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A circle is divided into two regions, a black one and a white one. Successive iterates of an invertible nonlinear circle map 
generate a symbolic string indicating whether each iterate is in the black or white region. A number  of remarkable properties 
of the symbolic sequences are described. These properties were previously described for a linear circle map corresponding to a 
rigid rotation in the "gaps and steps" problem. These results have direct application to a cardiac arrhythmia, parasystole, that 
results from the competition between two pacemakers in the heart, one in the sinus mode and the other in the ventricles. The 
theoretical results are directly applicable to a clinical case of a young man who had frequent extra heartbeats. 

1. Introduction 

Complex rhythms are found in diverse naturally 
occurring and experimental systems. In recent 
years there has been intensive interest in develop- 
ing theoretical tools for understanding the origin 
of these rhythms, and explaining their basis using 
mathematical techniques developed for the analy- 
sis of nonlinear systems. One particular area of 
interest has been systems that can be described by 
nonlinear maps which map the circle into itself f :  
S a---, S a. Circle maps have proved useful in the 
analysis of dynamics in a large number of physical 
and biological systems [1]. 

Our own interest in the properties of circle 
maps derives from their utility in describing dy- 
namics resulting from the periodic stimulation of 
cardiac oscillations with brief pulsatile stimuli. 
Under the assumption that the oscillation is a 
strongly attracting limit cycle that is rapidly 

reestablished on a time scale that is short relative 
to the interstimulus time interval, the effects of 
periodic stimulation of the oscillation are de- 
scribed by a circle map [2-  4]. The circle map can 
be experimentally measured by delivering single 
pulses to the oscillation at various phases of the 
cycle and measuring the resulting phase resetting. 
The experimentally measured circle map can then 
be used to compute the effects of periodic stimula- 
tion. Extensive experimental studies of an in vitro 
experimental preparation have shown good agree- 
ment with theoretical computations [2-4]. 

One of the major motivations for studying the 
properties of periodically stimulated cardiac oscil- 
lations in vitro is that they provide a model for 
some of the abnormal rhythms (arrhythmias) that 
are known to occur in human hearts. In particular, 
there are rhythms which arise from the competi- 
tion between two pacemakers. The normal rhythm 
is still generated by the normal pacemaker in the 
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Fig. 1. Electrocardiogram (ECG) from a patient with parasystole. The waveforms are labelled E (ectopic beat), S (sinus beat), F 
(fusion beat). Below the trace is a schematic representation of the model for parasystole. The left edge of each box represents a sinus 
pacemaker discharge. The arrows indicate ectopic pacemaker firings. Hatched boxes represent the refractory period (0): sinus (t s) 
and ectopic ( t E) periods are indicated. Filled arrows are ectopic beats falling outside the refractory period. The following sinus beats 
(dotted boxes) are blocked. Note the correspondence between the simulated rhythm and the ECG. Each box is 200 ms giving 
t E = 1300 ms and t s = 790 ms. 

right atrium, but in addition, there is a second 
rhythm generated by an abnormal pacemaker 
located in the ventricles. The normal pacemaker 
is called the sinus pacemaker and the abnormal 
pacemaker is called the ectopic pacemaker. The 
two pacemakers compete for the control of the 
heart and result in an abnormal rhythm called 
ventricular parasystole [5]. An example of an elec- 
trocardiogram displaying this rhythm is shown in 
fig. 1. The sinus beats, labelled S, and the ectopic 
beats, labelled E, are identifiable by their mor- 
phology. A schematic interpretation of this rhythm 
is shown below the trace. The periods of the sinus 
and ectopic pacemaker are approximately con- 
stant and are designated t s and t E, respectively. 
Following each sinus beat is a period, called the 
refractory time designated 0, during which an 
ectopic beat is blocked (this means it is not ob- 
served). However, if the ectopic beat falls outside 
of this period it is observed, but the next sinus 
beat is blocked. The resulting delay is called a 
compensatory pause. When the sinus and ectopic 
beats fall at the same time there is a beat of 
different morphology, called a fusion beat (labelled 

F). 
The situation in which the two pacemakers have 

absolutely constant frequencies and do not phase 
reset each other (this is called pure parasystole) 
has been considered recently [6]. In a more realis- 

tic situation, there can be phase resetting of the 
ectopic pacemaker by the sinus rhythm and the 
resulting rhythms have been termed modulated 
parasystole [7-11]. There is a close connection 
between the mechanism of modulated parasystole 
and the in vitro experiments of periodically stimu- 
lated heart cells; the sinus pacemaker is analogous 
to the electronic stimulator and the ectopic focus 
is analogous to the heart cells. This analogy ne- 
glects the conduction of excitation through the 
myocardium, but such factors can be included as a 
refinement of the basic model [11]. Theoretical 
tools that are useful in the analysis of the periodi- 
cally stimulated heart cells are likewise useful in 
the analysis of rhythms observed in intact human 
hearts that display parasystolic rhythms. 

