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R320, 1984,-A mathematical model describing the Hering- 
Breuer reflexes in mechanically ventilated cats is developed. 
There is good agreement between the properties of the model 
and experimental studies performed over a wide range of fre- 
quencies and volumes of the mechanical ventilator. There is a 
correspondence between the model and a periodically forced 
nonlinear oscillator, similar to the van der Pol equation. Brain 
stem mechanisms underlying the entrainment are discussed. 
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A COMMON FEATURE of biological oscillators is their 
propensity to become entrained or phase locked to a 
periodically imposed input. In the phase-locked condi- 
tion, there is an integral ratio between the imposed 
frequency and the frequency of the biological oscillator 
(commonly small integers), and the dynamics are peri- 
odic in time. 

The intrinsic respiratory rhythm of mammals, which 
is generated in the brain stem, can be phase locked to a 
mechanical ventilator (l-3, 13, 15, 32, 34, 35, 41). It is 
believed that the main stimuli underlying the phase 
locking originate from stretch and pressure receptors in 
the lung and bronchial airways (32,35,41). The effect of 
lung inflation during inspiration is to shorten inspira- 
tory time (Hering-Breuer inspiratory inhibitory reflex), 
whereas a lung inflation delivered during expiration 
lengthens expiratory time (Hering-Breuer expiratory- 
promoting reflex) (5). The Hering-Breuer reflexes are 
mediated by vagal afferent activity. Entrainment to a 
mechanical ventilator is lost by sectioning the vagus 
nerves (32, 35). 

In a recent paper, we described the phase locking of 
the respiratory rhythm of paralyzed cats to a mechanical 
ventilator (35). Extensive data were reported on the 
entrainment over a large range of frequencies and am- 
plitudes of the mechanical ventilator. In this paper we 
develop a mathematical model for this experimental sys- 
tem, 

Mathematical models have been developed for the 
eff’ects of single lung inflations delivered during the 

respiratory cycle on the subsequent timing of the respi- 
ratory phases (4, 7, 10, 24, 27, 41, 43). These mathemat- 
ical models should, in principle, also be capable of pre- 
dicting the effects of periodic mechanical ventilation. 
Our goal in the following is to take the main ideas 
developed by von Euler and co-workers on the Hering- 
Breuer reflexes (4,7,27) and adopt them for the modeling 
of respiratory entrainment by periodic lung inflation. A 
similar approach is taken by Baconnier et al. (3). How- 
ever, in contrast to the work of Baconnier et al. (3), we 
have tried to simplify the von Euler model as much as 
possible. The mathematical model we develop has 5 
adjustable parameters, all of which have a simple phys- 
iological interpretation. The original von Euler model, 
as adopted 
Pa rameters. 

by Baconnier et al. (3), has more than 10 

Two other complementary approaches have also been 
used previously to develop quantitative model .s for res- 
piratory phase locking. 

1) The effects of a single-pulse inflation on respiratory 
timing at different phases of the respiratory cycle are 
measured. These measurements are then used to predict 
the effects of periodic pulse inflations (2, 3, 41). These 
techniques have also been used to study periodic forcing 
of neural and cardiac pacemaker cells (23, 33, 39). For 
the techniques to be valid, the stimulus in the pkriodic 
train must be identical to the stimulus used in the single- 
pulse phase-resetting experiments. This criterion is gen- 
erally not easy to satisfy in respiratory entrainment 
studies, since the length of inflation pulses is often varied 
to m .aintain con stant CO2 

2) Nonlinear differenti 
(41) 

.a1 equations, such as the van 
der Pol oscillator, have been adopted as models for the 
central respiratory rhythm generator (2, 3, 15). The 
effects of mechanical ventilation are then represented by 
assuming a periodic forcing function as an input to the 
nonlinear oscillator. As we show in the APPENDIX, non- 
linear equati ons of the van der Pol type are closely related 
to the model developed here fo r the control of respiration. 

In section I we present a brief summary of experimen- 
tal results from a previous paper. In section II we present 
the mathematical model for respiratory phase locking 
and determine the parameters in the model. The prop- 
erties of the model, found fro m numerical simulation, 
are presented 
section IV. 

in section III. results are discussed in 
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I. EXPERIMENTAL RESULTS produces a variety of different patterns between the 
mechanical ventilator and the phrenic activity. Figure 1 
shows a trace from a typical experiment. The top line 
shows the volume delivered by the mechanical ventilator, 
and the bottom line shows the “integrated” phrenic ac- 
tivity. At first there is 19 phase locking (or entrainment) 
in which for each ventilator cycle there is one phrenic 
burst coming at the same phase of the ventilator cycle. 
After three cycles of I:1 entrainment, the ventilator was 
turned off. The phrenic bursts continue, even in the 

The following is a brief summary of experimental 
results that are reported in detail elsewhere (34, 35). 
Experiments were performed on anesthetized, paralyzed 
adult cats, mechanically ventilated with a modified Har- 
vard ventilator. End-tidal CO2 and O2 were maintained 
constant by modifying the breathing gas mixture at 
different ventilator volumes and frequencies. 

