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Logical and symbolic analysis of robust biological dynamics
Leon Glass1 and Hava T Siegelmann2

Logical models provide insight about key control elements of

biological networks. Based solely on the logical structure, we

can determine state transition diagrams that give the allowed

possible transitions in a coarse grained phase space. Attracting

pathways and stable nodes in the state transition diagram

correspond to robust attractors that would be found in several

different types of dynamical systems that have the same logical

structure. Attracting nodes in the state transition diagram

correspond to stable steady states. Furthermore, the sequence

of logical states appearing in biological networks with robust

attracting pathways would be expected to appear also in

Boolean networks, asynchronous switching networks, and

differential equations having the same underlying structure.

This provides a basis for investigating naturally occurring and

synthetic systems, both to predict the dynamics if the structure

is known, and to determine the structure if the transitions are

known.
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Introduction
One of the defining characteristics of living organisms is a

remarkable insensitivity of function and form to stochas-

tic fluctuations both in the environment and in the

organism itself. This robustness is a ubiquitous feature

of dynamics of biological processes ranging from intrinsic

oscillations and rhythms to the development of multi-

cellular organisms.

The current explosion of information concerning bio-

logical processes on multiple size scales poses a challenge.

Although there are many who are attempting to develop

new computer methods and mathematical models that

incorporate the most detailed anatomical and physiologi-

cal data available, such approaches often do not lend

insight into the origin of robustness. An alternative

approach is to identify defining characteristics of bio-

logical processes and to develop theoretical insight using

methods that relate the structure and interactions in

biological networks to qualitative descriptions of the

dynamics. Although the roots for such an approach were

set long ago [1–4], the emergence of systems biology has

witnessed the determination of network structures, inter-

actions and dynamics in a large number of different

systems [5,6,7��]. Synthetic biology has enabled the con-

struction of networks that support switchlike behavior

and oscillatory dynamics. In some cases, logical analysis

can aid in the design of the networks by predicting their

dynamics before their synthesis [8�].

Logical models are providing insight into the underlying

structures of a variety of biological systems [9�,10��]. In

this review, we first discuss the state transition diagram,

which provides the link between the logical models and

the dynamic features. Then we discuss the topological

structure of networks describing biological systems. We

then review work that combines logical analyses with

concepts from nonlinear and symbolic dynamics to pro-

vide a bridge between the structure and function of

complex biological networks.

The state transition diagram
In continuous mathematical models of biological net-

works, variables represent such features as concentrations

of chemicals, currents through ion channels, or firing rates

of neurons. Trajectories show the changes of these vari-

ables over time. However, symbolic representations pro-

vide a useful alternative description of dynamics. The two

main symbolic descriptions being used are the rate of

change [11,12��], and a coarse graining of state space, for

example by indicating whether variables are above or

below some threshold [2,13,14��]. Using symbolic

dynamics, trajectories can be represented as directed

graphs, called state transition diagrams, in which each

vertex represents a symbolic state, and the edges are

directed to show the allowed transitions. The repressi-

lator synthetic network [15] is composed of a set of three

genes that code for transcription factors, where each of

the transcription factors inhibits the synthesis of the next

in sequence, giving x a y a z a x, where a represents an

inhibitory interaction. The repressilator network can be

represented by binary variables. The state 1 for a variable

could correspond either to the variable having a positive

derivative [12��] or to the variable being above a

threshold [16,14��]. The state 0 may analogously desig-

nate a negative derivative or a variable being below a

threshold. Viewed as a Boolean switching network, an
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appropriate transfer truth table representation for this

network is

(xyz)t (xyz)t+1

(111) (000)

(110) (100)

(101) (001)

(100) (101)

(011) (010)

(010) (110)

(001) (011)

(000) (111)

This switching circuit therefore displays two cycles

000! 111! 000! . . ., and 100! 101! 001!
011! 010! 110! 100! . . .. However, since the cycle

000! 111! 000! . . . requires three elements to

switch simultaneously, and in real systems modeled,

for example, by differential equations or discrete systems

with stochastic updating, there would only be the possib-

ility for one element to switch in any time. Therefore, the

logical network describing the repressilator circuit has the

state transition diagram shown in Figure 1.

