dxl/dt = 2(X2)~3 + X2X3) - 1.2546 - xl, 

dx2/dt = 2()(iJ(4 + X l X 4 )  - 1.3762 --  X2,  

dx3/dt = 2J(1 X2 - 0.8024 - x3, (3.1) 

dx4/dt = 2()~1J(3 + X3) - 1.2682 - x4, 

where ,~i -~- 1 - Xi. Note that y (X) is equal to 1 for all xi resulting in straight lines in the state space. The network 
and parameter values were found when numerically searching for irregular behavior in randomly generated systems, 

and have no direct biological interpretation. 

The Boolean equation, Eq. (3.2), represents the logical structure of  our model example Eq. (3.1) as 

X(k+l) v(k) f,,(k) ,~(k) v(k) 
1 = "x2 ""3 -'{- 2 "x3 ' 

x~k+ l )  Q(k)(i.(k ) y(k)  y(k)  
"at "°'4 f f - '* l  "'4 ' 

X~ k+l)  = "'~e(k)~"(k)l " '2  ' (3.2) 
(k+l) ~,(k)~-(k) ~,.(k) 
4 = " 1  "~3 "]'-A3 ' 

where the superscript (k + 1) gives the next activity stage. By iteration we find that the synchronous switching system, 
Eq. (3.2), always reaches the cycle 1011 --~.1101 --> 1100--> 1000---> 0000--+ 0111 --~ 0001 --~ 0011 --> 1011. 

The truth table for this switching network is given in Table 1. Table 1 also contains the transition probabilities 
between boxes when restarting randomly each time in a box, i.e. assuming a Markov process as in Rigney [7], see 

Appendix A. 
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Table 1 

From To Transition Stationary 
Synchr. Asynchr. probability distribution 

0000 0111 0001 0.2866 0.1065 
0010 0.4691 
0100 0.2443 

0001 0011 0011 1.0000 0.0820 
0010 1111 0011 0.3483 0.0500 

0110 0.2969 
1010 0.3548 

0011 1011 1011 1.0000 (I.1266 
0100 1101 0101 0.4954 0.0338 

1100 0.5046 
0101 1001 0001 0.6487 0.0326 

1101 0.3513 
0110 0101 0100 0.5230 0.0148 

0111 0.4770 
0111 0001 0011 0.6317 0.0431 

0101 0.3683 
1000 0000 0000 1.0000 0.1065 
1001 0100 0001 0.3987 0.0760 

1000 0.403O 
1101 0.1982 

1010 1001 1000 0.5230 0.0177 
1011 0.4770 

1011 1101 1001 0.5626 0.1351 
1111 0.4374 

1100 1000 1000 1.0000 0.0666 
1101 1100 1100 1.0000 0.0496 
1111 1010 0111 0.6099 0.0591 

1101 0.3901 
1110 0001 0110 0.3012 0.0000 

1010 0.3304 
1100 0.1927 
I l l l  0.1757 

Note. Columns 2 and 3 are the successor states of the vertices of column 1 in case 
respectively. Column 4 gives the transition probabilities for a Markov model based on the 
contains the stationary densities of the Markov model for each state in column 1. 

of synchronous and asynchronous switching, 
location of the focal points, whereas column 5 

A more convenient way of  displaying the dynamics of  system Eq. (3.1) is given by the state transition diagram, 

see Fig. 1. The focal p o i n t f l  of  variable xl is either f l -  = - 1 . 2 5 4 6  or f +  = 2 - 1.2546, depending on the 

state X. A similar definition for the focal points f i  holds for the other xi .  Thus, in box (0000) the focal point is 

f = [ f ? ,  f2 +, f3 +, f + ]  indicating a forthcoming crossing of  the x2, x3 and /o r  x4 threshold. 

From the figure or the truth table it can immediately be seen that box (1110) can never be entered, i.e. all 

arrows point outward, hence no closed trajectory can pass through the corresponding part of the state space. If  

there exist closed trajectories in the differential equations they must be contained in a certain properly connected 

box sequence. A cycle (or circuit in graph theory) is a path on the hypercube leading back to the starting vertex 

but without entering a vertex twice. A closed trajectory must be contained in a cycle or the union of connected 

cycles. 