Altering the frequency and volume of the ventilator 
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0 

absence of periodic input. The phrenic bursts with the 
ventilator turned off were used to determine the intrinsic 
inspiratory time (Ti), and the intrinsic expiratory time 
(TE). Figure 2 shows a composite plot of the boundaries 
of the different phase-locking regions and traces of the 
patterns in the different regions. The boundaries be- 
tween the different regions vary from cat to cat, but the 
different phase-locking zones can generally be observed 
in each cat, provided the appropriate amplitude and 
volume of the ventilator are selected. 

In Figs. 3 and 4 we show several important features of 
I 1 

5 SEC 
phase locking in the 1:1 zone in one cat. Figure 3A shows 
the expiratory and inspiratory times (TE and TI, respec- 

FI(;. 1. Lung volume delivered by mechanical ventilator and corre- 
spending “integrated” phrenic activity found by passing phrenic signal 

tively) as measured from “integrated” phrenic activity. 

through filter with time const,ant of 100 ms (35). When ventilator is 
The values of TI and TE vary so that f = ~/(TI + TE), 

turned off, periodic phrenic bursts continue giving Tr’ = 1.0 s and TE where f is the ventilator frequency (35). In the 1:1 zone t n T * * I t . x . 
= 2.0 s. as the frequency and volume change there 1s a change in 
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FIG. 2. Composite showing sche- 
matic diagram of different phase-locking 
zones obtained experimentally and rep- 
resentative traces of dynamics in each 
zone, In each inset, upper trace is lung 
volume, and lower truce is “integrated” 
phrenic activity. Scale is the same for all 
insets. In regions between stable phase- 
locking zones (shaded regions) irregular 
dynamics are found. V,,,, maximal vol- 
ume; f, frequency. 
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atory time (TE) vs. inspiratory time (TI); B: phase angle of phrenic 
onset, as defined in text, as function of frequency (f). 

PIG. 3. Data from experimental studies (35) in 1:l phase-locking 
zone taken over several frequencies and volumes of mechanical venti- 
lator. Superposed lines show results from model (section III). A: expir- 
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FIG. 4. Data from experimental studies (35) in 1:l phase-locking 
zones. A: lung volume at. end of inspiration (VIE), as function of 
inspiratory time (TI). Solid curve is hyperbolic fit to data for f 3 fph, 
where fPh is intrinsic respiratory frequency (VIE = 37.6/T1 - 33.1). B: 

lung volume at 0.2 s before end of expiration (VEI), as function of 
expiratory time (TE) with f < fph. Solid line, linear fit to data (VEI = 
13.9 TE - 27.8). 

the phase of the phrenic onset relative to the ventilator Figure 3B shows the phase of onset of the phrenic burst 
cycle. The phase of the ventilator cycle is normalized to as f is varied. In Fig. 3 the superposed lines represent the 
:360”, if we take the start of the ventilator cycle as 0”. properties of the model (see section III). Figure 4A shows 
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the lung volume at the end of the inspiratory phase (VIE) 
as a function of Tr obtained as ventilator frequency and 
volume are varied. For ventilator frequencies higher than 
the intrinsic frequency, the data were fit to a hyperbola. 
Figure 4B shows the lung volume 0.2 s before the start 
of inspiration (VEI) for ventilator frequencies less than 
the intrinsic frequency. Figure 4, A and B, taken together 
with Fig. 1, is used to set the parameters in the theoretical 
model (see section II). Once these parameters are set and 
the ventilator profiles are known, the complete dynamics 
for all frequencies and amplitudes of the ventilator can 
be theoretically computed. We now describe the theoret- 
ical model and give its main properties. 

II. A MODEL FOR THE HERING-BREUER REFLEXES 

The model is shown schematically in Fig. 5, and the 
main equations of the model are given in Table 1. We 
first give a brief overview of the model and then discuss 
the assumptions underlying the timing of TI and TE. 

