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A DELAY EQUATION REPRESENTATION OF PULSE
CIRCULATION ON A RING IN EXCITABLE MEDIA*

MARC COURTEMANCHEt, JAMES P. KEENERt, AND LEON GLASS

Abstract. This paper develops a theory for pulse circulation on a ring in a continuous excitable
medium. Simulations of a partial differential equation (PDE) modeling propagation of electrical
pulses on a one-dimensional ring of cardiac tissue arc presented. The dynamics of the circulating
pulse in this excitable medium are reduced to a single integral-delay equation. Stability conditions
for steady circulation arc obtained, and estimates arc derived for the wavelength, growth rate, and
asymptotic amplitude of oscillating solutions near the transition from steady rotation to oscillatory
pulse dynamics. The analytical results agree with simulations of the delay equation and the PDE
model and uncover previously uncharted solutions of the PDE equations.
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1. Introduction. Excitable media can support self-sustained wave propagation
on various geometries. Excitation pulses may circulate along a closed one-dimensional
ring, rotate on a two-dimensional plane in the form of a spiral wave, or organize into
scroll wave filaments in three-dimensional space. Most theoretical interest has focused
on the study of spiral waves and scroll waves in excitable media, but there is not yet
a good mathematical theory for the relatively simple problem of pulse circulation on
a ring. This problem has concrete applications to experimental models of rcentrant
electrical activity in cardiac muscle.

In 1914, Mines [12] considered the circulation of an electrical pulse (or action

potential) around a ring-shaped piece of atrial muscle dissected from tortoise heart. He
proposed this preparation as a model for abnormal recntrant activity. Since then, the
concept of reentry has evolved from the circulation of a pulse around an obstacle, often
called anatomical reentry, to include functional reentry in the form of spiral waves

[19, 18]. Recent experiments by Frame and Simson [4] on ring-shaped myocardial
preparations dissected around the tricuspid valve orifice of dog hearts have provided
detailed new results on the dynamics of pulse circulation in rings of living cardiac
tissue. They looked at variations in action potential duration, circulation time, and
other dynamical quantities during pulse circulation and described how these quantities
relate to initiation and termination of the reentrant activity. They found that, in
certain preparations, the magnitude of these quantities oscillated when measured
once each rotation at a fixed point along the ring of tissue and that such oscillations
often accompanied termination of recntrant propagation around the ring. Hence,
an understanding of the nature of these oscillations could be helpful clinically in
controlling the stability of anatomical reentry circuits.
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Our aim is to understand the dynamics of a propagating excitation pulse around
a one-dimensional ring-shaped domain using a simple delay equation. In its most
elaborate form, modeling of electrical propagation in cardiac tissue uses nonlinear
partial differential equations (PDEs) that incorporate complex sets of equations to
describe the electrical and ionic properties of cardiac cells [13, 11, 2]. In these contin-
uous systems, oscillations similar to those observed by Frame and Simson arise when
the circumference of the ring is made small enough. This instability has been shown
in numerical studies by Quan and Rudy [13] and by Vinet and coworkers [16, 171 us-

ing modified Beeer-Reuter (BR) equations [1] and by Karma [9] using a two-variable
system. Recently, Karma et al. [10] presented a theoretical analysis of the instability
based on a direct reduction of the PDE model on a ring to a discrete map via a free-
boundary problem formulation. To abstract the essential features of cardiac tissue
that control its dynamics, theories based on finite-difference equations and spatially
discrete models have also been developed based on mesoscopic properties such as the
dispersion relation and the restitution curve [19, 15, 11, 7, 3].

The dispersion relation, c(t,.), gives the dependence of the pulse propagation
speed on the recovery time since the last pulse ended. The restitution curve, a(t.),
gives the pulse duration as a function of the preceding recovery time. The recovery
time (also called diastolic interval) at a point in the tissue is defined as the elapsed
time between the onset of an excitation pulse and the end of the preceding pulse. It
has been known for some time that the restitution curve can be used to construct a

simple finite-difference equation describing the response of cardiac cells to periodic
stimulation [SJ. These results have shown that when the magnitude of the slope of
the restitution curve exceeds unity at the predicted steady state, oscillations in pulse
duration arise. Recently, Ito and Glass [7] presented a spatially discrete model of
pulse propagation on a ring of tissue that use the dispersion and restitution curves
to predict pulse dynamics. Their work attempts to explain the experimental results
of Frame and Simson [41 discussed above. They show good agreement between their

discrete model and the experimental observations and link the onset of the pulse
instability with the steepness of the restitution and dispersion curves at the steady
state. The delay equation model presented here corresponds to a continuous-space
limit of the discrete model introduced in [7].

In this study, we develop a theory about the nature of the pulse instability on

the ring in both experimental preparations and numerical simulations of complex
PDEs based on a single cotios integral-delay equation (IDE). The continuous
IDE allows us to carry out analytical computations not previously obtained with
discrete models. We examine in detail the onset of nonsteady circulation using the
BR equations on a one-dimensional ring. Destabilization of steady propagation occurs

as the circumference of the ring is reduced, leading to oscillations in the pulse speed,
pulse duration, and recovery time with a wavelength slightly less than twice the
ring length. The dynamics of pulse circulation on a ring can be reduced to an IDE
using the dispersion and restitution curves. This is done directly in the case of a

general two-variable model. We find a simple criterion for pulse stability based solely
on the steepness of the restitution curve, but in addition, the IDE provides novel
information about the nature of the bifurcation and of the oscillatory solutions that
arise from it (number, wavelength of unstable modes, amplitude of periodic solutions).
Analytical results from the delay equation can be used to predict numerical results
for both the IDE and more complex PDE system. In addition, the IDE predicts
previously uncharted solutions that can be observed in the PDE with appropriate
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initial conditions. This work extends the results presented in our earlier preliminary
report [3].

2. The PDE model. In this section, we present numerical results from simula-
tions of pulse circulation on a ring, using the BR equations to represent the electrical
properties of the medium. The phenomena observed in the full PDE model will then
be described and analyzed later in terms of a simple delay equation.

