

Fig. 2. Stroboscopic phenomena at various flash frequencies and flash durations, calculated for a moving square-wave grid with a ratio of white to black width equal to 7:1, Fig. 1(a), and a recurrence frequency of 50 Hz. Horizontal lines represent the most clearly observed resonances, with positive and negative images indicated by solid and dotted lines, respectively. The order of resonance, m/n, is indicated on the right of the graph. Circles represent high contrast transitions and bars represent low contrast transitions (see text). The left- and right-hand edges of the graph represent infinitesimally short on and off times, respectively, of the flash.

point, and a low contrast transition which is uniformly gray at the transition point. To visualize these transitions more clearly, it is helpful to consider the calculation of the illumination pattern in a simple case. For example, if the display consists of narrow bright bars of a dark background and the flash frequency satisfies the resonance condition, then, for very short flash durations, the graph of illumination versus position is a series of narrow trapezoids separated by wide regions of low illumination. As the flash duration is increased, the trapezoids widen. A high contrast transition occurs when the width of the trapezoids becomes equal to the width of the intervening dark regions, and a low contrast transition occurs if and when the trapezoids eventually overlap. At longer flash durations, a similar argument holds, and the two types of transitions occur alternately. These transitions for a typical experiment are indicated in Fig. 2. The predicted intensity patterns and transitions have been experimentally confirmed.

Acknowledgment

We thank Drs. G. Sherman and A. J. Devaney for helpful conversations. This research has been partially supported by Grant # DID71-04010-A02 from the National Science Foundation. The photography in Fig. 1 was done by Alan Knapp.

References

- H. E. Edgerton, Electronic Flash, Strobe (McGraw-Hill, New York, 1970).
- T. N. Cornsweet, Visual Perception (Academic Press, New York, 1971).
- M. Faraday, Journ. of the Roy. Inst. (London), 1, 205 (1831); Reprinted in: M. Faraday, Experimental Researches in Chemistry and Physics (Richard Taylor and William Francis, London, 1859), p. 291.
- H. von Helmholtz, Physiological Optics, II (Dover Press, New York, 1962).

3