We assume that TI is determined by the time required 
for an increasing inspiratory activity, which is analogous 
to “integrated” phrenic activity, to reach an inspiratory 
off-switch threshold and that TE is determined by the 
time required for a decreasing expiratory activity to reach 

INSPIRATORY 
Off- SWITCH 

INSPIRATORY 
ACTIVITY 

THRESHOLD 

r 
EXPIRATORY 
ACTIVITY 

I I i THRESHOLD 

FIG. 5. Representation of model for respiratory phase locking with 
ventilator frequency of 135 min-l and ventilator volume of 30 ml, 
using equations shown in Table 1 (intrinsic respiratory frequency 
equals 20 min-‘). In absence of lung inflation, inspiratory on-switch 
and off-switch thresholds would be constant as indicated by dashed 
li~,s. Lung inflation (lower trace) decreases thresholds, thereby giving 
Hering-Breuer reflexes. Times t 0, tl, and t2 correspond to notation in 
text and Table 1. 

a second lower threshold, the inspiratory on-switch 
threshold (Fig. 5) (3, 4, 7, 10, 24, 27,36). The modulation 
of the thresholds leads to the Hering-Breuer reflexes. 
Starting with inspiratory activity equal to zero at any 
phase of the mechanical ventilator cycle, the model can 
be simulated on a digital computer, iteratively determin- 
ing the subsequent durations of each inspiratory and 
expiratory phase. In contrast to a spontaneously breath- 
ing animal, in which lung inflation is coincident with 
phrenic (inspiratory) activity, in this model and in the 
experiments, the phase of inspiratory activity with re- 
spect to the ventilator cycle depends on the frequency 
and volume of the ventilator. 

Timing of inspiration. As a dynamical model for the 
timing of inspiration we shall follow assumptions made 
by previous workers in which the termination of inspi- 
ration occurs by an “off-switch” mechanism (3, 4, 7, 10, 
24, 27, 36). During the course of inspiration we assume 
that there is a centrally generated inspiratory activity 
I(t), which increases linearly with time and is abruptly 
and discontinuously terminated on reaching a threshold 
01(t). There are two components of O,(t). The first is a 
steady-state component kI, associated with the long-term 
control of inspiratory cutoff by parameters such as CO, 
partial pressure (Pco~), temperature, and the level of 
anesthesia. The second is a phasic component, fI(t), 
associated with the breath-by-breath control of inspira- 
tory cutoff and originating from vagally mediated feed- 
back due to periodic mechanical ventilation 

fl (t) I = 
h - w (1) 

If t = to represents the onset of inspiration and I(tO) 
represents the level of inspiratory activity at t = to, then 

I(t) = I( t()) + cq(t - to) (2) 

where GUI is a positive constant. Inspiration is terminated 
when I(t) = h+(t), or 

kI = I(t) + fIW (3) 

The above formulation is supported by previous work 
which suggests that an intrinsically generated central 
inspiratory activity and the pulmonary stretch receptor 
activity combine to cause the sudden activation of an 
inspiratory off-switch mechanism, on reaching a certain 
critical threshold (4). 

In the following we assume that fr(t) is given by 

f (t) 
W(t) 

I = 
1 + u%/hww 

(4) 

where /$ is a constant. With this relation there is a 
nonlinear decrease of the inspiratory off-switch thresh- 

TABLE 1. Summary of model 
- 

Functions 
-- -.. 

.-.- -- ----~-- .------- ---~_-_ _~., ~. ____._ - --. -~ 
Equation 

Inspiratory activity (Ey. 2) 
-.. --~ .-.- ._ 

Expiratory activity (Ey. 7) 
Delay time 
Inspiratory off-switch threshold (Qs. I and 4) 

_~- --.- 

Parameter Values 

-- _- 

~ -~. _--. -- - ~----- -. - 
I(t) = I(h) + ar(t - to) LYI = 1.0 s-’ 

Et0 = E(rl) - a& - tl) UE = 0.56 s-l 
6 = 0.20 s 

III(t) = kr - 
PIW kr = 1.0; PI = 0.03 ml-’ 

1 + 6%/mw 

Inspiratory on-switch threshold (Eqs. 9 and 12) - _--- _ .---__ ~ _-._ -. .~ e,(t) = kE - PEV(t) -.~-- kE = 0.0; flE = 0.040 ml-’ ..-- -- -~. ___ -- 
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old as volume increases so that the threshold (Eq. I) which lung volume manipulations during the last 30% of 
never becomes negative. As well, this particular func- the expiratory phase have little effect on the duration of 
tional form for fr( t) gives a hyperbolic relationship be- expiration (27). Thus the expiratory phase is terminated 
tween VIE and TI for high ventilation frequencies in the at t = tfL + 6 with E(t2 + 6) = E(t2) and TE = (tz - tJ + 
1:l zone. 6. Then, from Eqs. 2 and 7 we obtain 

To derive the VIE-TI relationship, let t = t1 represent 
the time at which inspiration is terminated. Then, from W2) = I( to) + aI( tl - to) - a&2 - h) (10) 

&s. 2-4 we obtain If we replace (tl - to) with TI and (t2 - tl) with (TE - 6) 

I(&)) + cuI(t] - to) = kl - 
W(h) 

and note that in 19 phase locking E(t,) = I(tJ, we obtain 

1 + (Wk,)V(t,) 
(5) the linear relation 

After rearranging terms and replacing V( tl) and (tl - to) TE a1 TI + 6 =- (11) 
with the equivalent expressions VIE and TI, respectively, 0 aE 

we obtain The phasic component of the inspiratory on-switch 

(VIE + $jjTI + =\ = + 
threshold associated with the timing of expiration, fE(t), 

