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Symbolic dynamics offers a powerful technique to relate the structure and dynamics of complex networks.
We contrast the predictions of two methods of symbolic dynamics for the analysis of monotonic networks
suggested by models of genetic control systems.
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New methods for the analysis of biological networks are
leading to a rapid increase in our knowledge about the topol-
ogy and qualitative interactions between constituent compo-
nents. For example, recent progress has been made in iden-
tifying and analyzing the protein-DNA interactions that
control gene expression in yeast �1� and the network connec-
tions and interactions between neurons in rat brain �2�. How-
ever, a detailed quantitative determination and modeling of
the interactions is difficult to achieve. Methods are needed to
determine robust features of the dynamics that would be in-
sensitive to the fine details of the interactions over large
ranges of parameters. In particular symbolic dynamics �3�
provides a perspective for studying biological dynamics.
Several groups have presented symbolic methods to capture
qualitative aspects of biological interactions and dynamics
�4–8�.

The current Brief Report is motivated by a recent manu-
script that analyzes symbolic dynamics in feedback networks
with monotonic interactions �8�. Networks with monotonic
interactions are defined by the equations

ẋi = gi�x1,x2, . . . ,xn�, i = 1, . . . ,n , �1�

where ẋi is the time derivative of xi�t� and if gi depends on xj,
then sgn

�gi

�xj
� �+,−� is constant, where sgn is the algebraic

sign function. We say that j activates i if
�gi

�xj
is everywhere

positive; and j represses i if
�gi

�xj
is everywhere negative. In

one example, Pigolotti et al. �8� considered a network de-
picted in Fig. 1�a� in which the dynamics were dominated by
the oscillation in the negative feedback loop present when
the interaction 3→2 is eliminated. In what follows, we com-
pare the “derivative discretization” method of symbolic dy-
namics in Ref. �8� with an alternative “threshold discretiza-
tion” method �4� by analyzing monotone networks consistent
with Fig. 1�a�. Although the derivative discretization can be
used to place restrictions on transitions for the entire class of
monotone networks consistent with Fig. 1�a�, for monotone
systems with switchlike nonlinearities, the threshold discreti-
zation enables a more precise prediction of dynamics, and

can be used to predict the existence of limit cycle oscillations
and fixed points.

The derivative discretization dissects phase space into dis-
tinct regions in which the signs of the derivatives are con-
stant �8�. The nullclines of Eq. �1� are the �n−1�-dimensional
surfaces defined by gi�x1 , . . . ,xn�=0, for i=1, . . . ,n. Thus, in
general, the symbolic dynamics can be represented by an
n-dimensional hypercube, n cube, where each vertex is la-
beled by a symbolic state �sgn�ẋ1� , sgn�ẋ2� , . . . , sgn�ẋn��. The
directed edges, which represent allowed transitions between
symbolic states, can be determined as follows. Consider ad-
jacent vertices A and B such that the symbolic state of the ith

component of A and B are different, but all other components
are identical between A and B. There is a directed edge from
A to B if

cj = �sgn
�gi

�xj
� � �sgn gj� � �sgn gi� � 0 �2�

for any xj that is an activator or repressor of i. This rule,
which is equivalent to the formulation in Ref. �8�, is used to
generate Fig. 1�b�. Using the derivative discretization all
symbolic transitions that occur in a monotone network must
be consistent with the allowed transitions found using this
rule, but not all transitions found using this rule will neces-
sarily occur in any given network. By definition, any fixed
points must lie outside of the regions of phase space repre-
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FIG. 1. �a� Interaction diagram for a monotone network studied
in Ref. �8�. The edges → represent an activating influence, whereas
the edges ⊣ represent an inhibiting influence. The edge labeled by �
represents an interaction with variable strength, parameterized by �.
�b� The allowed symbolic transitions using the derivative discreti-
zation of �a�. Vertices �−+−� and �+−+� were omitted in �8�.
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sented by the symbolic states of the derivative discretization.
As we show below, vertices such �+−−� in Fig. 1�b� might
still identify a region of phase space in which transients as-
ymptotically approach a fixed point even though there is an
allowed transition out of the vertex.

The threshold discretization provides an alternative
method for symbolic dynamics �4�. The threshold discretiza-
tion partitions the phase space into 2n sectors. Each sector is
labeled by a Boolean vector, �X1 ,X2 , . . . ,Xn� , Xi� �0,1�,
where Xi is defined via the Heaviside step function Xi
=H�xi−�i�, and �i is a threshold. Thus, the dynamics can be
represented by a directed graph on an n cube where the di-
rected edges between adjacent vertices represent the allowed
flows between neighboring sectors. The directed n cube is
called the state transition diagram. The threshold discretiza-
tion, and resulting symbolic dynamics has been studied for
the piecewise linear equations,