By successively applying Eq. (2.4) a trajectory can be followed, see Fig. 2(a). Simulations show that the sys- 

tem will, after a transient period, usually traverse two cycles, called ~4 and/3 ,  which are emphasized in bold in 

Fig. 1. 
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.A"  1011 - 1 1 1 1  - 1101 - 1 1 0 0 -  1 0 0 0 -  0 0 0 0 -  0 0 1 0 -  0 1 1 0 -  0 1 1 1  - 0011 

/3: 1011 - 1001 -- 1101 - 1 1 0 0 -  1 0 0 0 -  0 0 0 0 -  0 0 1 0 -  0 1 1 0 -  0111 - 0011 

These two cycles differ only in one vertex (bold number) and no more than one threshold is crossed at a time (in 
comparison to the result from the synchronous switching approach [2,4,10,11 ]). In order to examine the dynamics 
more closely, the threshold wall between box (0011) and (1011) was chosen as a Poincar6 section, i.e. the part of 
the phase space defined by the wall W = {xl = 0, x2 < 0, x3 > 0, x4 > 0}. This three-dimensional section is 
divided by a 'separating boundary' b into two domains .A and/3, so that when starting in domain ¢4 the system will 
traverse cycle .A, whereas starting in domain/3, cycle 13 is traversed. 

A strange attractor of Eq. (3.1) emerges when plotting successive iterations on the Poincar6 section, Fig. 2(b), 
or when plotting x~ k+l) as a function of x~ k) on this wall, Fig. 2(c). Simulations show that the system alternates 
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Fig. 2. (a) The attractor of the system projected on the xl-x2-plane.  For clarity only 40 transitions through cycle A and /3 are 
plotted. (b) The intersection points of the chaotic attractor of Eq. (3.1) with the wall between boxes (0011) and (1011) defined by 

(k+l) 2 ( ~ )  = {xl = 0, x2 < 0, x3 > 0, x4 > 0}. (c) The return map 0I x 2 as a function of x k) resembles a 'tent map'. All computations 
are performed in Matlab. 
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Fig. 2. Continued 

irregularly between cycle .4 and/3. Two/3 's  never followed each other in the sequence, whereas cycle A was 

traversed several times in succession. 

The Lyapunov exponents are related to the average rates of convergence and/or divergence of nearby trajectories. 

It is thus a measure of the predictability of a system. The number of Lyapunov exponents equals the dimension of 
the system. These exponents are given by 

h=h(x(°),u (°))= lim --1 ln(lj(N).u(°)[), 
N ~  N 

where 

j tN)= OM.ox x (N-I) . . .  0M0x x<0) 

(for aM ~ -  see Section 4) is the product of the Jacobians and u (°) is an initial perturbation. For large N the Lyapunov 

exponents are approximated by 

' ] h(x@'u(°))  ----- 2N H(N)u(O) ' 

where H (u) = (J(N)) t j(x) is a real nonnegative hermitian matrix [33]. The eigenvalues ei of H (s~ approximates 

the Lyapunov exponents, i.e. hi = (1/2N) In ei. An operational definition for chaos is that at least one Lyapunov 
number is positive in a bounded system. In our example the dynamics are bounded and the largest Lyapunov 
exponent is approximately 0.45. Thus, the system is chaotic. 

The rest of this paper deals with the theoretical analysis of this example. In Section 4 we present general results 
concerning the fixed points of the fractional linear map. Then in Section 5 we apply these results to our specific 
example given by Eq. (3.1). 
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4. Fixed points and their stable and unstable manifolds 

In this section we present properties of  fractional linear maps derived from differential equations given by Eq. (2.1). 

Eq. (2.4) gave the mapping M(x)  from a starting point x in a wall, through the box in the direction of the focal 

point, to the intersection point y with another threshold wall. The mapping Eq. (2.4), M(x)  : x --+ y has a unique 

inverse M -  ! (y), 

x = M - l ( y )  ----- C - l Y  
1 -- c t C - l y  ' (4.1) 

where matrix C ~ ~n xn and vector c ~ ~n is entirely determined by the focal point f of  that box. 

4.1. Closed trajectory = f ixed point o f  the return map 

If  there exist closed trajectories then they have to be contained in a properly connected box sequence, i.e. a cycle 

or a union of connected cycles. The flow associated with a cycle ,4 in state space can be traced by the successive 

application of the corresponding maps. Then choosing the threshold wall W = W ( x j  = 0) as the Poincar6 cross 

section we obtain a return map M~t(x) for the cycle A: 

Ax 
M 4 ( x )  -- I -k- atx  ' (4.2) 

where matrix A ~ R ~n- 1) × (n- 1 ) and vector a ~ R ~n- 1) are specific for cycle ,4. They are of  lower dimension since 

the row and column corresponding to xj can be deleted. In [ 12] an efficient way of computing A and a is presented. 
As before the domain of  definition of map M a(x)  is not necessarily the whole Poincar6 cross section, but only that 

part of  W in which the trajectories do not leave cycle .4. 