2.1. Equation and numerical methods. The BR equations are incorporated
in a reaction-diffusion PDE model of cardiac electrical activity, also known as the cable
equation. On a one-dimensional ring, we use a forward Euler method to integrate

OV Izi(V) 02V
(1) Ot C,------- + D-x 0 < x < L and V(O) V(L),

where V is the cardiac cell membrane voltage (mV), D (CrnSvP) -1 is the diffusion
coefficient, C, 1.0 #F cm- is the membrane capacitance, S 5000 cm-1 is the
surface-to-volume ratio of the cardiac cells, and p 0.2 kft cm is the longitudinal
tissue resistivity of cardiac muscle. IBR is the total membrane current obtained from
the BR equations (#A cm-) and is given as a function of V only to simplify the
notation. The BR equations [1] consist of seven time- and voltage-dependent variables
used to describe four membrane currents carried by sodium, potassium, and calcium
ions, which are added up to produce the total current IBm. The BR equations, needed
to complete (1), are given in detail in the appendix. Our numerical method yields a
difference equation for the voltage V at location i/kz and time (n + 1)/kt of the form

1 V/_I 2V/n -- V/n )(2) V/n-b1 V/rt + t IBR(V/ --C, C,S,,p /kx

The integration is performed using a fixed spatial discretization step/z -0.025 cm
and a fixed temporal discretization step At 0.025 ms. Refining the spatial and
temporal discretization stcps leads to a faster propagation velocity (about 10% faster
for planar waves in recovered medium with /z 0.01 cm and At 0.01 ms) but
does not modify the qualitative nature of the solutions as the ring length is reduced.
This was checked explicitly for all computations presented in this study.

A circulating pulse is obtained by stimulating the proximal end of a long cable
(L 15 cm) to obtain a propagating action potential. As the activation front ap-
proaches the distal end of the cable, the two ends of the cable are joined numerically
into a ring. After stabilization of the pulse, the ring size is decreased in successive
steps by splicing out part of the ring. Gridpoints arc removed starting 10 grid loca-
tions behind the excitation front (marked by V -60 mV and OV/Ot > 0) during
the action potential. Increases in ring length are obtained by inserting gridpoints 10
grid locations behind the front. The new points arc assigned state values from one
of the adjacent points. We measure the pulse duration A, the speed C, the recovery
tine t., and the circulation time T as the pulse propagates along the ring (this is
explained further below), using -60 mV as our threshold between the recovered state
(V < -60 mV) and the excited state (V >_ -60 mV). Speeds are calculated using
the propagation time of the wavcfront over a distance of 3/kz.

2.2. PDE simulation results. Stable circulation becomes unstable in the PDE
model as L is decreased below L 13.4 cm. At L 13.4 cm there is stable circulation
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with C 0.0415 cm/ms, A 211 ms, and t 112 ms. During stable circulation,
all three quantities reach constant steady-state values as the pulse circulates around
the ring. We have examined in detail the behavior of solutions as the ring length is
decreased from L 13.4 cm to L 13.15 cm. Starting from the stable solution at
L 13.4 cm, we gradually decrease the ring length, one gridpoint at a time, allowing
40 rotations at each ring length. At any given ring length, if the dynamics have
not stabilized after 40 rotations, the simulations are continued until transients have
dissipated. In the end, simulations were carried out t!br at least 150 rotations at each
ring length.

In order to adequately display the dynamics of unstable solutions, we plot the
changes in A, C, t, and T as a function of the location z of the wavefront along
the ring. The space-time diagram of Fig. 1, which displays the oscillating solution
observed at L 13.15 cm, illustrates how we compute these quantities. Each trace
in the figure is a plot of the potential V as a function of distance along the ring at
a fixed time. Each plot is repeated once horizontally to highlight continuity at the
boundary. Traces are stacked vertically at the rate of one every 10 milliseconds. We
define a time-dependent coordinate z(t) corresponding to the location of the wavefront
along the ring. This coordinate increases continuously as the front circulates around
the ring. Two values z and a are identified with the same location on the ring if
zmodL zmodL. In Fig. 1, assuming that the first trace is taken at t 0

(bottom trace), the trace whose excitation front is labeled with an asterisk corresponds
to t 400 ms. Let z* be the location of the labeled wavefront as described above;
then we define four quantities" C(z*) is the speed of the excitation front at z*, A(z*)
is the duration of the pulse that is just beginning when the front reaches z*, t.(z*)
is the recovery time that is just ending as the front reaches z*, and T(z*) is the
circulation time from z* L to z*.

Between L 13.4 cm and L 13.2 cm, there is either a stable steady state or
small oscillations in t(z) upon gradually decreasing the ring circumference. Figure 2
shows traces of t(z) for ring lengths in this range after transients have dissipated. For
some ring lengths, transients were extremely long, up to 300 rotations in certain cases
(e.g., L 13.2 cm). Below L 13.2 cm, the amplitude of the oscillations increases
dramatically. At L 13.175 cm, the solution showed oscillations whose amplitude
increased gradually. Over 600 rotations were required for the solution to reach its

asymptotic peak-to-peak amplitude of 160 ms. At L 13.15 cm, the oscillating
solution quickly increased to its stable large amplitude.

There is hysteresis in the dynamics upon increasin9 the ring length from L
13.15 cm. The large amplitude oscillations are maintained as the ring length is
increased from L 13.15 cm to L 13.3 cm. Starting from the solution at
L 13.15 cm, we increased the ring length one gridpoint at a time, allowing 100
rotations between increases in ring length. The simulations were then extended for
another 200 rotations at each ring length. The peak-to-peak amplitude of the oscil-
lations decreased from 164 ms at L 13.15 cm to 122 ms at L 13.3 cm. Between
L 13.2 cm and L 13.3 cm, the high-amplitude solutions differed markedly from
the low-amplitude solutions of Fig. 2. There appears to be bistability within this
region. Above L 13.3 cm, the solutions arc as depicted in Fig. 2.