Our purpose in what follows is to develop theo- 
retical methods to study ventricular parasystole, 
and to apply the results to analyze this rhythm in 
a patient. Our consideration of actual clinical data 
leads to examination of several novel aspects of 
the dynamics of circle maps. 

In section 2 we consider an abstract problem 
concerning successive iterates of an invertible cir- 
cle map. The problem is to divide the circle into 
two regions, labelled 1 and 0, and to describe the 
symbolic sequences of l 's  and O's generated by 
iteration. This problem is a generalization of a 
classical problem in number theory [12]. In section 
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3 we derive the theoretical model for parasystole 
(pure and modulated) and show its correspon- 
dence to the class of maps discussed in section 2. 
Section 4 gives a theoretical analysis of ventricular 

parasystole in a patient. Several of the theoretical 
predictions about  the properties of parasystole can 
be observed. The purpose of this example is to 

illustrate to physically minded readers unequivo- 
cal evidence that a circle map can be an appropri- 
ate theoretical model for clinical data in a patient. 
Additional clinical examples and a discussion of 
modulated parasystole from a physiological stand- 
point is being published elsewhere [11]. A detailed 
case study of the example in section 4 can be 
found in ref. [13]. 

° 

Fig. 2. Iterates of a circle map along a circle. 01 is the initial 
phase located in the shaded area between 0 and a (indicated 
by arrows). We assign the symbol 1 to iterates in the shaded 
interval and 0 to the other iterates. The sequence of iterates 
shown here gives rise to the symbolic sequence 101001000010. 

2. The  gap problem for nonlinear circle maps 

2.1. Definitions 

Consider the continuous map F: R--* R with 
the symmetry F(t + 1) = F(t) + 1 for all t ~ R. By 
considering f =  F ( m o d l )  we restrict the function 
F to the circle S 1 and thus define a map f :  
$ 1 ~  S 1. f is called a circle map, and from the 
symmetry condition it is of topological degree 1 
[14, 15]. We adopt the notation 

tj = F J( t 0), 

q,j = tj (mod 1). 

For  most of this paper we assume that f is a 
monotonical ly increasing map (an order-preserv- 
ing homeomorphism).  For this case, the rotation 
number  can be defined 

p ( f , t )=  lim F " ( t ) - t  
t l  ~ OC n 

The limit exists and is independent of t. The 
rotation number  is rational if and only if f pos- 
sesses a periodic orbit [14, p. 102]. If the rotation 
number  is irrational, the dynamics are called 

quasiperiodic. In this case, provided the function f 
is of class C 2 the orbit is dense on the unit circle, 
and the map is topologically conjugate to a rigid 
rotation with irrational rotation number [14, p. 
105]. For convenience, we call such a map a type 
Q (for quasiperiodic) map. 

Consider a circle which is separated into two 

regions labelled 1 and 0. Start at some initial 
condition and consider the sequence ~0, 4~1, q~2 . . . . .  
Associated with this sequence is the symbolic rep- 

resentation a0, al, a2 , . . .  , where a i is either 1 or 
0 depending on the region in which each iterate 
falls [16]. In fig. 2, the shaded region corresponds 
to 1 and the white region to 0. Thus, the orbit in 
fig. 2 corresponds to the symbolic sequence 
101001000010. We now start at the first 1 in the 
sequence and count the number of iterates until 
the next 1 appears. This process is continued, and 
used to generate a new sequence of integers called 
the reduced sequence. For example, the reduced 

sequence is 2, 3, 5 . . . .  for the above example. 

The reduced sequence contains a number of 
remarkable properties. These properties have been 
previously recognized for maps that correspond to 
rigid rotations in what is known as the gap prob- 
lem [6, 12], but never to our knowledge for the 
more general class of monotonically increasing 
nonlinear C 2 maps of the circle and for order-pre- 
serving maps with periodic orbits. 
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2.2. The gap problem for type Q maps and order- 
preser~;ing circle maps with a periodic orbit 

Given a type Q map or an order-preserving map 

with a periodic orbit the following properties hold 
for the reduced sequence: 

Rule 1. There are at most  three integers in the 
reduced sequence. 

Rule 2. Calling these integers m, n and p in 

increasing order  we have p = m + n. 

Rule 3. At least one of the values of m or n is 

odd.  

Rule 4. One, and only one of the values of m, n 

or p can succeed itself in the sequence. 

These rules hold for both types of maps. However, 

with type Q maps the usual circumstance is that 
there are three integers in the reduced sequence, 

whereas with maps with periodic orbits, there are 

of ten either 1 or 2 values in the reduced sequence. 
We now demonstra te  the rules given above for 

type Q maps  (section 2.2.1) and for maps with 

periodic orbits (section 2.2.2). In section 2.2.3, we 

give a method to identify the integer m, n and p 

for dynamics  on a periodic orbit. All three sec- 

tions are technical, and readers who are interested 

only in parasystole should skip to section 3. 