(6) 
\ PI/ \ GUI / w-h 

is assumed to be proportional to lung volume V(t), so - 

that 

(12) 

, From Eqs. 7, 

Although it is generally agreed that the end-inspiratory 
volume-T1 relationship is a monotonically decreasing 

fE(t) = @EV(t) 

curve, there is considerable- controversy concerning the where & is a constant of proportionality, 

details of its shape (4, 7, 14, 22). The parametrization in 97 and 123 with t = tz 
this paper facilitates computations, but other choices are 
possible. In 1:l phase locking at high frequencies, when 

E(t,) - a& - tl) = kE - PEV (t 1 2 (13) 

the inspiratory inhibitory reflexes are important, I(tJ 1: If we replace (t2 - h) With (TE - 6), Call VEI = v@2), 

0 and Eq. 6 is a hyperbola in agreement with Clark and and rearrange terms, Eq. 13 yields CI 
von Euler (7). 

The preceding analysis for the timing of inspiration 
accounts for the observation that lung inflations that 
occur during the inspiratory phase tend to shorten the 
duration of inspiration. In the present model we have 
assumed that the phasic component associated with the 
termination of’ inspiration is a function of the instanta- 
neous lung volume. The timing of inspiration depends 
on other parameters such as inflation flow rate and 
waveform, pressure, and integrative central signal proc- 
essing of afferent input (11, 12, 14, 27, 28, 31, 42). The 
present assumptions are thus approximations. 

Timing of expiration. Although it is known that the 
duration of the expiratory phase is influenced by a variety 
of cent.ral and peripheral factors, the underlying mecha- 
nisms are not well understood (27, 43). It has been 
proposed (3, 4, 7, 10, 24, 27, 36) that expiration is timed 
by a central decaying expiratory activity, which we call 
E(t). Assume that at end inspiration E(t,) = I(tl) and 
that E(t) decays linearly with time, so that 

E(t) = E(t,) - cyE( t - tl) (7) 

where tiE is a constant. Activity E(t) ceases its decay on 
reaching a threshold BE(t). The assumptions we make 
with respect to A&t) follow closely those described for 
OI(f). Thus &(t) consists of a steady-state component kE, 
which is modulated by a phasic component fE(t), so that 

flE(t) = h? - fE(t) (8) 

Expiratory activity reaches the threshold when E(t) = 
W,(t), or A 

E(t) - - k E - fdt) (9) 

Let t = t2 represent the time when E(t) = 633. we also 

To determine tiE we will assume 6 = 0.2 s, which is in 
the range found by previous workers (27). From Eq. 13 
with E(t,) = 1.0, V(t2) = 0, and t2 - tl = TE - 6, we 
obtain 

assume a delay (6) as part of the expiratory phase. The 
inclusion of this delay is justified by experiments in 

VEI = 
k 

%TE+ E 
- tiE6 - E(tl) 

PE PE 
114) 

Determination of parameters of the model. The body of 
experimental data is large, and parameters are compar- 
atively few. Consequently the parameters can be set in 
different ways by selecting different subsets of the data. 
In the course of developing the model we have tried 
different methods of parameter determination. In gen- 
eral, parameters determined using different methods did 
not vary more than about lo-20%. Although we have not 
carried out a systematic study of the sensitivity of the 
model to parameter variation, we have performed several 
simulations of the model using different sets of parame- 
ters, These simulations showed that the main properties 
of the model, which we will describe below, are not 
sensitive to comparatively small (on the order of lo- 
20%) variations in the parameters of the model. 

For a given set of experimental conditions (constant 
blood gases, temperature, anesthesia), the threshold pa- 
rameters h1 and kE are expected to remain constant. We 
arbitrarily select the values kI = 1.0 and /zE = 0.0. 

With the ventilator shut off we measure Tf = 1.0 s and 
0 

TE = 2.0 s (Fig. 1). Since inspiration is timed by the 
linearly increasing inspiratory activity, from Eqs. 2 and 
3 we obtain 

1.0 
a1 = 0 = l*O s -1 

TI 
(15) 

1.0 
CYE=o- 

TE -c 
0.56 s-l (16) 
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Note that (~1, IYE, and 6 are also related through Eq. 11. 
The choice of parameters here does not agree with the 
values found by fitting Eq. 11 to the data in Fig. 3A. This 
discrepancy is discussed later. 