When examined as a function of the time-dependent coordinate z, we find that
destabilization of the steady-state leads to periodic solutions for A, C, t., and T
whose wavelengths arc slightly less than twice the ring length. As the ring length is

decreased, the amplitude of the oscillations increases and their wavelength decreases.
Figure 3 shows traces of C(z), A(z), t(z), and T(z) for the oscillating solution at



PULSE CIRCULATION ON A RING IN EXCITABLE MEDIA 123

FIG. 1. Dynamics of a circulating pulse on a ring of length L 13.15 cm found from numerical
integration of the BR equations. Each horizontal trace represents the profile of voltage along the
ring, repeated once to illustrate continuity. Traces are then stacked vertically once every 10 ms (time
increases from bottom, to top). Note the large changes in pulse duration as the excitation propagates
from left to right along the ring. At a given location of the excitation front along the ring, labeled
with an asterisk (x x*), we illustrate the quantities we use to characterize the dynamics of the
circulating pulse, namely the pulse speed C(x*), the pulse duration A(x*), the recovery time tr(x*),
and the circulation time :F(x*).

L 13.15 cm. The wavelength of the oscillation is A 25.8 cm. The values of
A, t, and C oscillate in phase, while the circulation time T is 90 degrees out of
phase. The relative amplitudes of the oscillations in A and t. arc similar. Because
the wavelength is not exactly twice the ring length, the dynamics of C, A, t,, and T at
any fixed location on the ring arc quasipcriodic in time. Figure 4 shows the sequence
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FIG. 2. Dynamics of a circulating pulse on rings of increasing size starting at L 13.4 cm.

Ring length is reduced by one gridpoint (0.025 cm) every 40 pulse rotations. The simulations are
then extended at each ring length until transients are dissipated. The recovery time tr(x) is plotted
for 9 ring lengths starting at L 13.4 cm and endiny at L 13.2 cm, after at least 150 rotations
at each ring length (up to 330 rotations as required to dissipate transients).

of recovery times t. and circulation periods T measured during consecutive turns at
a fixed location along the ring.

Sustained circulating pulses arc observed on rings as small as 12 cm. The minimal
ring length that will support circulation seems to fall between L 12 cm and L
11 cm. Figure 5 shows traces of C(z), A(z), t,,.(z), and T(z) at L-- 12 cm, where
the oscillations have nearly reached their largest amplitude. Figure 6 shows a tracing
of the membrane voltage V as a function of time obtained at a fixed location along
the ring, again at L 12 cm. Alternations in the duration of the successive electrical
pulses can be observed. The complex appearance of the pulse dynamics in this plot
can be distilled into the simple periodic solutions of Fig. 5. These results on the
ring geometry are in accord with experimental observations by Frame and Simson
[4]. They demonstrated the onset of oscillations during pulse circulation in a loop of
cardiac tissue and obtained oscillations that appeared quasi-periodic in time, as in
the plot of Fig. 4.

3. The delay equation. In this section, we develop a continuous theory for
pulse propagation on a ring by deriving a simple governing equation using the dis-
persion and restitution curves. Using the quantities A(z), t,.(z), and C(z) we may
write an equation stating that, for any point along the ring, the recovery time is
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FIG. 3. Dynamics of a circulating pulse on a ring of length L 13.15 cm found from numerical
integration of the BR equations. (a) Speed C(x), (b) pulse duration A(x), (c) recovery time tr(x),
(d) circulation period T(x). Transients have dissipated. Wavelength is A 25,8 cm.
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FIG. 4. Dynamics of a circulating pulse in a ring of length L 13.15 cm found from numerical
integration of the BR equations. Plot of (a) the recovery time tr and (b) the circulation period T as

a function of the number of turns around the ring at a fixed location.

the difference between the circulation time and the pulse duration. From Fig. 1, we
see that

(3) T(x) t,.(x) + A(x- L).

Substituting f-L ds/C(s) for the circulation time T(x) yields the equation

A(x- L).
ds

(4) t,.(x)
-c C(s)
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FI(;. 5. Dynamics of a circulating pulse on a ring of length L 12.0 cm found from numerical
integration of the BR equations. (a) Speed C(x), (b) pulse duration m(x), (c) recovery time tr(x),
(d) circulation period T(x). Transients have dissipated. Wavelength is A 23.5 cm.
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FIG. 6. Trace of voltage (in mV) versus time (in ms) from a fixed location on the ring during
pulse circulation using the t3R equations. This time series is taken from a simulation at L 12 cm.

The trace illustrates the quasi-periodic oscillations in the duration of the successive excitation pulses.

Our theory is based on the assumption that both the pulse duration and the speed
can be expressed as functions of the recovery time t.. The function a(G), describing
the relation between A and t., is called the restitution curve, while c(t.) is called the
dispersion curve. The assumption that both curves are well-defined unique functions
of t is common in the analysis of cardiac propagation [15, 13, 11, 7, 8] and is satisfied
in excitable media, where the time course of recovery (and its effect on the response



PULSE CIRCULATION ON A RING IN EXCITABLE MEDIA 127

of the system to excitation) does not depend on past history of the system. In other
words, we assume that recovery occurs along a one-dimensional slow manifold, typical
of simple two-variable caricatures of excitable media. The IDE also assumes that
the effect of diffusion can be restricted to a boundary layer in the vicinity of the
excitation front, thereby treating the excitation process as a sharp front. We show
how one can derive expressions for tile restitution and dispersion curves, and hence
the IDE, directly from a general two-variable model of an excitable system below.
The derivation highlights the assumptions involved in extending this theory to the
more complex BR equations.

3.1. The IDE in a two-variable model. Consider the system of equations

(5) - + f (’u, v), Ot 9(’u, v),

where f and g are typical functions describing an excitable medium, e.g., the cubic
and linear functions of the FitzHugh-Nagumo model. The equation f(n, v) 0 has
three solutions, denoted u U_(v), Uo(v), and U+(v), with U_(v) < Uo(v) <_ U+(v)
wherever comparison is possible. We assume that U_(v) exists only for v _> v_, and

U+ (v) exists only for v < v+. Tile solution branch with z U+ (v) is commonly called
the excited branch, and the branch with z U_(v) is called the recovering branch.
The function f(u, v) is positive fern sufficiently large and v sufficiently negative, the
function 9(t, v) is positive for large positive and large negative v, and the nullcline
9(u, v) 0 has a single intersection with the curve U_(v), so there is a unique
stable rest point for the system (5).