We propose that a large number of different biological

systems contain an underlying logical structure which can

be used to determine the state transition diagram by

extending the methods used to determine Figure 1.

Given the robustness of biological dynamics, the state

transition diagrams will show an attracting pathway, in

which all (or almost all) edges with one vertex on the

pathway are directed toward it. Further, for systems that

evolve robustly to a steady state, the state transition

diagram will contain a stable node to which all neighbor-

ing states are directed. The presence of attracting path-

ways and stable nodes in logical state spaces provides the

theoretical basis for explaining how gene networks

robustly demonstrate oscillations or carry out compu-

tation [17,14��].

Topological structure of networks and
interactions
One of the outstanding successes of modern biology has

been the development of tools to determine on a mass scale

the mutual interactions of key biological components

including proteins, DNA, and RNA [18–22]. Various stat-

istical and structural features of the resulting interaction

graphs in biological systems can be compared with inter-

actions graphs of social and man-made systems [23].

Although various characteristics (e.g. scale-free, small-

world, power-law) have been ascribed to the global topo-

logical connectivity patterns in such networks, recent

analyses question the validity of the original studies

[24��]. Focus is shifting to the importance of network motifs
defined as small subgraphs of a large network that occur

with greater frequency than would occur simply by chance

[6,25]. Network motifs indeed often correspond to func-

tional modules [5,6,26��], such as positive and negative

feedback loops and feedforward circuits, that are useful in

self-regulation, differentiation, and signal transduction.

In many instances, interactions can be determined to be

activating or inhibiting. However, this characterization

often lacks adequate specificity to make predictions about

dynamics. For example, we may have two activating

inputs for a given element of a network, but both may

be needed for activation (AND function), or either alone

(OR function) may be adequate. The dynamics could be

very different in these two cases [16]. As another

example, if a given element receives both activating

and inhibiting inputs, the dynamics may differ depending

on which was dominating when both were present. In

early development in Drosophila, inhibitory inputs gener-

ally negate activating inputs when both are present

[27,28��]. It is conceivable that a given input might be

either activating or inhibiting depending on other factors

such as the presence of other elements in the network.

These examples show that it may be necessary to know

more than the sign of the interaction.

Logical models of biological networks
Logical models of biological processes are based on the

assumption that key steps of biochemical control may

often display control in which output variables change

rapidly as input variables are varied. Proposed physio-

logical bases for this ultrasensitivity include allosteric
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State transition diagram of the repressilator [15]. The attracting cycle

corresponds to a stable oscillation in the experimental system and in

mathematical models of the repressilator. The inconsistency between

the figure and the truth table, as noted in the text, emphasizes an

important shortcoming in synchronous updating.
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changes in protein conformation, cooperative binding of

transcription factors to DNA, and reaction cascades

[7��,29,30�,31,32]. Such processes will only lead to sig-

moidal dependence of output on input variables. How-

ever, state transition diagrams based on the logical

structure can be often used to predict dynamics of con-

tinuous equations with sufficiently steep sigmoidal func-

tions [33,16].

Many different types of model are subsumed under the

rubric ‘logical model’ [34,10��]. In Boolean switching

networks all variables update synchronously [1]. In one

variant, the functions for each variable may not be fixed,

but may be selected in a probabilistic fashion [35]. Since

synchronous updating is not biologically realistic, various

modifications have been tried. Thomas suggested incor-

porating time delays into the dynamical control [3].

Although the resulting class of Boolean delay equations

may have extremely complex dynamics for some choices

of delays and logic functions [36], such models have

nevertheless been useful for modeling biological systems

[37]. In alternative approaches for updating logical

models of biological control, transitions are assigned to

different synchronous priority classes [38], or asynchro-

nous stochastic updating is assumed [39�,40–42]. Another

approach embeds the logical structure in differential

equations in which synchronous crossing of thresholds

is rare [2,14��]. In this context the state transition is a

directed hypercube, where each vertex is labeled by a

Boolean vector as in Figure 1. Such state transition

diagrams also show all the possible allowed transitions

for logical networks with stochastic asynchronous updat-

ing. Consequently, based solely on the logical structure of

the network, it is possible to predict symbolic sequences

of transitions in various embodiments of the underlying

logical structure. The wide range of logical models serves

as a basis for simplified models of biological control of cell

signaling networks [40,43,10��], cell cycle in yeast

646 Genetics of system biology

Figure 2

The state transition diagram for a logical model of yeast. The vertices represent different logical states of gene activity. Reprinted with permission of the

authors and publisher from [44]. Copyright (2004) National Academy of Sciences, U.S.A.
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[26��,44–46,47��,48], cell death [42] and developmental

systems in plants and animals [27,49–54].