The parameters in the inspiratory off-switch threshold 
can be determined by fitting the VIE-TI data to the 
hiyperbola 

(VIE - V,)(TI - To) = c (17) 

A linear regression of VIE vs, ~/(TI - To) was performed 
for different valuk of T,. The best fit (r = 0.88) was 
obt.ained for To = 0, V. = -33.1 ml, and C = 37.6 ml s. 
As we have noted already, in the I:1 zone when the 
Hering-Breuer inspiratory inhibitory reflexes are impor- 
tant I( to) = 0, in agreement with the value To = 0 (see 
Ey. 6’). By equating corresponding terms in Eqs. 6 and 
17 we can now obtain two independent estimates for PI 

P 
k I 

I = -- V 
= 0.030 ml-l (18 a 

(I 

k P PI=----= 
4 

0.027 ml-l (18b 

Both estimates show close agreement. Numerical simu- 
lations were performed with PI = 0.030 ml? 

The parameters for the expiratory on-switch threshold 
can be determined by fitting the VEI-TE data to the line 

VEI =ATE+B (1% 

An excellent (r = 0.98) fit to the data was obtained for 
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A = 13.9 ml-s-’ and B = -27.8 ml. By equating corre- 
sponding terms in Eqs, 14 and 19 we can obtain two 
independent estimates for ,&, if we assume CYE = 0.56 s-l, 
k E = 0, 6 = 0.2 s, and E(tJ = 1.0 

A 
PE = - = 0.040 ml -1 (204 

CyE 

BE = 
kE - LY& - E(t,) 

B 
= 0.040 ml-’ (20b 

HI. PROPERTIES OF THE MODEL 

We now consider the properties of the model as a 
function of volume magnitude, V,,,, and frequency, f, of 
the periodic input V(t). The periodic volume input V(t), 
is approximated as a piecewise linear function interpo- 
lated from digitized measurements at 100 points of the 
mechanical ventilation cycle for V,,, = 30 ml and f = 30 
min? Periodic inputs with different values of V,,, and 
f were obtained by linear scaling of the digitized volume 
with V,,, = 30 ml and f = 30 min? The system was 
numerically simulated for approximately 200 combina- 
tions of V,,, and f in the range V,,, = 2 - 50 ml and f 
= 5 - 60 min-‘, using the parameters determined in 
section II. The usual circumstance was that a stable 
dynamics was reached after a number of iterations. 

The main results of the numerical simulations are 
contained in Fig. 6 (cf. Fig. 2). Although the volume 
threshold parameters in the 1:l region derived from Fig. 
4 were utilized in the simulations, these parameters also 

60 

FIG. 6. Composite showing schematic 
diagram of different phase-locking zones ob- 
tained from model and representative traces 
of dynamics in each zone. In each irzset, 
same format of Fig. 5 is used, but since 
ventilator volume trace is directly reflected 
in oscillating thresholds, it is not included. 
Scale is the same for all insets. Irregular 
dynamics between 3:2 and 21 zone was 
found when “noise” was added to model (see 
text). 

f (mid) 
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give a very good agreement wit,h the dynamics observed 
outside this region. In particular, the following corre- 
spondences are found: 1) the dominant phase-locking 
patterns are 112, l:l, 3:2, 2:1, and 39; 2) these patterns 
occur for characteristic values of V,,, and f in the model 
and experimental system; 3) high-amplitude inspiratory 
bursts are terminated at maximum threshold levels 
where the periodic volume input is approximately zero, 
whereas low-amplitude inspiratory bursts are terminated 
prematurely by the periodic volume input; and 4) the 
non-phase-locked dynamics at. low volumes found in the 
model system are similar to the dynamics found in the 
experimental system at low volumes. Such rhythms, in 
which there is a continued shifting of phase between the 
two rhythms are often called quasiperiodic (17). 

In addition to these correspondences between theory 
and experiment, there are also discrepancies. We briefly 
describe several of these discrepancies and comment on 
their possible origin. 

1) For inflation volumes above 10 ml, the model gen- 
erally does not. show irregular dynamics, whereas irreg- 
ular dynamics are often observed in the experimental 
system (35). One possible source of irregularities in the 
experiment is “noise” that may arise as a result of fluc- 
tuations of brain stem neural activity or in afferent input 
to the brain stem (17). One way to account for noise is 
to add small stochastic terms to the times at which the 
thresholds are reached and to iterate the system with 
these perturbed times (17). When this is carried out, 
irregular rhythms such as those observed in the experi- 
mental system are found. The irregular rhythm in Fig. 6 
lying between the 2:1 and 39 zones was generated with 
added noise in the model and is similar to the experi- 
mentally observed pattern (Fig. 2). In general, addition 
of noise gives zones of irregular dynamics between the 
major zones shown in Fig. 6 (17, 34). 