We use singular perturbation theory to understand the behavior of the system (5)
in the limit where 0 < << 1. Simply setting 0, we obtain the "outer equation"

(6) Ov,/cgt 9(t, v), f (t, v) O.

The two stable roots of f(t, v) 0 are denoted t U+(v), so the outer dynamics
become

where the + dynamics are followed on the excited branch and the dynamics are
followed on the recovering branch.

Outer dynamics fail in some regions of space and must bc patched together with
moving transition layers within which

(8) t(x, t) u ( X Ct )
A simple change to moving coordinates shows that to leading order in e, U and V
satisfy

(9) U" + CU’ + f (U, V) O, V vo

and that to match with the outer solution it must be that lim__+o f(U(), re) -O.
This implies that A(v0) is a nonlinear eigenvaluc, which is known to exist and be
unique.
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Now we may piece together the following scenario. The speed at which the excita-
tion propagates is A(v), where v(z) is the V level at which the excitation occurred.
We also assume that the recovery is always via a phase wave, so that recovery always
takes place at v v+. Now, we define the action potential duration as the time
spent on the excited branch,

’’+ dv
(10) A(x)

_t_(v 1

and the recovery time preceding excitation as

(11) t(x) G (v)
F2(v).

v+

The function G_(v) is negative on the recovery branch, so the equation above can be
reexpressed as

(12) ve F-l(tr).

Now we can write the pulse duration and speed as a fllnction of t,

(3) A Fl (F-l (t)) a(t), c

thereby defining the restitution and dispersion curves.
Using the restitution and dispersion curves, (4) may be rewritten as

1 ds
a(t(x L))(14) t(x)

-L c(t(s))

which is an IDE for the recovery time t.. It completely describes the dynamics of
pulse circulation on the ring.

Equation (14) can be reduced to a neutral differential-delay equation [6] by taking
derivatives with respect to z, which yields

(5)
d
-7-(t(x) + a (t(x L)))
dx

1 1

c(t(x)) c(t(x-L))"

We used the form of (15) in [3]. We shall use the IDE in what follows.

3.2. Restitution and dispersion in the BR model. We cannot derive the
restitution and dispersion relations analytically from the BR equations. Our assump-
tion that these two curves are unique and well defined in the PDE model can be tested
by computing dispersion and restitution curves for the BR model and comparing sim-
ulation results from the PDE and IDE models. In Fig. 7 we plot pulse duration and
speed as functions of t., based on data from the simulation at L 13.15 cm and
L 12.0 cm in Figs. 3 and 5. At each location x along the ring, the values of A, C,
and t can be obtained and plotted against one another (bold dots in Fig. 7). Our
assumption requires that the restitution and dispersion curves be independent of the

In general this is incorrect, but it serves as an adequate first approximation here. A more
accurate estimate of vr could be obtained by considering the recovery process as a propagating front
and requiring that its speed, -,k(vr), equal the excitation front speed,
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FI(;. 7. (a) Restitution curve a(t,.) and (b) dispersion curve c(t.) derived from the pulse circu-

lation in Fig. 3. (c) testitution curve a(tr) and (d) dispersion curve c(tr) derived from the pulse
circulation in Fig. 5. There is splitting of the restitution curves that is more pronounced in (c),
corresponding to larger oscillations in A and tr in Fig. 5. The splitting is due to hysteresis in the
pulse duration depending on whether the recovery time increases or decreases. The dashed curves

displayed on each panel shows the final fitted version of the curves to be used in the analysis.

ring length and previous history of the medium and that they both be well-defined
single-valued functions of t.. The curves of Fig. 7 are similar, except that there is a

splitting of the restitution curve that is more pronounced at the shorter ring length.
This is due to hysteresis in the response of the system depending on whether the recov-
cry time t,l is increasing or decreasing and shows that our slow-manifold assumption
is not completely satisfied.

It is possible to measure the restitution and dispersion curves under different
conditions. For example, we could measure the restitution curve using external stimuli
applied to the spatially uniform BR model (D 0 in (1)). A curve obtained in
this fashion would be different from the restitution curve of Fig. 7. First, an action
potential triggered by an external stimulus is different from one arising as a result
of propagation. Second, there are spatial diffusive influences affecting propagating
pulses which are not present in the spatially uniIbrm case. Similarly, we could obtain
a dispersion relation by writing a simplified ordinary differential equation equation
in the form of (9) for the PDE system and solving the equation numerically. This
can be carried out analytically in some simple piecewise linear two-variable systems,
as shown in Rinzel and Keller [14]. Because we did not observe splitting of the
dispersion relations in Fig. 7, we believe that such a "steady-state" curve would not
be significantly different from the relationship obtained from the PDE simulation
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data, except for the effect of the PDE discretization on the wave speed. By choosing
to obtain our restitution curve from the pulse circulation data, we are bypassing a
weakness in the present theory.

In what follows, we assume that the relations at both ring lengths can be rep-
resented by unique well-defined functions of t.. We fit the data of Fig. 7 with the
equations

(6) a(tr) 20 4- B(tr)tr5.’5/(725"5 4- t)’5), where 13(tr) 250- 90e-t/145

c(t) 0.0417 0.0135e-(t’-37)/8,

where the units of time are milliseconds and the units of space are centimeters. The
curves of (16) are plotted as dashed lines in the panels of Fig. 7. The deviation
between the fitted and numerical dispersion curves is small, as can be seen in panels
(b) and (d). For the restitution curves, the largest deviations are found in Fig. 7(c) and
can reach 10%-15% of the pulse duration at their maximum. The fitting procedure
emphasized a close fit to the data of panel (a), instead of attempting to average across
the hysteresis found in the data of panel (c). For the dispersion relations, we assume
that pulse propagation is impossible for t < 37 ms. This is a feature of excitable
media wherein pulse trains become unstable at a finite frequency corresponding to
a finite nonzero wavespeed. Wc use the analytical expressions in (16) to compute
quantities relating to the restitution and dispersion curves in the remainder of this
paper.