The observation that the state transition diagram can be

computed based on the logic alone provides a theoretical

basis to investigate robustness based on the logical struc-

ture. Robust transition diagrams will be typified by

attracting paths through the symbolic state space

[44,47��,14��,48]. For example, Figure 2 shows the state

transition diagram for the yeast cell cycle determined by

Li et al. [44]. This is based on a simplified logical model of

11 genes in which each green vertex represents a different

state of genes and the blue pathway represents the

attracting cell cycle which will be expected to be robust

to a wide range of parameters.

In systems with attracting paths, the dynamics in the

Boolean systems with discrete time updating, stochastic

updating, or differential equations would be expected to

be analogous to each other.

Conclusions: extensions and open questions
Although the growing number of logical models of bio-

logical systems offers some optimism that the schemes

described here may be broadly applicable, there are

nevertheless a great many problems and directions that

have not yet been adequately investigated.

Multivalued systems. In real systems the effective

thresholds of a given component may not all be the same

and it may be necessary to develop multivalued models

[34,45]. Although the state transition diagram would no

longer be a hypercube, the same basic ideas would apply.

Time delays. Many biological processes contain significant

time delays [55�]. Although time delays have been used in

mathematical models [3], the dynamics of Boolean delay

equations can be quite complex [36]. Since in biological

processes, a time delay may be associated with intermedi-

ate chemical compounds or transport from one compart-

ment to another, one strategy to deal with time delays

would be to expand the sets of variables. There is also a

significant body of mathematical work dealing with the role

of time delays in simple negative feedback systems [56] in

which the delay may play a role of destabilizing a fixed

point leading to a stable oscillation. These abstract math-

ematical results may be relevant to recent experimental

studies of robust oscillations in Escherichia coli [55�].

Spatial structure. Logical models are proving useful in

developmental biology [27,49–54]. However, there is still

limited theoretical analysis on the integration of the state

transition diagrams with dynamics in spatial systems, or

whether attracting pathway here may correspond with the

notion of canalization recently invoked by Reinitz and

colleagues in their studies of development in Drosophila

[28��]. This is a rich area for future development.

Reverse engineering. Symbolic methods provide a strategy

to determine information about the structure of the

dynamics based on the experimental observations of

the state transitions. Using the methods described above,

there is a one to one correspondence between a transition

in a state transition diagram and an entry in the logic table.

Thus, the state transition diagram offers a powerful

method to determine the structure of gene networks

based on observed dynamics [57,27,14��]. An alternative

method of symbolic dynamics developed by Pigolotti

et al., provides information on signs of interactions based

on changes in derivatives [12��].

Software for logical network analysis and simulation. Several

software packages are now available to carry out simu-

lations of genetic regulatory networks including GNA:
Genetic Network Analyzer [58], GinSim [59]. We anticipate

continued evolution and development of software facil-

itating investigation of dynamics of complex networks.

Physiological systems. A large literature deals with dynamics

in physiological systems including cardiac and neural

dynamics [60–63]. Although the heart and brain have

incredible robustness in an individual and across species,

the theoretical underpinnings of such robustness are still

not well understood. Exploring the sensitivity of functional

properties of ionic models to changes in parameters is an

important area [64–67], and is sure to be a focus of future

research.

The vast amount of data and apparent complexity of

biological systems provide an overwhelming challenge

to theory. One strategy is to try to incorporate as much

data as possible to develop realistic models. Here we have

provided a review of recent papers that point toward an

alternative strategy — to use logical analysis and symbolic

dynamics to help understand the robust dynamical fea-

tures of biological systems.
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