If  a closed trajectory is associated with cycle ,4 then the return map M.4(x) has a fixed point where the trajectory 
intersects the Poincar6 section. A fixed point Fi of the return map M.a (x) must lie on an eigenvector vi with eigenvalue 

~-i of A, i.e. Fi = I¢ivi with K i > 0, and must in addition be contained in the Poincar6 section. Throughout the 

article only real and distinct eigenvalues are assumed. From Eq. (4.2) combined with Fi = Kivi, an expression for 

xi can be derived, 

~.i - 1 
I¢i atlvil = 1 (4.3) 

Observe from Eq. (4.2) that x = 0 will always be a fixed point of  M.a(x).  The problem of finding periodic orbits 
in large nets is therefore reduced to identifying cycles on the hypercube and solving the corresponding eigenvalue 
problems. 

4.2. Necessary requirements f o r  existence o f  a f ixed point 

Several properties of  a fixed point can be deduced from its eigenvalue. However, a fixed point of  a return map 
M a(x)  does not necessarily represent a closed trajectory since it may lie outside the Poincar6 section or its existence 
may violate the requirement of  boundedness of  solutions. Since the system evolves towards a focal point it must 

enter the bounded domain given by Ixl _< max Ifl ,  where the maximum is taken over a l l f .  

Theorem 1. No closed trajectory can pass through a fixed point Fi = I(ivi on an eigenvector vi with an eigenvalue 
less than one. 
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Proof The simplest way to show this is by using the argument of boundedness. Let Fi be a fixed point on vi 
(but not the origin). Assume )~i < 1. From Eq. (4.3) it follows that atFi = ~ . i  - -  1, which is negative, Thus, for 
x =- Fi / (1  - ~.i), M(x)  in Eq. (4.3) is singular, which is impossible. Consequently, we cannot have a fixed point. 

In case ~-i = 1 the origin is attracting since atvi > O. 
However, ~-i > 1 and vi ~ Poincar6 section, is only a necessary, but not sufficient requirement for the existence 

of a closed trajectory. [] 

4.3. The Jacobain and stability of  fixed points 

The Jacobain at any point x is given by 

1 ( A +A--~txat ) 
J ( x ) - -  1 + a t x  1 " 

At a fixed point Fi on the eigenvector vi with eigenvalve Li the Jacobian J (El) becomes 

1 ( A  - Fia t) (4.4) J(Fi )  = ~i 

The eigenvectors and eigenvalues of the Jacobian J (Fi) are 

Eigenvector : Fi, Eigenvalue : l/~.i, (4.5a) 

Eigenvector : (Fj - Fi),  Eigenvalue : ~ . j / ~ . i ,  (4.5b) 

where (Fj - Fi) is the direction from Fi to the other fixed points Fj,  and ~j is the eigenvalue of Fj (Eq. (4.3)). 

Theorem 2. A necessary and sufficient requirement for stability of Fi is that Xi > max IXj I, for j -~ i. If0 < Xi < 1 
the origin becomes attracting along vi. 

This follows from Eq. (4,5) and the fact that a fixed point of a map is stable only if the magnitude of the largest 
eigenvalue of the Jacobian evaluated at the fixed point is less than one. 

4.4. Manifolds and their representation 

The stable and unstable manifolds at a fixed point Fi of cycle .A are denoted by W~a (Fi) and W~ (Fi), respec- 
tively. The manifolds of fixed points of fractional linear maps are linear spaces spanned by the eigenvectors of the 
corresponding Jacobian. Assuming distinct and real eigenvalues, then the manifolds are 

W~4(Fi) = span{F/, (Fj - F i ) } ,  j such that I~.jl/)~i < 1, (4.6) 
W~4(Fi) = F i  +span{(Fk - F i ) } ,  ksuchthat [~kl/Li > 1. 

Note that in case W~ is one-dimensional then it is given by a line from Fi to Fk, embedded in the space spanned 
by (Fk - Fi).  In case W~ is two-dimensional then it is given by a plane through Fi spanned by (Fk -- Fi). 

Depending on the values of the eigenvalues, a fixed point can be hyperbolic or nonhyperbolic, stable and unstable, 
and if eigenvalues have negative sign, reflection occurs in the corresponding manifold. 

4.5. A further reduction of  the Poincar~ map 

Once an eigenvector of MA(x)  is found, the corresponding fixed point Fi can immediately be determined with 
Eq. (4.3). This suggests that the (n - 1)-dimensional return map of the Poincar6 section can be reduced even further 
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y. xj x ~ ~ x  1 
F~xi point point 

? C/,\ 
/. ........... i. 

xi W s xi 

Fig. 3. Linear automorphism on a sphere and on a proper transversal plane in a three-dimensional Poincar6 section where manifolds are 
represented either by chords or line segments. 

to a (n - 2)-dimensional map. In order to perform this reduction we need first two important properties of  fractional 

linear maps. 