3.3. Analysis of the IDE. In this section we present some analytical results
about the dynamics of the IDE. The stability region of the steady state is identified
using linear stability analysis. We show that the steady state loses stability through an
infinite-dimensional Hopf bifurcation when the slope of the restitution curve exceeds
one at the steady state. Using perturbation methods, estimates for the frequency and
growth rate of the unstable oscillating modes are computed near the bifurcation. We
end this section by carrying out nonlinear analysis of the IDE to obtain estimates for
the amplitude of oscillating solutions beyond the bifurcation.

Before pursuing the analysis, it is convenient to change variables in (14). Setting
y Qx/L and t.(Ly/Q) z(y) into (14) yields

1 L
,

a(())d (( Q)),7) () - -woo () g/(,), gtio () tdy-tto otio , tiig

3.3.1. Linear stability. Let a’- da/dz(z*) and d’- dd/dz(z*). Linearizing
(17) near (y) z(y) z* 0 yields

(9) () -We look for solutions to (19) of the form Cey. In the original coordinates, these
solutions are of the form t t; +bec/c, so that Q/L is an eigenvalue of the linearized
integral equation (14). Substituting for 2 in (19) gives

(20)
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The stability of the steady state is determined by the roots of (20), which is the
characteristic equation for the IDE. Stability requires (Q) < 0, where (Q) and
.(Q) represent the real and imaginary parts of Q, respectively. There is a loss of
stability of the steady state when the roots cross from the left to the right complex
plane, indicated by (Q) -0. Given that both the restitution and dispersion curves
arc monotonically increasing functions of the recovery time, we limit ourselves to the
case where a > 0 and d < 0.

TitEOaEM. Let (2 0 be a nontrivial root of (20) for a > 0, d < 0; then
(c2) o .=. ’ , (c2) < o = o <_ ’ < , (0,) > o = a’ > .

Pro@ We begin by rearranging (20) to obtain

(2)

Equating norms, we get

(22)

Let (Q) 0; then I-l- 1 and (22) implies a’2 1, which yields a’ 1
for a’ _> 0. Now let a’ 1. Assume (() > 0; then I-1 < 1 and (22) implies
d’ + (21 > d’- Q. This is a contradiction since Id’ + QI < ]d’-(21 for (Q) > 0 and
d’ < 0. Next assume (Q) < 0; then I-l > 1 nd (22) implies
This is a contradiction since Id’ + QI > ]d’-(21 for (Q) < 0 and d’ < 0. Hence,
a’- 1 implies (Q)- 0, and we have shown that a’- 1 e== (Q)- 0.

Let (Q) > 0; then le-QI < 1 and (22) implies Id’+ a’QI > Id’-QI. Assume
0 < a’ < 1; then Id’+a’(21 < d’-QI for (Q) > 0 and d’ < 0, and we have a
contradiction. Hence if (Q) > 0 and a’ _> 0, we must have a’ > 1. Now let a’ > 1.
We have shown above that (Q) =/= 0. assume ((?) < 0; then le-cl > 1 and (22)
implies d’+ a’QI < Id’-(. This is a contradiction since Id’+ a’QI > Id’-(1 for
(Q) < 0, d’ < 0, and a’ > 1. Hence, a’ > 1 implies (Q) > 0, and we have shown
that a’ > 1 == (Q) > 0. The above argument is easily reversed to show that
0 < a’ < 1 <== (Q) < 0, which completes the proof.

The theorem gives the stability region of the steady state for a’ >_ 0 and d’ <
0. Stability for 0 _< a < 1 is lost at a’ 1 through an infinite-dimensional Hopf
bifurcation. Figure 8 follows the trajectory of Q(0) in the complex plane as a’ is varied
from -1 to 1, keeping d’ < 0 fixed. At a’ -1, the root crosses the imaginary axis
into the left-hand plane near 27ci. It then curves around and crosses the imaginary
axis into the right-hand plane near 7ri. This behavior appears typical of all roots
Q() and occurs symmetrically across the real axis. For d’ < 0 and a’ < 0, there is
an additional real root that crosses from the left to the right complex plane when
a’ -1 + d’. We have not considered here the more complicated behavior of roots in
the case d’ > 0.

Our application to excitable media sets a’ _> 0 and d’ < 0. We are particularly
interested in the bifurcation at a’ 1, where we find that the imaginary part q0 of
the roots satisfies

(a) t j.

The solutions of (23) can be viewed graphically as the intersection between the straight
line of slope lid and the tangent function. There are an infinite number of solutions

(this is true in general for (20)) associated with an infinite number of roots Q() iq)
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Real

FI(]. 8. Dependence of the root Q(o) of (20) on the value of a’ as it varies from -1 to 1, keeping
d fixed (here -0.001). The root enters the left complex half-plane near 27ri at a -1 and leaves
it near 7ri at a 1. Note that the imaginary axis is along the right edge of the figure.

crossing the imaginary axis. If we assume that the dispersion relation is nearly flat
at the bifurcation point, then ]dtl << 1, and the imaginary parts qo() of the roots can
be approximated as

2d
+ (Q(dt2) k 0 1 2(24) q0

() (2k + 1)Tr-
(2k + 1)7r

For the BR equations, we have d’ -0.088 at., the bifurcation.