2) The theoretical model predicts many other phase- 
locking zones at volumes above 10 ml. These zones are 
not shown in Fig. 6, since they occupy comparatively 
small regions in the parameter space. Some of the pat- 
terns in these zones (4:3 and 5:2) have been observed on 
occasion in the experiment (34, 35), whereas other zones 
(e.g., 5:3, 4:2, and 11:9) have not been observed experi- 
mentally. One possible reason for nonobservation of 
theoretically predicted zones is that they will be de- 
stroyed by noise (17, 34). Some of these patterns may be 
observed if the appropriate regions of parameter space 
are explored sufficiently carefully. For example, at com- 
paratively high volumes and frequencies (V,,, = 40, f = 
45), one expects to see a 4:2 rhythm, but extensive 
experimental studies were not. carried out in this region 
of parameter space. On theoretical grounds we expect 
that t.he “fine structure” of the phase-locking zones will 
be quite complex and consequently difficult to observe 
experimentally (17, 19, 29). 

3) In the 1:l zone, although both the model and ex- 
periment show linear relation between TE and TI (Fig. 
3A), there is not good quantitative agreement. A least- 
squares fit to the experimental data gives TE = 2.8Tr - 
0.72 (r = 0.96), whereas, if we use the parameters in 
Table 1, Eq. 11 gives TE = 1.8T1 + 0.2. Different choices 
of parameters could have been made to give better agree- 

ment with the data in Fig. 3A, but such manipulations 
were not systematically explored. The lack of agreement 
may well reflect deficiencies in the model. If E(t) were 
exponentially decreasing (in accord with Refs. 3, 4, 7, 10, 
24, and 27), we expect that this would lead to a prolon- 
gation of TE relative to TI at low ventilation frequencies 
(high values of TE and TI in Fig. 3A). As well, flow effects 
(11, 12, 14) should be important for high ventilation 
frequencies (low values of TI in Fig. 3A). Flow effects 
may also be playing a role in the discrepancies in the 
phase angle between theory and experiment at ventila- 
tion volumes of 40 ml at the higher frequencies (Fig. 3B). 

IV. DISCUSSION 

The simple mathematical model in section II gives 
good agreement with experiments on mechanical venti- 
lation of anesthetized, paralyzed cats. Although the 
mathematical model was based on previous experimental 
and theoretical studies, many modifications were made 
to simplify previous models to facilitate numerical com- 
putations and determination of parameters. The main 
novel feature of the model is the incorporation of two 
oscillating thresholds to represent the phasic afferent 
activity. Previous workers either used one oscillating 
threshold or incorporated the effects of lung inflation by 
a direct change in inspiratory and expiratory activities 
(3, 4, 7, 10, 24, 27, 36). Models with two oscillating 
thresholds can be shown to have a close correspondence 
with nonlinear equations based on the van der Pol oscil- 
lator (see APPENDIX). Models with two oscillating thresh- 
olds are also appropriate in other examples of periodic 
forcing of nonlinear oscillators (38). 

Modifications could be made to make the model more 
realistic. For example, such modifications would neces- 
sarily include the effects of flow and pressure on pul- 
monary afferent activity and the central processing of 
pulmonary afferent activity by appropriate filtering of 
vagal activity (11, 12, 14, 27, 28, 31, 42, 43). In the 
context of the mathematical model, such changes could 
be incorporated by changing the threshold functions, 
fdt) and f&)- 

There are three main reasons why we have not at- 
tempted to incorporate these additional factors. 1) There 
is not now general agreement about the relative impor- 
tance of these factors. 2) Inclusion of additional factors 
would enormously complicate the mathematical formu- 
lation. For example, models of central processing of vagal 
input in idealized situations alone incorporate four to six 
parameters (43). 3) Even if additional factors were in- 
cluded it is unlikely that they would change the main 
qualitative features of the model. As we have already 
noted, the properties of the model are quite insensitive 
to small parametric changes. 

Although there are not large qualitative differences 
with modifications of the model, some quantitative dif- 
ferences can be observed. For example, if the VIE-TI 
curve is fit to a straight line for f 2 fph one observes an 
overly strong inspiratory inhibitory reflex, and as a con- 
sequence I:1 entrainment in the model at high ventilator 
volumes occurs at higher frequencies than is actually 
observed experimentally. Also, by taking 6 (the delay 
time) to be zero, one observes a downward shift in the 
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FIti. 7. Model for interconnections between brain stem respiratory 
neurons and associated tiring activity patt,erns. Four pools of neurons 
I. IR, E, and EI correspond to inspiratory, inspiratory-expiratory, 
espirat ory, and expiratory-inspiratory pools, respectively, described by 
Cohen (8, 9). Each of these 4 pools is also assumed to receive tonic 
excitatory inputs (not shown) that will lead to tonic firing in absence 
of’ net work interact ions. Pulmonary afferents (PA) are activated during 
lung inflat ion, leading to Hering-Breuer reflexes. Format adopted from 
Kef’s, 21 and 26. 

phase angles in Fig. SB. 
We believe that the above model for the effects of 

pulmonarv af’f’erents on central respiratory activity does 
capture, albeit in a highly oversimplified way, salient 
aspects of the real physiological situation. Consequently 
it is reasonable to try to understand the connection 
between this model and more detailed models, based 
on the neurophysiology of respiratory rhythmogenesis. 
Since respiratory-related neural activity in the brain 
stem is not yet well understood, formulation of detailed 
models is necessarily speculative (19). The following 
model f’ur the respiratory oscillator is offered to give a 
qualitative picture of how the model we have presented 
might be generated by a neural network. 