Consider two points, Xl and x2, on an arbitrary vector v, i.e. x] = Klv andx2 = K2v, I(i > 0 for i = 1, 2 (a ray 

is defined as the family of  points, xi,  where xi = z iv  for all K i > 0). Applying the fractional linear map MA from 

Eq. (2.4) these points are mapped to xl j) and x~ I), respectively, xl l) = M.A (xi) = Ki A v / ( 1  + ICe at v). Note that x(j ~) 

and x~ l) lie on the same iterated vector, i.e. Av. This reveals the important property that all points on a ray map to 

the same ray under successive mapping. 

Theorem 3. The distance between two points x and y = Kx, x > 1, on any iterated ray x will go to zero as the 

number of  iterations goes to infinity. 

Proo f  From Eq. (2.3) or Eq. (2.4) it can be deduced that if no focal point is lying on a threshold then ctx  > 0 

always. Assume the system traverses through an arbitrary sequence of  boxes S = { 1,2 . . . . .  k} then the mapping 

is given by the composed fractional linear map M s ( x )  = Skx / (1  + s t x ) ,  where Sk = Ck . . .  C2CI is the product of  

the individual mapping matrices, and s tx  = (c~x + ct?Clx + . . .  + ctkSk_ ix).  Note that s tx  goes to + infinity when 

k ~ oo. Therefore, in the limit k --~ oo 

x (k) 1 -I- Kstx 
lim = lim -- 1. (4.7) 

k~oo ~ s'x--.oo K(1 + stx) 

That is, all points on a ray either approach the origin, or approach a nonzero asymptotic trajectory. [] 

Since all trajectories starting on a vector span a two-dimensional piecewise plane surface in the state space, the 
order of  the iterated points on the vector will persist because trajectories cannot cross each other. In [ 12] this and the 

fact that this surface cannot intersect itself was used to deduce the chaos cannot occur in three-dimensional systems 

given by Eq. (2.1). Aperiodic dynamics may however be possible in higher dimensions. 
Now consider the intersection of  iterates of  a ray with a hypersurface S of  dimension (n - 2) that is transverse 

to the rays in a Poincar6 section, Fig. 3. This projection preserves essential features of  the dynamics. For instance, 
one can assume that S is a unit sphere, to generate a linear automorphism on a sphere [34], i.e. M r (X) = A x / I A x ,  I, 

where M r (X) is a reduced map. 

A ray is represented in this (n - 2)-dimensional surface $ as a point. That is, iterations give a sequence of  points 

on this surface S which may approach the fixed point. The intersection of  W S ( F i ) ,  from Eq. (4.6), with this surface 
S gives the representation of  the stable manifold of  a fixed point in S. The representation of  the unstable manifold 
W~ in S, is defined by the intersection of  span {Fi W~4(Fi)}, see Fig. 3. 
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To analyze our four-dimensional example, we will take the projection on a plane rather than on a unit sphere. 

This is more convenient since this results in pieces of straight lines representing manifolds instead of chord pieces, 
see Fig. 3. 

5. T h e o r e t i c a l  ana lys i s  o f  the  m o d e l  s y s t e m  (Eq.  (3.1))  

The numerical simulations of Section 3 indicated the occurrence of aperiodic chaotic dynamics since there was a 

positive Lyapunov number. Based on the theory developed in the preceding section we will explore the dynamical 

properties of the model. 

5.1. Stat iona~ point 

Before dealing with the chaotic dynamics we note that system (Eq. (3.1)) contains one stable fixed point at 

(0; -0.1786; 0: 0.2855) which is attracting and located on a threshold intersection. Trajectories spiral towards 

this point by traversing the cycle 0011-1011-1001-0001. This fixed point can be identified either by the method 

presented in [ 13,21 ], or by composing the corresponding linear fractional map and determining its fixed points. 

5.2. Periodic solutions 

In order to find possible periodic solutions the wall between box (0011) and (1011), )42 = {xl -- 0, X2 < 0, X 3 > 

0, X4 > 0}, was chosen as Poincar6 section. This wall is common to cycles ,,4 and/3 as given in Section 3. If 
x2 > -0.7774 x3 the system follows cycle ,4, otherwise it follows cycle/3. Therefore, the plane x2 + 0.7774 x3 = 0 
separates the domain of cycle .'4 and the domain of cycle/3. Assume the system starts exactly at this separating 

boundary b in )/V. Then it proceeds through box (1011) towards box (1111) as well as to box (1001), and hence 

must leave box (1011) in the set {Xl > 0, x2 = 0, x3 = 0, x4 > 0}. Since this set is common for both boxes 

and hence for both cycles, and the cycles join again in the following box (1101), the mapping is continuous at the 

separating boundary L~. This is a general property of two cycles differing only in one vertex. 
The return map 

Ax Bx  
MA(x)  -- - -  and M B ( x )  - -  

1 + a  t - x  1 + b  t . x  

of cycle .'4 and/3 are constructed as indicated in Section 4, and are given in Table 2 together with their fixed points 

and eigenvalues. 

