Brorocy 309a: 1995
PROBLEM ASSIGNMENT #4 SOLUTIONS
Daniel Kaplan

Problem A - Book 5.4

The equations are

d
d_i = —myg— msh
dh h+
— = -m mag.
ai 3 49
Linearizing, to put them in the form
dx
— = A B
dt v+ By
dy
el D
7 Cz+ Dy
we find A = —my, B = —ms, O = my4, and D = m3. The eigenvalues are
therefore
_my +mg n V(=my +m3)2 — dmamy
2 2 ’
@ Is my + mg3 bigger than \/(—m1 + m3)? —4dmamy? If so, then both

eigenvalues must have real parts less than zero. Squaring both sides, and recall-
ing that my, mso, ms, and my are all positive, we find that m; + mg 1s in fact
greater than the discriminant. Since both eigenvalues have real parts less than
zero, lim_ g(t) = 0.

There is an oscillatory approach to the steady state if the discriminant
is negative, that is, if

—(m1 + m3)2 — 4m2m4 < 0.

The g-isocline is when dg/dt = 0, or,

h = —mg.
ma
The h-isocline is when dh/dt = 0, or,
h="%g
ms

Both these isoclines are lines through the origin. The g-isocline has a negative
slope and the h-isocline has a positive slope.
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Flow in the ¢, h plane. The g¢-
isocline is the thin line, the h-
isocline is the thick line.



Along the g-isocline, dg/dt = 0, so only h can change. Therefore, the flow
is vertical. We need only decide if 1t is upwards or downwards. The direction
of the vertical flow depends on which side of the h-isocline we are on: to one
side, the flow is up, and to the other it is down. We have to decide which side
is up. When g > 0 and h = 0, we have dh/dt = mag > 0, so the flow is up on
that side of the h-isocline. When g < 0 and A = 0, we have dh/dt = masg < 0
so the flow is down. A similar argument shows that the horizontal flow on the
h-isocline is leftward when ¢ > 0 and rightward when ¢ < 0.

Problemm B — Book 5.16

The limpet and seaweed equations are:

ds 9

o = 578 —sl = f(s,1)
dl 9

= sl—1/2—=1 = g(s,1).

@ The s-isocline is where 0 = s — s — sl, implying the two lines
s=0orl=1-s.

The [-isocline is where 0 = sl — (/2 — [, implying
[=0o0rl=s—1/2

Steady states occur where the s- and /-isoclines intersect each other. The steady
states occur at three places, (s =0,/ =10), (s =1,{=0), (s =3/4,1=1/4).
EI Linearizing, we get

A=1-2s—1 B=-s
=1 D=s—-1/2-2"

At (s = 1,1 = 0) this gives A = =1, B = =1, C = 0, and D = 1/2. The
eigenvalues are therefore — % + %. One eigenvalue is positive and one is negative,
so the steady state is a SADDLE.

At (s = 3/4,1 = 1/4), we have A = =3/4, B = =3/4, C' = 1/4, and

D = —1/4, giving eigenvalues of —% + Y ;/2. This is a FOCUS.
The flow can be easily sketched along the isoclines. Along the diagonal
l-isocline, we have | = s — 1/2 and we know the flow is horizontal. Along that

isocline, we find

d
d—j:5—52—5(5—1/2): %5—252.
This tells us that for s > 3/4, % < 0 and so the flow is leftward. For s < 3/4

the flow is rightward along the isocline.

/
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Flow in the s,! plane. The s-
isocline is the thin line, the [-
isocline is the thick line.



Arguing similarly, along the s-isocline given by [ = 1 — s, the flow is vertical
and % = % — 2[%. This means that the flow is downward when [ > 1/4 and
upward when [ < 1/4.

[d]

i) s(0) =0, 1(0) = 0 is a fixed point. Although it is unstable, if we start there,
we stay there.

ii) s(0) = 0, {(0) = 15 results in our moving to the origin. Note that when

s = 0 then % = 0, so s can never change from zero. Since 4 < 0 for

dt
s = 0, [ will eventually decay to zero.

iii) s(0) = 2, {(0) = 0. From here, we move to the saddle. Note that when
=0, % =0, so [ will stay zero.

iv) s(0) = 2, [(0) = 15 results in moving to the stable fixed point at (s =
3/4,1=1/4).