In Fig. 7 we display a network model for respiratory 
rhythmogenesis. There are four pools of neurons, corre- 
sp~~ncling to the inspiratory (I), expiratory (E), and 
i)hase-spanning (IE and EI) neurons described by Cohen 
(8,9). There are inhibitorv synaptic connections between 
some of’t hese pools. Eachpool of neurons is also assumed 
t0 receive tonic excitat,ory input, for example, from Con- 
sensitive neurons, and may have excitatory inputs from 
other members of the same pool (6). The tonic input is 
sufficiently strong to result in firing in the absence of 
inhibitory input from ot.her neurons in the network. 
However, the presence of the inhibitory interactions lead 
to a cyclic firing pattern (Fig. 7). The time during which 
each neuronal pool fires above some critical firing fre- 
yuencv is indicated by a shaded bar. Note that the firing 
pattern corresponds to t,he schematic diagram in the 
article t)v Cohen (8, p. 17). This network was originally 
proposed as a model for controlling limb movements in 
brodela [ (26, 40); for detailed quantitative studies of this 
model, see (18, 21); for different network models for 
respiratory rhythmogenesis and reviews of earlier liter- 
ature, see (Ua, 16)j. 

The Hering-Breuer reflexes can be accounted for by 
assuming that the pulmonary afferents project to the IE 
1~01 (this has the same function as the I,, pool described 
in Kefs. S-10) by excitatory synapses. Consequently 
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excitation of the IE neurons leads to an inhibition of the 
I neurons leading to the Hering-Breuer inspiratory-in- 
hibitory reflex. Excitation of the IE neurons will also 
lead to a facilitation of expiration (Hering-Breuer expir- 
atory-promoting reflex), because the resulting inhibition 
of the I and EI pools will in turn lead to less inhibition 
of the E pools (i.e., there will be disinhibition of the E 
pool activity). Since the effects of lung inflation on 
expiration have to pass through three synapses and 
through two separate pathways, it is reasonable to expect 
that these effects will be more complex and show Ynte- 
gration” and time delays, compared with the effects of 
lung inflation on inspiratory timing (27, 43). 

The model depicted in Fig. 7 is an extension of the 
mechanism proposed by Salmoiraghai and Burns (6, 37) 
for respiratory rhythmogenesis. In both models there are 
mutually inhibitory interconnections between the I and 
E pools. Because of this common feature, some criticisms 
of the Salmoiraghai and Burns model are also applicable 
to the model in Fig. 7. Thus, as suggested by Merrill (30), 
the E and I pools might be further subdivided into 
functionally distinct classes. In the model in Fig. 7, phase 
switching occurs as a consequence of network interac- 
tions and does not require additional features such as 
pacemaker cells, fatigue, or accumulating refractoriness 
(9, 21). Differential equations that represent the neural 
model in Fig. 7 have been developed and display stable 
limit-cycle oscillations (18). Since these mathematical 
models employ thresholds it should be possible, by judi- 
cious choice of parameters, to bring the network model 
in Fig. 7 into at least rough correspondence with the 
models described in this paper. However, since analysis 
of the resulting equations, particularly under periodic 
forcing, is not easy, and the network model in Fig. 7 is 
speculative, further work along these lines has not been 
carried out. 

Although respiratory entrainment by a mechanical 
ventilator is a complex phenomenon, the mathematical 
model for the Hering-Breuer reflexes presented here 
gives good agreement with the experiment. Thus the 
analysis of phase-locking data can be used to derive data 
about the Hering-Breuer reflexes. Since mechanical ven- 
tilation of humans is often performed clinically, analysis 
of respiratory entrainment in humans will provide a new 
technique for analysis of human Hering-Breuer reflexes. 
Such information should be of use in the efficient utili- 
zation of mechanical ventilators in the clinic. 

APPENDIX 

Here we explicitly demonstrate that a transformation of the van der 
Pol equations can give a system of equations that has a close corre- 
spondence with the theoretical model derived in section II. This corre- 
spondence is of interest, since some authors have considered periodi- 
cally forced van der Pol equations (appropriately modified) as a model 
for respiratory rhythmogenesis and phase locking (2, 3, 15). The dis- 
cussion is directed toward mathematically inclined readers and assumes 
a familiarity with standard methods of phase plane analysis of the van 
der Pol equation (25). 