By applying Theorem 1 we know that no closed trajectory can pass through points on eigenvectors with ~-i < I. The 
attracting fixed point FAI lies inside/3-domain, and F•l lies inside A-domain. The fixed points FA2 and F~2 lie out- 

side the Poincar6 cross section. Consequently, there are only period one orbits through the fixed points FA3 and Ft~3. 

Since {;~A~I > ~-A3 > I,k.azl and ~..al, ~-.A2 are both negative, FA3 is an unstable, hyperbolic fixed point with 
reflection in the unstable and stable manifolds, W~ and W~. The ustable manifiod W~ is one-dimensional and is 

defined by the line through F.al and F.a3, whereas W~t is a two-dimensional subspace spanned by F.a3 and F.a2, 
see Eq. (4.6). 

Since )~81 > Xt33 > ~.t32, Ft33 is an unstable, hyperbolic fixed point without reflection in its manifolds. 

5.3. Reduction to a plane 

As indicated in Section 4.5 the fractional linear map in the Poincar6 section can be reduced by projecting the return 
map to the plane that contains the fixed point FA3 and having FA3 as normal vector. The reduction on this plane, 
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Table 2 
The parameter values of the mapping matrices corresponding to cycles ,,4 and ]3 with their associated fixed points and eigenvalues of A 
and B 

Cycle ,m 

I 
- 10.61485 -9.80490 -3.45291 

A = 2.10586 4.74710 2.99121 
6.39551 5.77126 1.93463 

at= [ 4.9207511.49434 6.26952 ] 

Eigenvalues of A: 
).,,41 ).,A2 ~,,A3 

-8.2927 --0.0275 4.3871 

[o 
-11.13411 

0.23044 
6.83240 

Fixed Points of M 43(X): 
F.42 F.A3 

o l l  o 
-0.84214 | 0.3269031657 
1.03219 m 0.1325688415 

Cycle ]3 ] [ 0.40189 -1.24076-3.45291] 
B = 4.74344 6.79749 2.99121 

-0.26499 0.59355 1.93463 

bt= [9.78782 15:27787 6.26952 ] 

E~envaluesofB: 
~BI ~B2 ~B3 

5.6530 0.0516 3.4294 

Fixed Poin~ of MB(X): 
FBI FB2 FB3 

o1[o I o -0.31331 0 . 8 1 2 2 9  -0.12891 
0.28970 -0.72284 0.35971 
0.17060 0.34212 0.06667 

in the following called the 2D-plane, will remove all movement in the FA3 direction. The separating boundary b 
between the ,A and/3 domains in the Poincar6 section intersects the 2D-plane in a straight line. 

To simplify the representation we change the basis so that the fixed-point vectors of MA(x) give the new basis 
vectors. With help of the transformation matrix T = [-F,41 FA2 FA3 ] the old basis x can be expressed in terms of 
the new onesy = T- ix .  In the new coordinates, W~ and W~ becomes the vertical and horizontal axis, respectively. 
Fig. 4(a) gives a schematic picture of the dynamics occurring in this 2D-plane. Since FA3 e 2D-plane, Y3 = 1 
always. The reduced iteration map y~k+l) = M~(y~k)) in the ,A-domain expressed in the new coordinates is then 
specified by the eigenvalues of A, i.e. 

y,,+, 0 ] [ _ , . 8 8 9 8 0 ]  
)~A2/~-A3 y~k)~ 0 --0.0063 y~k)' (5.1a) 

wherey = [Yl, Y2] t. 
To obtain the reduced map Mbfy) for cycle/3 its corresponding B matrix has first to be transformed into the new 

coordinates, B* = T - I B T ,  and theny3 must be restricted toy3 = 1. The reduced two-dimensional map Mb0') 
can then be written as 

[ bll bl2 ] r b13 ] F4.7222-0.2511] [0.0118 l 
y(k+l) = bzl b22 y(k) + [.b23 ~ [-2.2053 -0.0700 y(k) + 0.0020.] 