3.3.2. The characteristic equation near the bifurcation. Given that an
infinite number of unstable modes exist for a’ > 1, we carry out an expansion of the
roots of (20) for a’ close to 1 to find the relative growth rates of the modes near the
bifurcation. We set a’ 1 + e, keep d’ fixed, and assume Q() has a power series
expansion of the form

() e2q() O(e3(25) Q() iq) + q, + + ),

w q0
() i o, ot o.tio, o (). wrot () i, o, q0 otri.

of this section. Substituting into (20), expanding into powers of , and solving term
by term, we find

q qod
(26) q)

d’ 2d’ + q + d’2 2d’ + qg"

The characteristic equation (20) assumes solutions of the form t(z) t, + beq/L,
so that the predicted growth rate of the kth mode near the bifurcation is

(7) t,.() xp
d’ d’ + q Z

()For ]d’] < 1, using (24), q simplifies to

(28) q)-- 1+
(2k+1)2w2 +i(2k+l)w +O ), k=0,1,2,...,
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so that the growth rate of the kth mode becomes

(9) oxp + (+) E
Near the bifurcation, the linear growth of the unstable modes near the steady state
is lowest for the lowest-frequency components. In particular, the slowest frequency at

q{)0) grows the slowest initially. The wavelength of the unstable modes, for Idll << 1,
is given by

(30) A() 2L 2L 2d’L(2 e)+ + O(d’).
(0) + (+)

The mode of lowest frequency, A(), has wavelength slightly less than twice the ring
length. The linear theory does not suggest dominance of this mode over the others
based on its initial growth rate.

3.3.3. Nonlinear analysis near the bifurcation. In order to get an estimate
of the asymptotic amplitude of oscillating solutions beyond the Hopf bifurcation at
a’- 1, we look for small-amplitude periodic solutions of (14). We rewrite (17) as

(31) z(y)-
L{)O l

where D(z)= Lo/c(z), and pick L0 so that a’= 1 at L L0.
To find nontrivial periodic solutions in a neighborhood of L0, we use L/Lo as a

bifurcation parameter. By picking Q so that the solutions are 27-periodic in y, the
ratio of the wavelength of the solutions to the length of the loop L is A,/L 27,/Q.
Hence Q is the relative wavenumber. At the bifurcation point, we pick Q iqo. We
expand a(z) and D(z) into local power series about z* of the form

(32)

a d’where al 1, do D(z*) and dl Taking Q iqo+2q2 + and

LIlLe 1 + eA, we substitute for a, D, Q, and L/Lointo (31) and solve the
resulting equations for powers of assuming solutions of the form

(4) () * +(+-’) + V(d),
where M denotes the complex conjugate of M. The solvability condition at ()
yields the relation

0 2A2qa2do+MM(-3a3q(dl-2)+a(3d-6d+qdl.-6q)+2a2d2(-3d+Bdl+2q)).
()
This equation gives an approximation for the solution amplitude as a function of the
bifurcation parameter L/Lo. There arc an infinity of possible approximate solutions,
one for each root Q(). To first ordcr the solutions can be rewritten as

(36) () * +

2 Symbolic manipulations to obtain (35) were performed using the Maple mathematical software
packgc.
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The amplitude coefficient MI is positive, which implies that the equation can be
solved only for k2 of a specific sign, thereby indicating the direction for loss of stability
at the bifllrcation. The coefficients of the expansions of a(z) and D(z) may be obtained
from the fitted analytical expressions for the dispersion and restitution curves. We
carry out these computations in the last section.

3.4. Numerical simulation of the IDE. Equation (14) can be integrated us-

ing a simple forward method, subject to the constraints imposed by the ring geome-
try. Initial conditions must be specified by giving the value of .(x) over the interval
I-L, 0). The finite-difference equation for ,, is given by

X
(37) t+’ c(t.)

a(t"-N+ )’
i=n-N+

where the integral is evaluated using a simple trapezoid rule, using Ax L/N,
N 200. This discretized version of the delay equation is identical to the discrete
model of propagation on a ring developed by Ito and Glass [7. They studied in detail
the stability of this discrete finite-difference scheme and obtained results similar (but
not identical) to our stability results for the continuous IDE. In the discrete model,
the stability criterion for the steady state includes a dependence on the slope of the
dispersion relation that is not present in the IDE. Our experience with (37) has also
revealed a sensitivity of the solution to discontinuities in the initial conditions, which is

partly a property of the IDE (see [6]) and a consequence of our sharp front assumption
in constructing it. In spite of the discrepancies between the finite-difference equation
and the IDE, we use (37) to simulate the dynamics of (14).

In the numerical simulations of he IDE, he steady state t(x) t; is destabilized
as the ring circumference is decreased from L 13.5 cm to L 13.45 cm. Starting
with initial conditions corresponding to the gpproximated value of the steady state,
growing oscillations are observed in all measured quantities a L 13.15 cm. Figure
9 shows a trace of C(x), A(x), t(x), and T(x) after stabilization of he oscillations.
The wavelength of the oscillation is A 25.7 cm. As in the PDE, the dynamics of the
various measurements at. a fixed location along the ring are quasiperiodic. Figure 10
shows the sequence of recovery times t and circulation periods T measured during
consecutive turns at a fixed location along the ring. Figures 9 and 10 should be
compared with Figs. 3 and 4 obtained from the PDE.

Oscillating solutions with a period slightly less than twice the ring length evolve
from near steady-state initial conditions in the IDE when L 13.45. We do not
observe the kind of bistability between steady-state and oscillating solutions found in
the PDE. This feature of the PDE may be related to the splitting of he restitution
curves which is not taken into account in the IDE model and reflects a breakdown in
our slow manifold assumption for the BR model.

Based on the analysis of the IDE, it might be possible to observe oscillating
solutions at one of the other frequencies that are known o become unstable at the
bifurcation. For example, the second lowest frequency corresponds to a wavelength A
slightly less than wo thirds the ring length. We have obtained such a solution using
initial conditions in the form of a low-amplitude sine wave of the correct frequency
(as predicted by (30)) over the initial interval [0, L). Figure 11 shows a plot of C(x),
A(), t,(), .d (x), i]]strati.g the so]utio. with wavelength coe o L/3 after
transients have dissipated. Figure 12 shows he sequence of recovery times re. and
circulation periods T measured during consecutive turns at a fixed location along the
ring.
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FIG. 9. Dynamics of a circulating pulse on a ring of length L 13.15 cm found from numer-
ical integration of the IDE. (a) Speed C(x), (b) pulse duration A(x), (c) recovery time tr(x), (d)
circulation period T(x). Transients have dissipated. Wavelength is A 25.7 cm.
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FIG. 10. Dynamics of a circulating pulse in a ring of length L 13.15 cm found from numerical
integration of the IDE. Plot of (a) the recovery time tr and (b) the circulation period T as a function
of the number of turns around the ring at a fixed location.