(a) 

(b) 

0 r s c~ 
I i ~ j 

n i 
fn(s) fn(cz) fm(O) fm(r )  

0 b r a 
I i ~ I 

" - -  ,,11/ 

fro(O) f"(~) fro(r) 

Fig. 3. First return map of the interval [0, a) into itself under 
the action of a type Q m a p / .  (a) In general, there are three 
integers, m, n, and p, corresponding to the lowest number of 
iterates needed to map three contiguous regions in the interval 
back into [0, c~). (b) Illustration of the proof that the lowest 
iterate of a to return into the interval falls betwecn 0 and 
fro(0). If it does not fall in this interval, then we can find an 
earlier iterate of c~, h. which is in the desired interval. See the 
text. 

invertible, n :~ m. Suppose n > m. Then b = 

f . . . .  (a) ,  which cannot  be because n is the small- 

est integer such that 0 _ < f " ( a ) <  c~. Similarly, we 
cannot  have m > n. Therefore, the situation must 

be as depicted in fig. 3a, where s = f - n ( 0 ) .  

Let p be the smallest integer such that for any 

u in [r, s), f P ( u )  E [0, 0~). From fig. 3a, we have 

2.2.1. Demonstration of the rules for type Q maps 
In order to derive the rules listed above for type 

Q maps,  it is useful to consider the construct ion 
shown in fig. 3 [6]. Let c~ be a number  between 0 

and 1. The interval [0, c~) represents the part of  the 

circle associated with the symbol 1, and the interval 
[c~, 1) represents the part  of the circle associated 

with the symbol  0. Let f ' (O)  be the lowest iterate 

of  0 that lies in [0, c~). Since each orbit is dense, we 
are guaranteed that such an iterate will exist. Let 
r = f  m(~). Let n be the lowest iterate of c~ that 

lies in [0, c~). In general, this iterate will fall either 
in [0, fro(O)) or [f" ' (0) ,  a) as shown by figs. 3a and 

3b respectively. Assume first that it lies in 

[ f " ( 0 ) ,  c~). We show that this leads to a 
contradict ion.  Since the interval [0, r)  maps to 

[ f ' ( 0 ) , c~ ) ,  there must be a point b such that 
f ' ; ( b )  = f " ( c Q .  Since the map is one-to-one 

0 =/"(s) ,  

f-'(0) =fp(s). 

Substituting for 0, we find that 

f m + n ( S )  = f P ( s ) .  

Since f is invertible and has no periodic point, 

this implies that 

p = m + n .  

This argument  demonstrates rules 1 and 2. We 

necessarily have f (0)  ~ [c~, 1), and thus m > 1. 
To derive rule 3, we show that if both values of 

m and n are even, some property of the map f is 
violated. If m and n are even, then p is even since 
p = m + n. Consider a point  t ~ [0, a). If f q ( t )  C 
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[0, a),  q > 0, then q = El= 1Ci, where c i = m, n, or 
p. Since m, n, and p are even, then q is even, and 

f ( t )  e (a ,  1). Let v = f ( t ) .  Then, f rom above, there 
are no even iterates, f2 j (  
we let g ( v ) = f 2 ( v ) ,  then 
[0, a).  But since f is C 2 
n u m b e r  and  g = f 2  g is 
number ,  and  the iterates 
circle. This  contradic t ion 
of  m or n is odd.  

v), that  fall in [0, a). If  
no iterate gJ(v) falls in 
with irrational rotat ion 
also C 2 with irrational 

gqb)  are dense on the 
proves that  at least one 

Rule  4 can be derived by inspection of fig. 3a. 
F r o m  the cons t ruc t ion  of the first return map  on 

[0, a),  one and only one of the three zones 
[0, r),[r, s),[s, a) can overlap its image. 

2.2.2. Demonstration of the rules for periodic orbits 
We now show that  the four rules stated at the 

beginning  of  section 2.2 also hold for a map  f 
when  its ro ta t ion  number  is rational,  i.e., when a 
per iodic  cycle arises. We consider the dynamics  on 
the per iodic  orbit.  This is the asymptot ic  behavior  
if the cycle is stable. The argument  is based on the 
cons t ruc t ion  in fig. 4. 

A per iodic  orbit  of  length N occurs when, for 
some 4)o e [0, 1), we have 

fN(  o0) = 0o, 

(a) 

(b) 

o + o  ~,, +d ~ , :~o  
I "  • I 

f n(~o) fp(~e) fm(~O):,~c 

o ,#o:4,, +,. ' :+, ,#o 
I " ° * ° I 

I "  J 
f.%o) f.%o):~o 

Fig. 4. First return map of the interval [0, a) into itself for the 
case of periodic orbit. The dots represent the location of the 
phases of the periodic orbit. This example corresponds to a 
rational rotation number  of 7/11 with 5 iterates in the interval 
[0, et) in (a) and 4 iterates in the interval [0, a) in (b). In (a) 
m = 2 ,  n = l , p = 3  and in (b )  m = 2 ,  n = 3 .  

and 

f k ( ~ 0 )  ¢ q~ 0 for k =  1,2 . . . . .  N - 1 .  