b33 + [b31 b32] .y(k) 4.4814 + [103.27 - 1.9928] .y(k) 
(5.1b) 

where bij gives the (i, j ) th element in the B* matrix. 
To give a complete representation in the 2D-plane the separating boundary b has to be intersected with the 2D- 

plane giving the boundary line b: yl = -9.0924 x 10 -4 -t- 0.0193y2. In Fig. 4(a), if the system is to the right of b 
then M~(y) has to be applied. Otherwise Mb0') is used. 
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(a) 

Separating Boundary 6 

wL/ / < w ~  

Fixed point FB3, Fixed point FA3, 
not reflecting reflecting 

(b) 

Separating Boundary b 

sl...... (w~)-1 
.......... \%/' 

M~(~3 ) /""  3 

M~(W~) ~ ~  

Mr's ' ~ ~ " 5 / /  i w.~ 

- ;   - oma,n/  -,omaio 
F~ 

Fig. 4. (a) The dynamics around the fixed points on the 2D-plane, Eq. (5.1). (b) The triangular region in ,A-domain with corners SI, $2 
and S 3 is mapped onto the right hatched region, whereas the triangular region in B-domain with corners SI, $2 and FB3 is maped 
onto the left hatched region. The union of the hatched regions represent a trapping region in the 2D-plane. It contains the fixed point 
FA3. 

5.4. There exists a trapping region around F A 

From the simulations of  Section 3.3 it was obvious that the system is trapped 'close'  to FA. To show this, 
consider Fig. 4(b) which schematically visualizes the manifolds with some of their mappings. First consider the 

B-domain. W~ intersects the separating boundary b at &,  and Wz~ intersects the separating boundary b at $2. 
The triangular region defined by FB3, SI and $2 maps to the left hatched region. Now consider the A-domain. 

$3 is the intersection point of  M A ( W ~ )  -I and W~. The triangular region defined by Si, $2 and $3 maps to 
the right hatched region. Thus the triangular region defined by Ft~3, S1 and $3 maps onto the union of the 
right and left hatched region, defined by FB3, M54($3) and Mr/~(S2). Thus, the right and left hatched region 
is a trapping region of the 2D-map. Notice also that the 2D-map in the trapping region is invertible. This is a 
necessary consequence of  the generation of the map from a differential equation and the projection procedure to two 
dimensions. 
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5.5. Transversal homoclinic points 

A transverse homoclinic point is a point of a map where the stable and unstable manifolds of a fixed-point 
cross. The existence of transverse homoclinic points is often considered an important feature. This is because, if 
a map has a transverse homoclinic point and certain technical requirements are also met, the map has an invariant 
Cantor set on which it is topologically conjugate to a full shift map [35]. However, since the Cantor set is not 
necessarily attracting, the existence of a transverse homoclinic point may have limited relevance to the asymptotic 

dynamics. 
Although, it is often a difficult matter to compute transverse homoclinic points, in the present case, the computation 

is straightforward. Since in the 2D-plane, lines map to lines, an analytical formula giving the coordinates of the 
PiP (primary intersection point of W~ and W~) and PiP (- I), is immediate (from the mapping of the vertical and 
horizontal axis, respectively) 

[ 0 ] E 0 1  
PiP = bllb23 - bl3b21 ,~ and PiP ( -b  -- - ~  ~ (5.2) 

-0.0008337 
bllb33 - b31b13 0 

The forward and backward iterations of the PiP give the whole set of homoclinic points 
Fig. 5(a) indicates schematically the mapping of the unstable manifold W~ in the 2D-plane. To the left of the 

separating boundary b, map MrB(x) has to be applied wheras to the right of b, Mr~(x) is applied. The region given 
to the right of the inverse of the boundary M~(b)- l  determines the exit region of domain ,,4. The line piece L l on 
W~ is mapped onto itself and L2. Line piece L:  is mapped onto L3 in B-domain which is then mapped back to A 
onto L4. Mapping L4 gives L5 which is contained in .4 as well as in B-domain, hence a splitting occurs. 

Since the ratio of contraction along W~ to the expansion in W~ is )~l/)~e ~ 300, the iterated line segments like 
L5 will lie very close to W~. This is shown in Fig. 5(b) which gives the numerically computed dynamics. Fig. 5(c) 

(k+l) (k) gives the retrun map obtained when plotting Yl as a function of Yi • The attraction to the stable manifold W~ 
combined with the expansion and inversion of this manifold are the domainant features of the asymptotic dynamics. 

b i 
! 