4. The PDE model revisited. Our theory of pulse circulation on a ring is
based on a reduction of the dynamics to a simple IDE, using the dispersion and
recovery curves to capture the essential features of the nonlinear PDE model. We
compare theoretical predictions and numerical results in more detail here.

Numerical simulation of the BR model shows that steady circulation becomes
unstable at a ring length L 13.4 cm, where the steady-state recovery time is t
112 ms. Numerical integration of the IDE shows loss of stability between L 13.5 cm
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FIG. 11. Dynamics of a circulating pulse in a ring of length L 13.15 cm found from numerical
integration of the IDE. Initial conditions were chosen so that an alternate solution of wavelength
close to 2L/3 is observed. (a) Speed C(x), (b) pulse duration A(x), (c) recovery time tr(x), (d)
circulation period T(x). Transients have dissipated. Wavelength is A --8.74 cm.
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Fie,. 12. Dynamics of a circulating pulse in a ring of length L 13.15 cm found from numerical
integration of the IDE. Initial conditions were chosen so that an alternate solution of wavelength
close to 2L/3 is observed. Plot of (a) the recovery time tr and (b) the circulation period T as a

function of the number of turns around the ring at a fixed location.

and L 13.45 cm. Stability analysis of the IDE predicts a loss of stability when
a’(t;) 1. Using the slope of the restitution curve given in Eq.(16), the bifurcation
is predicted at t; 112.6 ms, corresponding to a ring of length L0 13.48 cm.

Nonlinear analysis of the IDE near the bifurcation yields an estimate for the am-
plitude of the oscillating solutions as a function of the size of the ring. Using our fitted
analytical expressions for a(t) and c(t), we substitute their Taylor expansion coef-
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ficicnts into (35) to obtain the amplitude estimate. Since MM is positive, solutions
are obtained from (35) only for Ap. < 0 (we use A2 -1, without loss of generality),
which is consistent with the direction for loss of stability at the bifurcation. Figure
13 illustrates the predicted maximum and minimum of oscillating solutions near the
bifurcation based on (36). Note that we arc plotting the prediction for k 0, the
lowest-frequency mode. The prediction for subsequent modes would be nearly iden-
tical, given that the dependence of MM on the mode number, arising as a result of
the qg term in (35), is already saturated at the smallest value of q0 corresponding to

k 0. The value of x/M increases only slightly from about 173.7 for k 0 to
174.3 for k 1. Because of the rapid growth in amplitude predicted by theory and
the presence of bistability in the PDE simulations, we were able to make a detailed
comparison of the amplitude predictions for the IDE simulations only. We have in-
cludcd in Fig. 13 results from numerical simulation of the IDE for the solutions at
k 0 (circles) and k 1 (crosses, superimposed on the data points for k 0). There
is good agreement between the theory and simulations close to the bifurcation. As
expected, the agreement breaks down further from the bifurcation. For L 13.15 cm
and k 0, the predicted amplitude is about 108.7 ms. The observed amplitude in
the PDE (Fig. 3(c)) is about 163 ms, while in the IDE it is about 137 ms (Fig. 9(c)).
Nevertheless, we use the amplitude estimate to obtain an rough approximation for the
smallest ring length Lmi that will support propagation. Assuming that propagation
failure occurs whenever t falls below 37 ms and using the first-order solution of (36),

130

120

100

90
13 .44 13.46 13.48 13.50

L (cm)
FIG. 13. Bifurcation diagram for the IDE. The dashed line represents the maximum and mini-

mum value of the periodic solution predicted by (35) and (36) for the lowest-frequency mode (k 0).
The predicted values for k would differ by only a fraction of a millisecond (slightly larger ampli-
tude). The superimposed data points are from numerical solution of the IDE. The circles correspond
to the k 0 mode, while the crosses correspond to the k mode.
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we find Lrain 12.85 cm. The PDE simulations reveal that the actual minimum ring
length is smaller, between 11 and 12 cm, reflecting the inaccuracy of the first-order
solution (36) far from the bifurcation.

Within the range of unsteady circulation, the wavelength of oscillations in the
PDE model was slightly less than twice the ring length. Analysis of the IDE shows
an infinite-dimensional Hopf bifurcation when al(t;) 1. We have shown that the
growth rate near the bifurcation is lowest for the lowest-frequency mode (k 0 in

(29)). Hence, this cannot explain the dominance of this mode as circulation becomes
unstable. Our nonlinear analysis near the bifurcation also shows that the amplitude
of periodic solutions near the bifurcation increases slightly (but quickly saturates) as
the mode frequency increases. Given that the differences in growth rates and ampli-
tude arc quite small, higher-order interactions between the modes may contribute to
the stabilization of the solution as observed in the numerical simulation. Alternate
solutions may also be possible in the PDE, given appropriate initial conditions. The
IDE simulations indicate that there arc a number of periodic solutions that appear
beyond the bifurcation, with frequency close to the frequency of the unstable modes.

We were able to obtain an oscillating solution in the PDE model with wavelength
2L/3, corresponding to the predicted mode A(1) of the IDE. The initial conditions

for the PDE model were generated using a stable 2L/3 solution computed numerically
from the IDE at L 13.15 cm. We computed a single action potential using the BR
model (D 0 in (1)) and used it to construct a table of the state of the BR medium
as a function of the recovery time (negative recovery time falls during the action

potential). The initial conditions state(z) can then be read off the table table(t)
using the simple formula

(38) state(z) table(t(z) z/C),

where C is the wavespccd and assumed to be constant. The initial conditions gen-
erated in this way gave rise to the predicted solution. We were able to decrease the
size of the ring from L 13.15 cm while maintaining the solution and observing the
expected changes in amplitude. Figure 14 shows the evolution of C(x), A(x), t(z),
and T(z) for the solution at L 13.15 cm after about 250 rotations around the ring.
The small variations in peak amplitude visible in the plot of t(z) are transient and
disappear (variations less than 0.05 ms) within the next 400 rotations. Figure 15
shows the sequence of recovery times t and circulation periods T measured during
consecutive turns at a fixed location along the ring.

