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A two parameter mathematical model for a periodically forced nonlinear oscillator is analyzed using analytical and
numerical techniques. The model displays phase locking, quasiperiodic dynamics, bistability, period-doubling bifurcations
and chaotic dynamics. The regions in which the different dynamical behaviors occur as a function of the two parameters

is considered.

Recent experimental studies [1,2] of periodically
forced nonlinear oscillators have shown the presence
of period-doubling bifurcations and chaotic dynamics
obeying universal scaling properties predicted by simple
theoretical models [3—5]. Although a detailed theo-
retical analysis of [1,2] has not yet appeared it has
been shown that the dynamics of a periodically forced
nonlinear oscillator can often be represented by a one
dimensional Poincaré map, f, where f: S1 - 81 [6—11].
For example, such a reduction is possible for periodical-
ly forced relaxation oscillations [7—9], the periodical-
ly driven Josephson junction [11], and periodic stimu-
lation of spontaneously active cardiac cells [10].

In the following we consider the map

Xp+1 =f@ b, x;)=x, ta+bsin2nx, (mod1), (1)

where g, b are positive real numbers. For b < 1/2n, f
is a diffeomorphism of the circle and the dynamics
are well understood [12—15]. For b = 1/27 novel
scaling behavior has recently been observed [16]. For
b > 1/2n, although chaotic dynamics have been observ-
ed [6,11], a detailed analysis of the dynamics as a func-
tion of 2 and b is not available. In the following, we
mainly consider the dynamics of (1) for & > 1/2n.
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The map in (1) can arise from the following process.
Assume there is a variable y(¢) and a threshold, 8(¢),

6(¢)=1+psin 2t , )]

where 0 < < 1. The variable y (¢) is a piecewise linear
function of time. The slope of y (¢) is —a, where a is

a positive real number, everywhere except at isolated
times ¢y, £y, ...7;. At ¢; the variable discontinuously
jumps from zero to 0(tj) (fig. 1). Thus,

Liy1 =1+ 1/a+ (B/a) sin 2mt; 3)

and the process is described by (1) provided 2 > b.

Repeated iteration of (1) generates a sequence of
pointsx; =f(xg), x5 =f(x;) =f2(xg), ... . There is
a fixed point of (1) of period NV if

xt+N=xt; xt,,_jaﬁxt, 1<]<N. (4)

If there is a fixed point of period N, then there will
be a cycle of period N, x§, xT,x3, ... x} = x§. A cycle

is stable if
ax, x *

),.)5
Ax; )xt=x3 t=x]

i=0

<1. 5)
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Fig. 1. A model whose phase locking properties are described
by (1) and (3). There is a sinusoidally modulated threshold,
and a linearly decaying activity which discontinuously jumps
from a value of zero to the threshold. Phase locking is repre-
sented by the ratio of 2 integers N : M where N is the fre-
quency of the sawtooth function and M is the frequency of
the sine wave. For the parameters in this figure [« = 0.69, 8
=0.39%in (3)], there is stable 1: 2 and 2 : 2 phase locking.

Stable cycles of period N are associated with stable
phase locked dynamics [6—10]. We say that there is NV :
M phase locking if for each N cycles of the sawtooth
function there are M cycles of the sinusoidal forcing
function where the sawtooth resets at V distinct phases
of the sinusoidal function. For the cycle x§, x{ ...

XY =X{, M can be readily computed

N
M=Z?a+bsin27rxf. 6)
i=
A system displays bistability if there are two different
stable cycles for a single set of parameter values [8,9].
Fig. 1 illustrates bistability in which there is 1: 2 and
2 : 2 stable phase locking for & = 0.69, $=0.39 in (3).
Eq. (1) displays the symmetry

f(0,b,1 —x,)=1—f(0,b, x;). @)

We show elsewhere [17] that this symmetry leads to
the following symmetries in the phase locking zones:
(i) if there is NV : M phase locking fora=1+¢,0<¢
< 0.5 then there will be N : 3V — M phase locking
fora =2 — e, and (ii) if there is N : M phase locking
fora =agy, 1 <ag <2, then there will be N : M + NK
phase locking for 4 = gy + K with K an integer.

The boundaries of the 1 : M phase locking regions
can be analytically computed. Forb = |a — M|, (3f/
3xy)x;=x* = 1, and thus as b is increased from zero for
fixed a the period 1 solutions appear via a tangent
bifurcation. As b continues to increase at fixed a,
the stability of the period 1 solutions are lost via a
period-doubling pitchfork bifurcation when (3f/
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0X¢)x ;=x* = —1. This occurs along the family of hyper-
bolae b2 — (M — ¢)2 = w—2 which separate the 1 : M
and 2 : 2M phase locking regions.