ẋi = − xi + f i�X1, . . . ,Xi−1,Xi+1, . . . ,Xn�, i = 1, . . . ,n �3�

where the f i specify the regulation of the ith element. In one
special case, the f i are Boolean functions of the �n−1� inputs
defined by the �Xi�. For Eq. �3�, in general the flow across
each boundary between two adjacent sectors is transversal
and in a unique orientation. Suppose two adjacent vertices
A ,B differ only in the jth binary value, with vertex A such
that Xj =0 and vertex B such that Xj =1. Consider
f i�X1 ,X2 , . . . ,Xn� with the-variables �Xj� set to the values of
vertex A. If f i��i the edge is directed from vertex B to A; if
f i��i the edge is directed from A to B. Further, attracting
cycles in the state transition diagram imply the existence of a
stable limit cycle attractor for some choice of the f i and
attracting vertices imply a stable fixed point �9�. Although
Eq. �3� is not a monotonic equation since derivatives will be
0 except at the threshold hyperplanes, by substituting steep
sigmoidal functions for step functions, we can generate
monotonic networks that are described by both symbolic
methods �10–13�. We now consider different networks satis-
fying the interaction diagram in Fig. 1�a� and show that the
dynamics depends on the nature of the interactions between
x1 and x3 in the activation of x2.

First consider the case when �=0 in Fig. 1�a� leading to a
negative feedback network �4,9,14�. For this situation the
state transition diagram is in Fig. 2�a� corresponding to the
Boolean truth table

X1 X2 X3 f1 f2 f3

0 0 0 1 0 0

0 0 1 0 0 0

0 1 0 1 0 1

0 1 1 0 0 1

1 0 0 1 1 0

1 0 1 0 1 0

1 1 0 1 1 1

1 1 1 0 1 1

. �4�

There is an attracting oscillation in the state transition dia-
gram. The truth table implies that a piecewise linear differ-
ential equation of the form of Eq. �3� can be written for this
system by use of the Heaviside function, H�x−��, where
H=0 for x�� and H=1 for x��.

In order to generate a continuous nonlinear monotone
equation for this network, we use procedures sketched out
previously and substitute the sigmoidal Hill function S+�x�
=x� / ���+x�� for the Heaviside function, where � is called
the Hill coefficient �10�. As �→	 the Hill function ap-
proaches the Heaviside function. In what follows, we arbi-
trarily select �=5 and �=0.5. The associated differential
equation is

ẋ1 = − x1 + 1 − S+�x3� ,

ẋ2 = − x2 + S+�x1� ,

ẋ3 = − x3 + S+�x2� . �5�

Figure 2�b� shows an example of a transient dynamics ap-
proaching a stable limit cycle oscillation. The symbolic se-
quence using the derivative discretization is �+−+�→ �−−+�
→ �−−−�→ �+−−�→ �++−�→ �+++�→ �−++�→ �−−+�→ . . .
and the symbolic sequence using threshold discretization ��
=0.5� is �010�→ �110�→ �111�→ �011�→ �001�→ �000�
→ �100�→ �110�→ . . .. There is a supercritical Hopf bifurca-
tion at �=4 �4,15�, and in the limit, �→	, there is a stable
limit cycle oscillation �9�.

If both 1 and 3 are needed to activate 2, f2 would be an
AND function and the state transition diagram is given in
Fig. 3�a�, corresponding to the AND truth table listed in Eq.
�6�.

Inputs AND OR

X1 X2 X3 f1 f2 f3 f1 f2 f3

0 0 0 1 0 0 1 0 0

0 0 1 0 0 0 0 1 0

0 1 0 1 0 1 1 0 1

0 1 1 0 0 1 0 1 1

1 0 0 1 0 0 1 1 0

1 0 1 0 1 0 0 1 0

1 1 0 1 0 1 1 1 1

1 1 1 0 1 1 0 1 1

�6�

(b)(a)

FIG. 2. �Color online� Negative feedback loop Eq. �5�. �a� The
state transition diagram produced by the threshold discretization.
�b� Integration of Eq. �5� with �=5.
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There is now a stable vertex at �100�. The associated
monotone differential equation is

ẋ1 = − x1 + 1 − S+�x3� ,

ẋ2 = − x2 + S+�x1�S+�x3� ,

ẋ3 = − x3 + S+�x2� . �7�

Figure 3�b� shows an example of a transient dynamics
approaching a stable fixed point. Using the derivative
discretization the sequence for the symbolic dynamics is
�+−+�→ �−−+�→ �−−−�→ �+−−�. Using the threshold dis-
cretization with the threshold value �=0.5, then the symbolic
states are �010�→ �110�→ �100�. The symbolic state se-
quence can be sensitive to the threshold values chosen. For
instance, with �=0.49 then two new intermediate transitions
take place: �010�→ �110�→ �111�→ �101�→ �100�, which
contains the transition �111�→ �101� in violation of the state
transition diagram in Fig. 3�a�. This observation underscores
a weakness of the state transition diagram in the threshold
discretization method since it is only proven in the limit �
→	.

Finally, if either 1 or 3 suffices to activate 2, f2 would be
an OR function and the state transition diagram is given in
Fig. 4�a�, corresponding to the OR truth table in Eq. �6�.
There is now a stable vertex at �011� and the monotone dif-
ferential equation system is

ẋ1 = − x1 + 1 − S+�x3� ,

ẋ2 = − x2 + S+�x1� + S+�x3� − S+�x1�S+�x3� ,

ẋ3 = − x3 + S+�x2� . �8�

Figure 4�b� shows an example of a transient dynamics ap-
proaching a stable fixed point. The sequence for the symbolic
transitions during the transient are �+−+�→ �−−+�→ �−++�
and �010�→ �110�→ �111�→ �011�.