The amplitude of the oscillations in recovery time in Fig. 14 is 146 ms. The
amplitude of the numerical solution of the IDE in Fig. 11 is 136 ms. The prediction
from (35) is 109.1 ms. The IDE analysis predicts that there should be a very
slight increase in the solution amplitude upon moving to higher-frequency solutions
(0.4 ms at L 13.15 cm). A slight decrease (less than 1 ms) is observed in the IDE
simulations. However, there is a significant decrease in the amplitude of the 2L/3
solution compared to the 2L solution in the PDE. In addition, we were not able to
increase the ring size from L 13.15 cm without losing the 2L/3 solution, which
slowly drifted towards the 2L solution. Our attempts at bbtaining initial conditions
for a 2L/3 solution at L 13.25 cm using the method described above also failed.
We speculate that the presence of diffusion in the PDE model may be shifting the
bifurcation point for the short-wavelength modes to a higher value of a as well as

reducing their amplitude. In other words, there may not be an infinite number of
modes becoming unstable simultaneously in the PDE, as in the IDE.
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FIG. 14. Dynamics of a circulating pulse on a ring of length L 13.15 cm found from numerical
integration of the BR equations. The initial conditions were constructed to obtain an alternate
solution at period 2L/3. (a) Speed C(x), (b) pulse duration A(x), (c) recovery time tr(x), (d)
circulation period T(x). Transients have dissipated. Wavelength is A 8.8 cm.
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FIG. 15. Dynamics of a circulating pulse in a ring of length L 13.15 cm found from numerical
integration of the BR equations. The dynamics are from the alternate solution at period 2L/3. Plot

of () the recovery time tr and (b) the circulation period T as a function of the number of turns
around the ring at a fixed location.

Estimates for the wavelengths of the two oscillating solutions observed in the PDE
and IDE models can be obtained using our eigenvalue expansion near the steady state,
assuming that the final solutions are closely related to the original unstable modes.
Using (30) at L 13.15 cm, with 0.148 and d -0.105, yields A() 25.8 cm
and A(1) 8.75 cm. The wavelengths observed in the PDE model are 25.9 cm and
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8.8 cm, respectively, while in the IDE numerical simulations they are 25.7 cm and
8.7 cm.

Numerical simulation of the IDE reveals that the equation is sensitive to disconti-
nuitics in the initial conditions, as pointed out in [6] for the case of the related neutral
differential-delay equation. In addition, the discrctizcd equation that we have used in
our integration scheme supports large amplitude oscillations at arbitrarily large fre-
qucncy [7] for certain choices of restitution and dispersion relations. This is a potential
problem in extending the applicability of this theory to other systems. Although the
analysis of the IDE remains valid, there may be problems in simulating it numerically.
Hence, a better method is needed to compute numerically the periodic solutions of
the IDE. In spite of this, we expect that the analytical predictions based on the IDE
will be valid in excitable systems where our assumptions about the uniqueness of the
restitution and dispersion relations arc satisfied. These criteria are directly related
to the assumptions made in deriving the IDE directly from the general two-variable
system.

In the PDE, it appears that there are nonlinear effects involved in the selection
and interaction of the modes beyond what we have described in this analysis, and in
fact potentially beyond what can be captured in the IDE. This may be especially true
of the relative basins of attraction of the various solutions and how they interact in
the PDE model. For example, the infinite-dimensional Hopf bifurcation observed in
the IDE probably does not occur in the PDE. As hinted to by our results, the unstable
modes do not appear simultaneously in the PDE but arise in turn, with the lowest-
frequency mode (k 0) becoming unstable first, followed by higher-frequency modes
at shorter ring length. This could be corrected by adding a term to mimic the effect
of diffusion in the IDE. In spite of these shortcomings, the IDE formulation presented
here not only provides a novel and accurate description of phenomena observed in
the PDE model but uncovers uncharted dynamics that may not have been observed
otherwise and could prove important in understanding the behavior of excitable media
in other contexts.

Appendix. This appendix gives a detailed listing of the BR equations implied
by the current term IB in (1). The total current Iz/ is the sum of four currents car-
ried by potassium (I/ time-independent outward current, Ix time-activated outward
current), sodium (INa fast inward current), and calcium (5 slow inward current):

(39) Iz Ii + Ix + INa + I.

I/ is given by the time-independent function of voltage,

e4(V+8) 1 V + 23
(40) K 4 0.35 + 0. 0.3

e0"08(V+53) -- e0"04(V+53) 1 e-0"04(V+23)

The other three currents involve the time-dependent gating variables m, h, j, x,
d, and f. We have

(41) (9:v rn h j + xc)(V-

e0"04(V+77) 1
e0.04(V+35)

(43) L=9d f(V-E),
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where gNa 4 mS/cm2, gNac 0.003 mS/cm2, g, 0.09 mS/cm2, ENa --50 mY,
and E, -82.3- 13.0287 ln(c). The calcium concentration c satisfies

dc
(44)

dt
10-TIs + 0.07(10-7 c).

The gating variables all obey equations of the form

dx xoc x
(45) d-T x
where x ax/(ax + fix) and % 1/(OZx + fix). The form of the equation is the
same for all gating variables. The rate constants (a’s and/’s) depend on voltage and
arc given by

O.O005eO" 083(V+50) O.O013e-06(V+20)
(46) c:

1 + e’57(V+5) x 1 + e’4(V+2)

V+47
(47) c

1 e-0"1(V+47)
/m 40e-’56(V+72)

(48) Ch 0.126e-’25(V+77), /h
1.7

1 + e-.82(v+22.5)

0.055e-0"25(V+78) 0.3
(49) cj

1 + e-’2(V+78) 1 + e-l(v+32)

0.095e-o.ol(v-5) 0.07e-0.017(V+44)
(50) Cd-

1 + e-72(v-5)’ /d
1 --e’5(V+44)

O.012e 8 v+28 O.0065e ’2 v+3o)
(51) of 1 -H e’15(V+28) f 1 -t- e-’2(V+3)
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