In this case, we obtain  

FN( dpO) = M + q~o 

for some integer M and a rotat ion number  p = 
M / N .  We assume that O ~ [0, 1], i.e. M_< N. Let 
/2 be the set of  phases 4) within the periodic orbit  
of  length N ordered so that their magni tude in- 
c r e a s e s  f rom ~o t o  ~)N 1 : ~ 0  <, ~1 < . . .  < (j~u 1. 

Define the subsets ~21 = { G e / 2 :  G < a} and /20 

= ( G  e ~2: G > a }. The phases in £2 are indicated 
as small circles on the interval [0, a)  in fig. 4. 

Since f is order  preserving, we can symbolize its 
act ion on a phase  G by a " ro t a t ion"  through the 
e lements  of  f2. We then have 

f J( G ) = q,(i +jM)mod N (]) 

If  either of  the subsets ~'~1, Q0 contain no iterates 
of f ,  the symbolic  sequence will contain only O's 

and only l 's .  We assume that  there is at least one 
iterate in each subset. If  there exists only one 
iterate in/21, then the reduced sequence contains a 

single number ,  which is exactly the length of the 
periodic orbit,  N. Figs. 4a and 4b summarize  the 
cases when there are at least two iterates in /21. 
We use a nota t ion similar to the case of a type Q 
map.  

Let  fm(ep°)= qf be the smallest iterate of  4, o 
such that fm(~0)  ~ ~21. Such an iterate exists and 
@. ¢ q~0 since the iterates of  f will go through all 
the elements of ~2 before returning to q,0, and 
there are at least two elements of  f2 in ~21. Let 

q,r = f - , , ( q , ~ ) ,  where ~,~ < a < ,h "+1. Also, let 
f " ( q ~ )  be the smallest i terate of ,/," such that  
f,(q,a) ~ 01" Again this exists and f"(~") ¢ Oa. As 
for the type Q maps,  we can show that  f"(e~") 
(q~0 . . . . .  q~c-1}. Let p = f  ,,(q~0). Now if ~s = q,r+l 

then only two integers, m and n, are possible in 
the reduced sequence, fig. 4b. The condit ion for 
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having two integers in the reduced sequence is 

a + n M +  l = r n M  ( m o d N ) .  

If the above equality does not hold, there exists at 
least one integer d between r and s. Let fP be 
the lowest iterate of q5 d which falls in £21. From fig. 

4a, we have 

fm(qs°) = f P ( ~ ' ) .  

Substituting for ~0, we find that 

fm+,(qS, ) = fp(q~s). (2) 

Since the orbit  of any phase q~i ~ ~2a goes through 
all the phases in f21 before returning to ~, after N 

iterations, we have 

N = xm + y n  + zp, (3) 

for some positive integers x, y and z, and 

N > _ m + n + p ,  

so that eq. (2) implies 

p = m + n .  

The above arguments establish rules 1 and 2 for 
periodic dynamics. The arguments to derive rules 
3 and 4 are also similar to those used for the type 

Q maps, as we now establish. 
If  there are at least two integers, m and n, in 

the reduced sequence, one of them will be odd. If 
not, then all integers in the reduced sequence are 
even. In this case, N cannot be odd in view of eq. 
(3). So N is even. Since M and N are relatively 
prime, M is odd. Consider the iterates f2j+l(qs°). 
Clearly, none of these can be in 121. Since N is 
even, the odd iterates of ~0 constitute half the 
elements of ~21. If we write q,g =f2j+l(q,0)  then 
g =  M ( 2 j +  1)mod N, and g is odd. So the odd 
iterates of q~0 will cover all the phases q~g, g odd, 
in £2. But q~l~ ~21 since there are at least two 

elements of I2 in ~21. This contradiction shows 
that at least one of m or n is odd. 

As in the case of type Q maps, it is clear from 
fig. 4 that only one of the values in the reduced 
sequence can succeed itself. Hence we have shown 
that all four rules apply to the dynamics of f on a 
periodic orbit. 

2.2.3. Calculation of  the reduced sequence for 

periodic orbits 

We now show how to calculate the possible 
values of the three integers m, n and p for the 
periodic orbits described in section 2.2.2, as a 
function of the rotation number M / N  and the 
number, designated a + 1, of elements of ~2 in £21. 