/,¢' ! 
/ L5 / , 

/,__LL- 
~ ..... f / 

W s / / / LI 

. ..... / , 

s , M~(b)-I 

i L2 

/ 
(a) B - D o m a i n  / .fl - D omain  

Fig. 5. (a) A schematic drawing of four successive mappings of the line section L! on the unstable manifold W~ in the 2D-plane. L! is 

mapped onto itself and L2, L2 is mapped to L 3 in B-domain.  L 3 is mapped to L 4, which in turn is mapped to L 5. The end points of  
each line segment  are indicated by the symbol x .  The maps in the ,A-domain have inversions so that for example the left-most point on 
L 4 maps to the right-most point on L 5. (b) The appearance of the strange attractor on the 2D-plane when plotting 500 iterations. (c) The 

return map obtained when plotting y[k+l) as a function of yl k). 
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Fig. 5. Continued 

6. A p i e c e w i s e  af f ine  m a p  

The two-dimensional map in Section 5 displays a transverse homoclinic intersection between the stable and 
unstable manifold of F.a3. 

Although this guarantees an invariant chaotic set [35,36], it tells, in general, nothing about the attracting set. In 
our example the dynamics in the attracting set is dominated by the strong contraction to the unstable maniflod W~ 



48 T. Mestl et al./Physica D 98 (1996) 33-52 

and the expansion along it. We may distill this situation into a piecewise affine map, given by 

Region .A"  x (k) > - 1  Region/3"  x (k) < - 1  

[ x ](k+l)  - e  (k) m . a ]  Oily] +[, (6.1) 

where leq << 1 gives the coupling between variables x and y. 

As before the x-axis  is the unstable manifold of the fixed point at (0, 0), and the y-axis is the stable manifold. 

Notice that all points for which x (k) < - 1, map in one iteration to region .,4, and all points in A,  except those on W~, 

will eventually map to region/3. Therefore, any periodic orbit must have at least one iterate in/3. If the relationship 

m = 2 / ( a  - 1) is satisfied then the mapping is continuous at the boundary. Assume the system starts close to the 

fixed point at (0, 0). The largest x-coordinate in A is x = 2, so that x = - 4  is the most negative x-coordinate in 

/3. Let c be the x-coordinate of the iterate of  this point. Once c is chosen, the parameter a = (8 - c ) / (2  - c) and 

m = ½ (2 - c) are determined. If  - 1 _< c < 0 the situation is qualitatively similar to the 2D-map in Section 5.3. 

There is again a transverse homolinic point. However, the map in Eq. (6.1) is not 1 : 1, so that there is not a unique 

inverse. Fig. 6(a) shows the numerically computed attractor for a chosen parameter set. 

If e = 0, we can consider the x-coordinate of  successive iterates independent of the y-coordinate.  The map of 

x (k+l) vs. x (k) is a tent map, Fig. 6(b), see also [34]. The map is bounded in the interval - 4  _< x ~k) _< 2, and under 

iteration the map is expanding in .,4 since the slope = - 2 .  In 13, the x-coordinate is multiplied by m. Since the 

system stays in /3  for at the most one iteration, a lower bound for the average Lyapunov exponent h is: 

h > ½(log I - 21 + log Iml) with m = 0.9333 :, h = 0.3121. Therefore, there is sensitive dependence to 

initial conditions and chaotic dynamics.  

For e ~ 0, the dynamics is more delicate. Chaotic dynamics must persist but the attractor displays subtle geometric 

features that are not fully understood. 
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Fig. 6. (a) The iterations of Eq. (6.1) with c = -0.8, e = 0.2, a = 3.1429 and in = 0.9333. 700 iterates are plotted after a transient 
period. (b) The corresponding return map of Eq. (6.1) obtained when plotting x(k+l) as a function of x (k). 
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7. Discussion 

Although we have focused on a single example, the class of equations represented by Eq. (2.1), from which 
this example is taken, have been proposed as theoretical models of gene regulatory systems and neural networks. 
There is an embarrassingly sparse set of examples illustrating direct applications of a mathematical approach in 
concrete biological situations (see [1,37]). We do not know if this reflects limitations of the equations imposed by 
their simple structure, or whether it is due to unfamiliarity of the mathematics to biologists. However, the fact that 
many proteins show a switch-like change in their chemical properties, and that often their primary function appears 
to be the transfer and processing of information, suggests a mathematical description in form of Eq. (2.1). Protein 
molecules and genes are, in principle, able to perform a great variety of computational operations, e.g. OR, AND, 
NOT [3]. Independent of biology, the equations reflect the dynamics of asynchronous switching networks, and the 
methods presented here might have practical implications for engineering applications [ 19,38,39]. 