The periodically forced van der Pol equation is generally written 
(29) 

dY 

dt= 
- ET” + p(t) (Ala) 
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where x and Y are the state variables, p(l) is a periodic function of time 
(the forcing function), E is a positive constant which is often taken to 
be small, and a(x) is a nonlinear function [a(x) = x3/3 - SC in the case 
initially considered by van der Poll. If we assume 

dytt) =- p(l) & Wd 

u(t) = y(t) - y(t) tAW 

fi:y. Al can be transformed to yield 

du 

dt = --tX 

(A3b) 

To draw the analogy with the theoretical model in section II, we will 
associate the variable u in Eq. A2 with both the inspiratory and 
expiratory activities. Since these activities are linear functions of time 
in the model, but are nonlinear in EQ. AZ, modifications are needed. 
Define the Heaviside function 

H(x) = 0, xc0 

H(x) = 1, osx 

and the piecewise linear funct,ion @&x) 

x 3 
for 

-x 1 
&L(X) = ~ + - 

2 2 
for 

n 1 
@‘pL(X) = - - - 

2 2 
for 

Now consider the transformed equations 

du 
- = cu[l - 2H(x)] 
dt 

x c -1 

-1SxGl 

X=4 

WI 

The (u, SC) phase plane for Eq. A6 with y(t) = 0 is shown in Fig. 8A. 
The heavy lines give the piecewise linear function in Ey. A5. In the 
limit of small f and with q(t) = 0 there is a slow rise along the left- 
hand branch, a rapid shift to the right-hand branch initiated when u 
= 1, a slow decline following the right-hand branch to u = 0, and then 
a rapid shift to the left-hand branch at u = 0 (Fig. $A). By taking c 
sufficiently close to zero, the time spent on the fast parts of the cycle 
(dashed lines in Fig. 8A) can be made arbitrarily small. In this case the 
plot of u as a function of time is given in Fig. 8B for CY = 1. 

Periodic forcing in Eq. A6 can now be given a simple geometric 
interpretation. Assume q(t) = 0.3 sin ht. When du/dt > 0, switching 
from the left-hand branch to the right-hand branch is initiated when 
u(t) = 1 + 0.3 sin Zrt, and when du/dt < 0, the switching from the 
right-hand branch to the left-hand branch is initiated when u(t) = 0.3 
sin 2rt. Thus for Eq. A6 there is a linear rising and falling to the 
oscillating “thresholds” (Fig. SC). To complete the correspondence with 
the model in section II it is necessary to incorporate I) different rates 
of’ rise and fall of u(t) and 2) different threshold switching functions. 
By manipulating the Heaviside function, different functions can be 
taken in the left- and right-half planes of Fig. 8A. Consider the 
nonlinear equation 

dx 1 --- 
dt - t 

b - %dd - f-r(t) + [fdt) - f&)lH(di (A 7N 

where (~1, CYE, fi(t), and f&) are as defined in section 11 (with kr = 1 and 
kE = 0.0) and 0 < f < 1. In the left-hand plane u increases linearly 

.- ~ 
0 0.5 1.0 1.5 2.0 2.5 3,O 

time 

0 0.5 1.0 1.5 2.0 2.5 3.0 

time 
FIG 8. A: phase plane representation of oscillator given in Eq. A6. 

Piecewise linear function (Eq. A5) is represented by heaLy lines. Arrom 
show cycle when 0 < t << 1. In this limit, dashed lines represent fast 
transitions between different branches of piecewise linear function. R: 
dynamics in Eq, A6 for q(t) = 0 and N = 1. There is an oscillation with 
a period of 2 time units. C: dynamics in Eq. A6 for q(t) = 0.3 sin 2nt 
and LY = 1. There is I:1 entrainment, even though intrinsic frequency 
of oscillator is one-half the frequency of periodic forcing. 

with a slope ti1. Thus u in the left-hand plane corresponds to I(t). There 
is a rapid switch to the right-hand branch of Eq. A5 which is initiated 
when E9. 3 is satisfied. In the right-half plane, u(t) decreases with a 
slope CYE and corresponds to E(t). A switch to the left-hand branch of 
Eg. A5 is initiated when Ey. 9 holds. The only parameter not included 
in the nonlinear model is the delay time 6, which in the limit-cycle 
model corresponds to the time it takes to cross from the right-hand 
branch to the left-hand branch of Eq. AS. This time will be a short but 
finite time for nonzero values of c. In the limit-cycle model, note, 
however, that there are equivalent delays between the inspiratory and 
expiratory phases and between the expiratory and inspiratory phases. 
Since this is not the case in the model in section II, there is close but 
not exact correspondence between Eq. A7 and the model in section II. 
In general, for finite values of f there are also differences in the 
topological properties of the limit-cycle model and the discrete model 
in section II. These differences are reflected in the effects of single 
stimuli in resetting the rhythm (20). 
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