Given the action of f on the elements of $2 as 
expressed in eq. (1), we wish to find the smallest 

integers m and n such that 

j N  < m M  < j N  + a, 

for some j ,  and 

iN < a + n M  < iN + a, 

for some i. These are the conditions that must be 

fulfilled for fm(~0) ~ 821, and f , ( ~ a )  ~ £21, 
respectively. Rearranging each inequation, we find, 

respectively, 

M j _< a (4a) 
O< N m m N  

and 

a M i 
- -  - - < 0 .  ( 4 b )  

nN < N n 

We will illustrate the solution of these inequa- 
5 tions for the rotation numbers 3 and 1l- 

It is useful to consider the Farey construction 
[17] shown in fig. 5. This construction is performed 
as follows. Starting with o and ~, the sums of 
the numerators and denominators of adjacent 
fractions are computed, and the resulting fraction, 
called the mediant, is inserted in the sequence. At 
the nth step, there are thus 2" + 1 fractions (not 
all of which are shown), and all rational numbers 
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Fig. 5. Farey tree showing the procedure used to obtain the 
Farey neighbors for a given rational number M / N .  Given two 
ancestors p / q  and r / s ,  the Farey number in the next genera- 
tion is given by the mediant ( p + r ) / ( q + s ) .  The tree is 
started using the two ancestors 0 /1  and 1/1. Only the ances- 
tors of 3/11 and 5/11 are shown. 

eventually appear  in the process. The parents of a 
rational number  are the two numbers of which it 
is the mediant  in the Farey construction. The 
ancestors of a rational number are the reunion of 
the parents, the parents of the parents, and so 
forth. For example, the ancestors of 3 are o, ~, 2, 
1 x, ½ and ~ and the ancestors of ~ are o, 1 3,~, 3, 
4 1 1 
9 ,  2 ,  1 " 

The following algorithm derives from the 
observation that the approximation to a rational 
number  provided by its ancestors [17] can be used 
to solve inequation (4). In our problem M / N  is 
the rational number  to be approximated using the 
ancestors for i /n or j /m .  To explicitly obtain the 
integers m and n, for fixed values of M and N, 
and a given value of a between 1 and N -  2, one 

proceeds as follows: 
(a) List all the ancestors of M/N; j / m  and i/n 

in inequation (4) are taken from this set of ances- 
tors; 

(b) The minimal value of m is obtained 
from the ancestor j / m  smaller than M / N  with 

minimal denominator  within a distance a/mN. 
The minimal value of n is obtained from the 
ances tor  i /n  greater than M / N  with a minimal 
denominator  within a distance a/nN. 

(c) In case the equality a + n M + l  =mM 
(mod N)  is not satisfied, there is a third integer, 
namely n + rn, in the reduced sequence. 

Table 1 gives an application of these rules for the 
rotation numbers M / l l ,  1 < M < 10. 

3. Pure and modulated parasystole 

We now draw the parallel between the results 
above concerning properties of nonlinear circle 
maps and parasystole. A schematic picture for the 
dynamics during pure parasystole is shown in fig. 
1. The correspondence between the model for pure 
parasystole and the gap problem (for a rigid rota- 
tion of the circle) is described in ref. [6]. We use a 
notation different from ref. [6] in order to apply 
the general results of section 2 to the model for 
modulated parasystole. Consider a circle such as 
in fig. 2, which represents the ectopic pacemaker 

Table 1 
The values of m, n and p to return to the interval [0, a) for rotation number M / l l ,  where the 
number of periodic points in [0, a] is equal to a + 1. Entries with two values correspond to the 
values m and n, respectively, and entries with three values to m, n and p, respectively. 

M a = l  a = 2  a = 3  a = 4  a = 5  a = 6  a = 7  a = 8  a - 9  

1 10, 1 9,1 8,1 7,1 6,1 5,1 4,1 3,1 2,1 
2 5, 6 5,1 4 ,1 ,5  4,1 3 ,1 ,4  3,1 2 ,1 ,3  2,1 1,2 
3 7, 4 3,4 3,1 3 ,1 ,4  2,1 2,1 2 ,1 ,3  1,1 1,2 
4 8, 3 5,3 2,3 2 ,1 ,3  2 ,1 ,3  2,1 1 ,1 ,2  1 ,1 ,2  1,2 
5 2, 9 2,7 2,5 2,3 2,1 1 ,1 ,2  1 ,1 ,2  1 ,1 ,2  1,2 
6 9, 2 7,2 5,2 3,2 1,2 1 ,1 ,2  1 ,1 ,2  1 ,1 ,2  1,2 
7 3, 8 3,5 3,2 1 ,2 ,3  1 ,2 ,3  1,2 1 ,1 ,2  1 ,1 ,2  1,2 
8 4, 7 4,3 1,3 1 ,3 ,4  1,2 1,2 1 ,2 ,3  1,1 1,2 
9 6, 5 1,5 1 ,4 ,5  1,4 1 ,3 ,4  1,3 1 ,2 ,3  1,2 1,2 

10 1,10 1,9 1,8 1,7 1,6 1,5 1,4 1,3 1,2 
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cycle. In pure parasystole, successive phases of the 
normal sinus beats can be obtained by a rigid 
rotation on that cycle. Let q,~ be the phase of a 
sinus beat in the ectopic cycle. Then the phase of 
the next sinus beat, q~,+l, is given by 

(~) +1 = (Di -F T (mod 1), 

where ~-= t s / t  E. 