Additional analytic results can be obtained only for
special cases. For the valuesa =j,7 =0, 1, 2, ..., there
are two stable period 2 solutions of (1) for 0.5 < b
<(0.25 + 1/222)V/2 corresponding to stable 2 : 2j phase
locking. At b = (0.25 + 1/272)1/2 the two stable
period 2 solutions lose their stability by a period-
doubling pitchfork bifurcation leading to two stable
period 4 solutions corresponding to 4 : 4f phase lock-
ing. Analtyic results can also be obtained fora =j
+05,j=0,1,2,.... For0<bh<n-12-12 there isa
stable 2 : 2/ + 1 phase locking. At 5 = 71212 the
period 2 solution loses stability by a period doubling
pitchfork bifurcation leading to a period 4 solution
corresponding to 4 : 4j + 2 phase locking.

Numerical studies have been used to determine the
boundaries of some phase locking regions as a function
of g and b. The analysis was aided by computing num-
erical estimates of the rotation number, p, and
Lyapunov number, A, which are defined,

N

. .

a, b, xy)= lim ~Ea+bsin21rx-, 8

P( 0) N—*mNi=0 i ( )
(ax,

The rotation number is rational for periodic dynamics
and irrational for aperiodic dynamics [12—15]. The
Lyapunov number is negative for stable cycles, zero
for quasiperiodic dynamics and at tangent and pitch-
fork bifurcations, and positive for unstable cycles and
chaotic dynamics [18,19]. The numerical estimates
for p and A were computed over 100 iterations of (1)
for several initial conditions following an initial
transient of 10 iterations. We take a positive value of
the Lyapunov number as an operational definition for
chaotic dynamics [18,19].

Fig. 2 shows the boundaries of some of the main
phase locking regions as a function of # and b. The
width of some of the regions (e.g. 3:4 and 2 : 3) is
so narrow as b increases that the width cannot be ac-
curately represented in this figure. Thus, the cusp-
like extensions of the 3 : 4 phase locking region as b
increases, enclose a region whose boundaries have
been collapsed into a single line in the drafting of the
figure. In the labelled phase locking regions there is

N
1
A, b, xn) = lim ——Elo 9

Xt=X{
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Fig. 2. Locally stable phase locking regions for (1). The dash-
ed line at b = 1/2n separates the regions in which (1) is a
monotonic function of the unit circle (b < 1/27) and a non-
monotonic function (b > 1/2x). In the non-labelled regions
are phase locked, quasiperiodic and chaotic dynamics (see
text).

stable phase locking, but all initial conditions will not
necessarily be attracted to the stable cycle(s).

For 0 < b < 1/27 both stable phase locking and
quasiperiodic dynamics are found [12—15]. The ro-
tation number, p, does not depend on x and is a
continuous function of ¢ and b. Asa increases at
constant b, p increases but is piecewise constant on
the set of rotational values [12—15]. The value b
= 1/2x is indicated by the dashed line in fig.2. The
phase locking regions for 0 < b < 1/2x agree with
the classic results from Arnold [15, fig. 78].

For b > 1/2n the dynamics are much more com-
plex. As b increases at fixed a, the stable phase lock-
ed regions (1:1,3:4,2:3,3:5, 1:2) initially appear
via a tangent bifurcation. As b continues to increase
stability is lost via a period-doubling pitchfork bifurca-
tion and each of the NV : M phase locking regions men-
tioned above is contiguous with a 2V : 2M phase lock-
ing region. Cascading period-doubling bifurcations are
observed which appear similar to the period-doubling
bifurcations observed in maps of the unit interval[3—
5]. The boundaries of the phase locking regions inter-
sect leading to bistability. Although numerical studies
cannot guarantee that each period-doubling sequence
continues to the chaotic region as b increases, we have
not found situations in which this does not occur. Only
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the phase locking regions with the largest area in (g, b)
parameter space are included in fig. 2. In a subsequent
paper we will show that the other stable cycles for

0 <b < 1/2m also extend to » > 1/2x. Each one splits
into two branches in a fashion similar to the splitting
ofthe 2 :3,3:4and 3 : 5 regions.

Since other periodically forced nonlinear oscillators
can be analyzed by one dimensional Poincaré maps
having the symmetry and topological properties of (1),
we expect that the main features of fig. 2 will also be
found in other systems. However, experimental obser-
vation of this rich structure will be difficult since
many of the phase locking regions occupy extremely
small regions of parameter space and are easily destroy-
ed by noise.
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