Unlike in the AND case, the symbolic states using the
threshold discretization are very robust to the threshold
choice ��i=0.5� when a finite � is used in Eq. �8�.

These results do not give information about the robustness
of the dynamics under parametric changes. To do this, we
now vary the strength of the feedback loop 3→2 and show
the bifurcation diagram for two situations found by substitut-
ing two different equations for x2 in Eq. �5�,

ẋ2 = − x2 − �S+�x1��1 − S+�x3�� + S+�x1� AND,

ẋ2 = − x2 + ��1 − S+�x1��S+�x3� + S+�x1� OR, �9�

In these equations, when �=0 we have Eq. �5�; and when
�=1 we have Eq. �7� using the AND function or Eq. �8�
using the OR function. Figure 5 shows the bifurcation dia-
gram for both these situations. Both the limit cycle and the
fixed point behaviors prevail over a large range of the �
parameter. For the AND function as � increases from 0 to 1,
a saddle-node homoclinic bifurcation occurs. The stable limit
cycle collides with the center manifold of the fixed point at
�	0.600. For the OR function as � increases from 0 to 1 a
Hopf bifurcation occurs at �	0.716 resulting in the stable
limit cycle becoming a stable fixed point. There is a small
region of bistability before the stable upper branch emerges
as the unique fixed point. The results in Fig. 5 demonstrate
that differential equations embodying the monotone network
in Fig. 1 can robustly show fixed point behavior as well as
the limit cycle oscillation found in the negative feedback
network resulting when the interaction 3→2 is eliminated.

In addition to placing restrictions on the observed dynam-
ics for a given network, the symbolic dynamics approach can
be used for the “inverse problem” i.e., to determine the quali-
tative interactions based on observed dynamics using either

(b)(a)

FIG. 3. �Color online� Analysis of Eq. �7� where both elements
1 and 3 are needed for activation of 2. �a� The state transition
diagram showing allowed transitions between sectors �see text�. �b�
Numerical integration of Eq. �7� with �=5.

(b)(a)

FIG. 4. �Color online� Analysis of Eq. �8� where activators 1 and
3 act independently on x2. �a� The state transition diagram showing
allowed transitions between sectors �see text�. �b� Numerical inte-
gration of Eq. �8� with �=5.

(b)(a)
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FIG. 5. �Color online� Bifurcation analysis of the AND system
�a� and the OR system �b� using the numerical bifurcation tool
AUTO-07p �16�. The insets are magnifications near the bifurcations
as � varies. A saddle-node homoclinic bifurcation occurs for the
AND case and a supercritical Hopf bifurcation for the OR one.
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the derivative discretization �8� or the threshold discretiza-
tion �17–19�. However, for a given unknown network, it may
in general be difficult to know a priori if the network is
monotone, as required by the derivative discretization
method, or if the network embodies strong switchlike non-
linearities, as required by the threshold discretization.

There are some strong similarities and differences be-
tween the two symbolic dynamics approaches. The allowed
symbolic transitions found using the derivative discretization
applies for all networks displaying the same monotone struc-
ture �8�, whereas the state transition diagram using the
threshold discretization applies to the piecewise linear net-
works in Eq. �3� and continuous nonlinear networks that are
sufficiently close to the piecewise linear equations �10–13�.
Some piecewise linear networks, such as those in which a
single variable could be an activator or an inhibitor depend-
ing on the values of other variables of the network, are not
monotone and therefore cannot be analyzed using the deriva-
tive discretization. Other networks are monotone, but do not
contain switchlike nonlinearities, and therefore cannot be
analyzed using the threshold discretization. However, some
networks, such as those described in Figs. 2–5 can be ana-
lyzed using both the derivative and threshold discretizations.
For such networks, if each element receives only a single
input from another element in the network the state transition
diagrams using the different approaches will be identical.

However, when there are multiple inputs to each element the
state transition diagrams using the two approaches may be
different, but the transitions using the threshold discretization
will be a subset of those using the derivative discretization.
This arises because all transitions involving a change in the
sign derivative must be consistent with those determined us-
ing the derivative discretization, but not all transitions in the
state transition diagram need occur in any particular mono-
tone network. In contrast, all transitions in the state transition
diagram using the threshold discretization can be observed in
some region of phase space. As a consequence, using the
threshold discretization, it is sometimes possible to derive
precise information about detailed dynamics including pre-
diction of some types of fixed points and cycles. Since nu-
merous technical challenges arise when passing from the
piecewise linear equations to continuous equations with
steep sigmoidal nonlinearities �10–13�, further study and rig-
orous mathematical analysis is needed. In conclusion, the
complementary symbolic dynamics methods described here
provide powerful tools for analyzing biological regulatory
systems and for determining qualitative information about
the biochemical interactions based on observed dynamics.
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