Problem C — Book 5.9

AN +N) _ (N, N N N2
[a] (dt )—O‘(V_Q_V_l)"i'o‘(v_l_v_z)_o'

E There 18 a steady state when J‘\/f—j = J‘\/f—ll Since Ny + No = M, we have
M — Ny = V—le implying

_ MV _ _ _ VoM
Nl_V2+V1 and NQ—M Nl_V2+V1 .

. Nl Nz OzNz Ozz N2 N1
No=ed| —-——|=——+— | — — —
Vi Vs Va il W
but N ) N
1 : 2
L N 2
V1 « 2+ V2
Substituting this in for J‘\/f—ll, we arrive at
Nz = —OzNz Vl + V2 .
ViVa

E’ The characteristic equation of the result found in (c) is

Vi+Ve
A2 — A=0
“ ViVa ’

giving the two eigenvalues

— —_ VitVy
AM=0and Ay =« T

' \
AN\ \\\
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Flow in the Ny, Ny plane. Both
isoclines are the same, shown by
the thick, black line. The flow
is zero at the isoclines, because
anywhere the isoclines intersect,
there 1s a fixed point. The thick,
gray line shows M = Ny + Ny =
1.5. Note that the flow is such
that if the initial condition is on
this line, the state will stay on
this line. This is how the system
conserves mass, as shown in part

(a).




The solution is therefore Na(t) = Ke*! + Be*2! = K + Be*2!. The initial
condition is N(O) =0so K +B =0 and we have

No(t) = K(1 — e2h).

Ast — oo, Ny = %, implying

- VoM _ VitV

K = ¢35 |and |y = —a52
It takes approximately 2 minutes to reach half of the way to the final
value, so e=2Y = 1/2, giving vy = —'%Zmin~".

Problem D

(a) (b) (c)
At the intersection point in (c), the flow would have to be in 2 directions. This
is only possible if the flow is zero, in which case the intersection point is a fixed

point.

Problem E
Answering the personal questions, I find A =5, B =6, C' = 6, and D = 35,

giving eigenvalues
A=204+13.75|

(Keep in mind that the B in the eigenvalue formula Eq. 5.13, is the negative of
the B in this problem, since the first equation is # = Az — By.)

The linear equation given in the problem is a general equation near a steady
state, where the linear approximation is valid. (If we assume that the parameters
are all positive, then the equation is no longer general.) As always, exponential
growth is valid only very close to the steady state. So, we can tell the Times
that our theory has little to say about the fate of the Earth, since we are far
away from the black hole.



Bonus

We will modify the Lotka-Volterra equations to include Verhulst growth for the
predator, y. This gives

d

W= ey = )

dy

o = vay + ky — by® = g(x,y)

The z-isocline occurs when az — Szy = 0, implying

The y-isocline occurs when yzy + ky — by®> = 0, giving

There are two fixed points, at (# = 0,y = 0) and (z = 0,y = k/b). When
% < & there is a third fixed point at (z = sz—_;ﬁ’ y=9%)
In order to look at the stability of these fixed points, we linearize, as always,

getting

A:%:Ox—ﬁy B
C’:g—i:'yy D=2 =ye+k—2by "

Alza—% and.

If /3 < k/b, then the fixed point at (z = 0,y = k/b) is stable, and extinction
of the prey is the outcome for any initial condition where y(0) > 0.

The eigenvalues are
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Flow in the z, y plane for the
modified Lotka-Volterra equa-
tions. o =1, v =12, 8 =1,
k =1.5,and b = 1. The thin lines
are the x-isoclines, and the thick
lines are the y-isoclines. The flow
is towards a steady state where
the prey are extinct.

a=1,~v=12 =1, k= 0.5,
and b = 1. The flow is towards a
steady state where both predator
and prey exist.