Depending on the value of its phase within the 

ectopic cycle, a sinus beat can be placed in differ- 

ent contexts. If 0 ~ [0, T -  O / t E ) ,  then the sinus 
beat  is preceded by an ectopic beat. According to 
our assumptions, the sinus beat is blocked. This is 
the usual circumstance for ventricular ectopic beats 
(i.e. there is a compensatory pause [5]). In the 
event that the next sinus beat is not blocked, the 
rules derived here have to be modified by adding 
one sinus beat to the predicted NIB value. If 

~ [ . r -  O / t E ,  1), it is preceded by another sinus 

beat. We wish to consider the possibilities for the 
number  of intervening sinus beats (NIB) between 
ectopic beats. Clearly, the number of iterates be- 
tween two successive sinus beats preceded by an 

ectopic beat gives NIB + 1, since we include a 
sinus beat which is blocked. Hence, we consider 
the first return map within the interval [0, • -  
O / t E )  which corresponds to the gap problem in 

section 2. 

It is possible to develop a constructive method 
to determine the zones in the ( O / t  s, t E / t s )  param- 
eter space which lead to various values for the 
number of sinus beats between ectopic beats in 
the model for pure parasystole [6]. The results of 
the computations are shown in fig. 6. Each region 

is labelled by numbers which give the allowed 
values for the number of sinus beats between 
ectopic beats. The method used to construct fig. 6 

cannot be extended to more general models in- 
volving nonlinear circle maps. 

We now derive the finite difference equation for 
modulated parasystole. Call q~i the phase of the 
ith sinus beat in the ectopic cycle. Assume that 
the i th sinus beat acts to phase reset the ectopic 
cycle. Then we expect that the phase of the next 
sinus beat will be at the phase g(q'i) + -r where 

.c = t s / t  E. If q~i ~ [0, ~- - O / t E ) ,  the sinus beat is 
blocked and will not reset the ectopic pacemaker. 
In this case, the equation is similar to the equation 
for pure parasystole. If ~, ~ [~ - O / t  E, 1), there 

will be a shift in the phase of the sinus beat given 
by the function g(q~). Thus, the finite difference 
equations for modulated parasystole can be writ- 

ten 

~ i + 1  = dt)i q- T,  

~)i+1 = g (q~ i )  q- "7" ( m o d  1 ) ,  

0 <_ e~ i < .r - O / t  E, 

"r - O / t  E <_ dpi < 1. 

(5) 
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Fig. 6. Allowed numbers  of sinus beats between ectopic events, NIB, in the (O/t  s, tE / t s )  plane for pure parasystole. For each region 
the allowed values are indicated as three integers, separated by commas. To obtain the value for the reduced sequence, 1 should be 
added to each of the NIB values. Allowed values in the unlabelled regions can be determined from the construction described in ref. 
[6], which should be consulted for further details on how this diagram is derived. Reproduced from ref. [6]. 
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There are two special circumstances that are of 
interest. In the limit of no phase resetting, g(~)  = 
q~, and the model corresponds to a rigid rotation 
of the circle. If every sinus beat were effective in 
phase resetting the ectopic rhythm, the model 
would be identical to the model for periodically 
forced nonlinear oscillators in which there is rapid 
return to the cycle. However, if g ( e p ) = ~  for 
gO < r -  O/tE, there will be an exact correspon- 
dence between the dynamics in this case and the 
periodically forced case. In fact, the effects of a 

stimulus early in a cycle in cardiac tissue are often 
minimal, and therefore, there can be large similari- 
ties between the dynamics in both cases. In the 
event that g(~i)  :g qSi for qai ~ [0, r),  there will be 
discontinuities in the map of eq. (5). This case is 
not considered here. 

As in pure parasystole, the number of iterates 
required to return into the interval [0, r -  O/tE) 

minus one gives the number of sinus beats be- 
tween successive ectopic beats (NIB); the compen- 
satory pause accounts for the "minus one". The 
solution of the gap problem, presented in section 
2, provides the reduced sequence yielding the re- 
quired number  of iterates. Since the reference 
cycle is the ectopic rhythm, we directly get the 
possible NIB values: they are m -  1, n -  1, and, 

m + n - 1 = p  - 1. Depending on the dynamics of 
eq. (5), we can derive rules based on the properties 
of the reduced sequence. 

If  eq. (5) is a type Q map or an order-preserving 
map with a periodic orbit then the following rules 
apply to the allowed NIB values: 

Rule 1. There are at most three NIB values 
allowed. 

Rule 2. If  three NIB values are present, then the 
sum of the two smaller values is one less than the 
larger one. 

Rule 3. If  at least two NIB values are present, 
one and only one of these is odd. 

Rule 4. If  three NIB values are present, one and 
only one of these succeeds itself. 

In addition, given the value of the rotation num- 
ber, O = M / N ,  we can determine the possible NIB 

values and the dependence on the length of the 
refractory period 0. This is related to the construc- 
tion described in section 2.2.3 for the gap prob- 
lem. 