Although there has been considerable analysis of such systems, much of this work has been focused on conditions 
for stability of steady states [ 1,5,16,40---42]. In contrast, the current paper focuses on dynamical properties. A number 
of open questions remain. For instance, is it possible to predict the range of possible behavior of a system (including 
chaos) based on the hypercube representation? What bifurcations are observed as the focal points are shifted? Are 
there any practical or mathematical implications of the observation that we are able to classify high-dimensional 
systems that generate chaos? 

Although we are still far away from a complete understanding of this kind of system, the geometric structure 
invites a variety of mathematical results, see [11,12,20,22]. Some important features of these flows are: 
(1) The flows can be classified by directed graphs on an n-dimensional hypercube. In the case in which the sign of 

ai (X) is not a function of i, each edge on the hypercube is directed in a unique orientation. Thus, if there are n 
variables there is a maximum of 2 n×2"-I different labelings of the cube (neglecting possible symmetries). 
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(2) Flows in the phase space are piecewise linear and piecewise focused. This structure enables exact integration 
of the equations by composition of fractional linear maps. 

(3) A stable vertex (all arrows are directed towards it) in the hypercube is associated with a stable steady state in 
the differential equations. 

(4) A cycle on the hypercube is associated with a Poincar6 map that is a fractional linear map on an appropriate 
subspace (= wall W). A necessary requirement for a periodic orbit or an attracting focus along the state space 

specified by a cycle, is the existence of an eigenvector of the Poincar6 map in its domain of definition. An 

additional requirement, though not sufficient, for the existence of closed trajectories is that the associated 
eigenvalue is greater than one. An analytical expression for the stable and unstable manifolds of a fixed point 

can be derived giving information about stability of the orbit. This is useful for analyzing complex dynamics. 

(5) Multiple cycles through a vertex in the hypercube may be associated with chaos, but the necessary conditions 

for chaos are not known. However, the hypercube representation gives a natural way to classify chaos in this 
class of equations. 

These transparent geometric properties of PL equations should encourage further development of this analysis. 
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Appendix A. Probabilistic approach 

We now consider a Markovian model in which each edge in the state transition diagram is associated with a 

transition probability. Consider box (0000) having three exit walls to (0001), (001 O) and (0100). Hence, there exists 
a certain volume in box (0000) inside which a trajectory will go to (0001). A measure of the transition probability 

from (0000) to (0001) is given by the appropriate relative volume fraction of the box. The volume Vi in a box that 

exits through wall W i  = {xi = O} is derived from the focal point coordinatef(box). The transition probability of 
crossing wall W i  is then 

If,l (A.I) P(W, ) -  

where fi is the ith coordinate o f f ,  and the sum j = {1 . . . . .  k} runs over the k exit walls of the box. 

To demonstrate (A. l) assume the system is n-dimensional with equal relative decay rate. Without loss of generality, 
let 1 . . .  1 be the branching box. Let the system be in the 'entrance' wall, W e n t  = {Xl > 0 . . . . .  Xn-I  > O, Xn = 0 } .  

Suppose there are k < n exits to adjacent boxes denoted by 0 1 . . .  1, and 101 . . .  l, etc. Consequently, the branching 
box is divided into k volumes Vi such that initial values in volume Vi produce trajectories entering the exit wall W i .  

Assume the system leaves the branching box in direction of box 101. . .  1, i.e. W2 = {xl > 0, x2 = 0 . . . . .  xn > 0}. 
Let W~ -1 be that part of Went which mapped forward gives W2. Volume V] is given by the vectors spanning W2 
and 14; 2 I. 

)4;2 is spanned by the unit vectors ei ---- {xi ---- l, xj  ---- O, i ~ j } with i E { l, 3 . . . . .  n } whereas )4' 21 is spanned 
by el, i 6 { l, 3 . . . . .  n - 1 } and vector s. Vector s is the backwards mapping of en from 14;2, or the other way round, 
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when s mapped  forward must  give en. Apply ing  Eq. (2.4) it is easy to check  that s = - [ f l ,  f2,  f3 . . . . .  f n - l ,  0] t 

gives cen, where  c > 0: 

C s  
M(s)  ~- - -  

1 + cts 

1 - f l l f 2  

_ l - f 3 1 f 2  1 

1 + cts  " ".. 

- - f n / f 2  

oil 
[il -f2 

1 - -  - l  

(A.2) 

Real ize  that s is independent  o f  which exit  wall  is chosen.  The  vo lumes  Vi are then easi ly computed  by taking the 

determinant  of  the spanning vectors,  i.e. vol(Vi)  = I det (e i ,  s)l ---- Ifi I, where  ei span W i .  To obtain the transition 

P ( W i )  the vo lume  e lements  have to be normal ized,  i.e. )--~= 1 I f j l  = l, hence the divis ion in probabil i ty (A. 1). 
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