Rule 1 is immediate. Rule 2 follows from 
( m - 1 ) + ( n - 1 ) = m +  n - 2 = ( m + n - 1 ) - l =  

( p  - 1) - 1. To obtain rule 3, one must remember 
from the last section that at least one of m or n is 
odd, hence at least one of m - 1 or n - 1 is even. 
If both  are even, then p - 1 is odd; if one (hence 
only one) is odd, then p - 1 is even. In either case, 
rule 3 holds. Rule 4 follows directly from rule 4 
about  the reduced sequence in section 2. 

4. Case report 

Section 2 presented abstract results on the sym- 
bolic dynamics of circle maps and section 3 ap- 

plied these results to a mathematical model of a 
cardiac arrhythmia, parasystole. We now apply 
these results to analyze dynamics in a clinical 
record from which fig. 1 is derived. Based on the 

numerous clinical records we have examined it 
seems unlikely that the sinus and ectopic pace- 
makers can coexist without any influence of one 

upon the other. In this section we assume that 
there is such an independence of rhythms, i.e. that 
there is pure parasystole. In this clinical record, 
the modulation is so weak that we cannot accu- 
rately measure the phase resetting function, g(ep) 
in eq. (5). Theoretical predictions based on the 
assumption of constancy of the sinus and ectopic 
rhythms show close, but not perfect agreement 

with the data. The point of this example is not to 
validate the results for modulated parasystole, but 
to illustrate the quantitatively minded readers that 
the remarkable subtlety of complex arrhythmias 
can at least in some cases be partially accounted 
for by circle maps. Moreover, the theoretical tech- 
niques suggested by the mathematical analysis may 
be readily implemented in computer analysis of 
arrhythmias. We hope that systematic analyses of 
long records may be stimulated by this approach. 
There is an extensive cardiological literature that 
attempts to decipher the various patterns of ec- 
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topic activity, but  not explicitly in the context of 
circle maps  [8, 18]. 

We analyze a section of an electrocardiogram 

(ECG)  f rom a patient with frequent ectopy. The 

pat ient  had a ventricular abnormali ty  (a ventricu- 
lar septal defect) corrected at 5 years old and was 

n o n s y m p t o m a t i c  until a sudden fainting spell at 

the age of  16. A discussion of the possible connec- 

t ions between the parasystolic rhythm considered 

here, and the arrhythmia that caused the fainting 

spell (which was probably  ventricular tachycardia) 

as well as addit ional clinical details and rhythm 

strips are given in ref. [13]. The record analyzed 

here was obta ined at the start of an exercise test 
while the pat ient  was standing and was treated 

with propranolol .  Fig. 1 shows an excerpt f rom 

the record. Within  this short strip, we can identify 

the c o m m o n  criteria for pure parasystole [5], 

namely  (1) variable coupling intervals f rom the 

sinus to the ectopic beats; (2) interectopic inter- 

vals which are multiples of a common  denomina-  

tor; and (3) fusion beats. If  pure parasystole is 
indeed the cause of ectopic activity, we should 

also be able to verify the specific rules derived 

f rom the model  as well as other theoretical predic- 
tions. 

The  electrocardiographic record was digitized 

using a Hewle t t -Packa rd  (HP) Graphics Tablet  

hooked  up to an HP9816 Computer .  All the inter- 

vals between successive ventricular activations 

(ectopic (X) and normal  (R)) were digitized to an 

accuracy  of  _+ 20 ms. Fig. 7a shows a plot of  the 

R - R  interval length as a function of time for the 

record.  The  values oscillate slightly around an 

average sinus period of 700 ms. Fig. 7b gives the 

change  in the average ectopic period (fEavg) as a 
funct ion of  time, along with the NIB value for 
each interval. For  the cases in which the interec- 
topic intervals contain concealed beats, tE,v~ is 
est imated by dividing the X - X  interval by the 
presumed number  of  concealed beats plus one. 

The  N I B  values for each interectopic interval are 

also indicated on the plot. The values of tE,v~ 
obta ined  are fairly constant  around 1300 ms. The 
only exception is the long interval with NIB  = 1 

E 

n,- 

9 0 0  

8 0 0  

700  

'(a) 

i I i 

20 40 60 80 

1600 

1500 

1400 
(3 

E 1300 v 

o 

1200 

I100  

I 0 0 0  
0 

I I ' 

b) 4 ,1 , 4 4' 
4 2 I I I ' 

2 2 I 2 2 

0 

I A I 

20 40  60 80  

TIME (sec) 

Fig. 7. Clinical data from a patient with parasystole. (a) R R 
interval (interval between successive sinus beats) as a function 
of time for the ECG strip studied. (b) Average ectopic period 
TEavg as a function of time. When the interval between ectopic 
beats contains concealed ectopic discharges, the interectopic 
interval measured on the ECG is divided by the number of 
concealed discharges + 1. The NIB values for successive in- 
terectopic intervals are indicated. 

followed by a short X - X  with NIB = 0. A similar 
X - X  interval containing a single intervening sinus 

beat and exceeding 1500 ms in length was ob- 
served in an earlier record from this same patient. 

Using the values of t E = 1300 ms, t s = 790 ms 
and 0 = 430 ms, we simulate a parasystolic rhythm 
using the model for pure parasystole. Fig. 8a shows 
the cumulative histograms of the NIB  sequences 
for both  the clinical data and the model. We now 
consider the transition matrix, which gives the 

probabili ty of observing a given NIB value (suc- 
cessor) as a function of the preceding value. The 

rules for parasystole state that when three NIB 
values are present, one and only one of them can 
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Fig. 8. Compar ison between the clinical data and the model 
for pure parasystole using the parameters (estimated from the 
data) t E = 1300 ms, t s = 790 ms, and 0 = 430 ms. (a) Compari- 
son of the histograms giving the probabilities of observing a 
given NIB value in the records. The major values are 1, 2, and 
4 in both  cases. (b) Comparison between the transition matri- 
ces for the two cases. The matrices give the probability of 
observing a given NIB value, NIB(i + 1), given that the previ- 
ous value was NIB(i) .  

follow itself. The theoretical probabilities for each 
NIB value in the transition matrix are determined 
from tE, t s and 0. Fig. 8b shows the transition 
matrices for the ECG strip and the model. 

From the construction in fig. 3a, it follows that 
once the R - X  interval from the last sinus beat in 
an interectopic beat is known, the associated num- 
ber of sinus beats in the interectopic interval can 
be determined. Fig. 9 shows this relationship for 
the theory (solid lines) and the clinical data (dots). 
The appearance of three distinct regions for the 
theoretical values is related to the three contiguous 
regions in the first return map of fig. 3a. 

The data in figs. 7-9 show both correspon- 
dences and discrepancies with the theoretical 
model. Most striking are small fluctuations in both 
the ectopic and sinus cycle times, fig. 7. Thus, the 
basic assumption of pure parasystole of constant 
sinus and ectopic cycle lengths and constant re- 
fractory time is not satisfied. However, the fluctu- 
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Fig. 9. Relation between NIB values within an mterectopic 
interval and the R - X  interval between the last sinus beat and 
the following ectopic beat in the interval. The dots represent 
clinical observations, while the solid fines are the intervals 
observed in the model. 

ations are sufficiently small that many of the ma- 
jor features predicted theoretically are observed 
experimentally. Thus, the relative frequencies of 
the NIB values correspond quite closely in the 
theory and model. The transition probabilities of 
the NIB values in fig. 8b do not follow rule 4 since 
all three values 1, 2, and 4 succeed themselves in 
the clinical data. However, in both the clinical 
data and the model, 1 is usually followed by 2, 2 is 
usually followed by either 1 or 4, and 4 is usually 
followed by 2 or 4. Although the range of R - X  
intervals associated with each NIB value, fig. 9, 
are disjoint in the model but not the clinical data, 
there is a rough clustering of experimental points 
around the theoretically predicted values. We can- 
not explain the large (>  1500 ms) interectopic 
interval in fig. 7b. 

We believe that the differences between theory 
and clinical data in figs. 8 and 9 are most likely 
associated with the (random?) fluctuations in the 
t E, t s and 0 and small interactions between the 
sinus and ectopic pacemakers. Despite these dis- 
crepancies, we believe that the many points of 
agreement between the theory of parasystole, 
based on symbolic dynamics of circle maps, and 
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the clinical data, reveal the power of the theory to 
give insight into some of the subtle details of the 
cardiac arrhythmia. 

5. Conclusions 

The human heart is a complex anatomical struc- 
ture. The electrical and mechanical events that 
underly the heartbeat are still poorly understood 
from a perspective of basic electrophysiology and 
mechanics. The situation in normal individuals is 
made increasingly complex in individuals with 
structural or physiological abnormalities as in the 
clinical case considered here. Yet, the remarkable 
finding in this case is that the complex dynamics 
that are observed clinically can be partially under- 
stood based on the dynamics of one-dimensional, 
invertible circle maps. The particular aspect of the 
dynamics of circle maps that is considered here, 
viz. the symbolic sequences giving the itinerary of 
an orbit on a circle divided into two parts, has 
been previously considered in mathematics [12, 
16]. Yet, the extension of the early results from the 
"gaps and steps" problem to nonlinear circle maps 
is original to the best of our knowledge. It is 
almost magical that the complexities of the intact 
heart reduce to such a simple mathematical formu- 
lation, and a better understanding of the mathe- 
matics behind this is still needed. Various aspects 
of this problem, for example the geometry of the 
various zones in fig. 6 for the nonlinear maps, are 
still poorly understood [11]. 

The application of nonlinear mathematics to 
study cardiac dynamics reported here is not an 
isolated observation. Other types of cardiac ar- 
rhythmias involving abnormal conduction of car- 
diac excitation have also been treated using 
nonlinear mathematics [19, 20]. The theory has 
predictive value and can serve as a basis for fur- 
ther experimental and clinical studies. The current 
work weaves an additional thread in the fabric 
intertwining nonlinear mathematics and cardiac 
electrophysiology. 
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