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As long ago as 1620, no less a person than Francis Bacon extolled the virtues of
interdisciplinary research. He wrote [1]:

The men of experiment are like the ant, they only collect and use;
the reasoners resemble spiders, who make cobwebs out of their own
substance. But the bee takes the middle course: it gathers its ma-
terial from the flowers of the garden and field, but transforms and
digests it by a power of its own. ... Therefore, from a closer and
purer league between these two faculties, the experimental and the
rational (such as has never been made), much may be hoped.

For some hundreds of years, mathematicians followed his advice. The distinctions,
not to say rivalries, between pure and applied mathematics that can be such an
unfortunate feature of modern mathematics departments were of little significance
to, for instance, Leonhard Euler, who in 1726 was offered a job in St. Petersburg
teaching applications of mathematics and mechanics to physiology. (This is, alas,
the sort of job that appears today only very rarely, if ever.) It is, of course, unnecess-
sary to point out yet again that scientists of old were people of broad education and
interests, unlimited by more modern conceptions of specialty. However, despite this
widely known fact, nowadays it is not always fully appreciated that mathematics
and biology have been intertwined for well over 200 years and that the current high
fashion for mathematical biology is nothing new, merely a reinvigoration of what
people have been doing for a long time.

One of my favourite examples of early interactions between mathematics and
medicine (although perhaps this is stretching things just a little) is Robert Recorde,
a physician at the court of King Edward VI of England, but also a mathematical
teacher of note and the first to use the modern “=” sign. In 1557 he published The
Whetstone of Witte, in which he writes

...and to avoide the tediouse repetition of these woordes : is equalle
to : I will sette as I doe often in woorke... , a paire of paralleles, or
Gemowe [twin] lines of one lengthe, thus: , bicause
noe. 2. thynges, can be moare equalle.

Indeed so. Another example that amuses me is the argument between Daniel
Bernoulli (who, by the way, was Professor of Medicine at Basel for a time) and
Jean-le-Rond D’Alembert over whether or not one should be vaccinated against
smallpox. To address this question Bernoulli published in 1760 [2] one of the first
mathematical models in biology, a simple compartmental model involving suscep-
tible and immune populations. D’Alembert [3] didn’t like his arguments a great
deal, responding that (if I may be allowed to paraphrase) vaccination was all very
well, but it only helps you to live a few more years at the end of your life, and,
after all, you can’t enjoy life then anyway, so what’s the point? Although he may
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have been the first well-documented case, D’Alembert certainly has not been the
last mathematician to miss the biological point completely. Another early mathe-
matically inclined physiologist was Otto Frank, of the Frank-Starling law, who in
1899 used a lovely model of the ejection pressure pulse to derive the blood flux out
of the heart [4]. Similarly, Helmholtz was renowned, not just as a mathematician
and physicist, but also as a physiologist; he was the first to measure the speed of
the action potential [5], as well as formulating a theory of hearing [6] that is still
valid today, at least for some amphibians.

In the last 100 years, examples of interactions between mathematics and biology
have come at an ever-increasing rate; many of them are discussed in a wonderful
introductory chapter in a recent book by Beuter, Glass, Mackey and Titcombe,
about which I shall have more to say later. Huxley, originally trained in physics,
mathematics and chemistry, gained a Nobel Prize in 1963 for his work with Hodgkin
(who himself was encouraged while young to learn as much mathematics as he
could) on the action potential of the squid giant axon; A.V. Hill, third wrangler
in the Mathematical Tripos at Cambridge, gained a Nobel Prize in 1922 for his
work on muscle; the physics background of Francis Crick is widely known — what
is less well known is that Watson and Crick shared the 1962 Nobel Prize with the
physicist Maurice Wilkins, who was, I kid you not, born in Pongaroa, New Zealand
(I just had to mention that). More recently, Sakmann, whose initial passion for
physics and biology led him into electrophysiology, shared the 1991 Nobel Prize
in Physiology and Medicine with Neher, whose early interest in mathematics and
physics led him into biophysics.

Looking around applied mathematics today, we see that these traditional con-
nections are alive and well; from genetics to ecology, applied mathematicians are
playing an ever-increasing role in the biological sciences. Just as physics inspired
a great deal of applied mathematics in the 19th century, there is no doubt that
biology is one of the most dynamic areas in modern applied mathematics.

The tremendous vitality of mathematical physiology comes about because it
serves, as it has in the past, as a meeting ground for people trained in different
disciplines. Not only are many physiologists using advanced mathematical and nu-
merical techniques, many mathematicians are applying their skills to the solution
of physiological problems. An excellent example of the former is Charles Peskin,
currently at New York University. Although his initial training was in medicine,
his interest in the heart led to him learning fluid mechanics and numerical methods
under Chorin. His subsequent work with David McQueen [7] is widely considered
to be one of the most outstanding examples of mathematical physiology and fluid
mechanics and has spawned a considerable industry based around the immersed
boundary method. Another of my favourite current mathematical physiologists
is John Rinzel [8], who worked for many years at the NIH. In the early 1970s
he published papers with one of the most eminent electrophysiologists of the time
(W. Rall) as well as with one of the eminent applied mathematicians of the day (J.B.
Keller), went on to discover the beautifully elegant analysis of bursting oscillations
so important in endocrine cells, and now works with experimental colleagues on a
wide range of problems in neuroscience. Or take Jim Keener, whose mathematical
studies of cardiac electrophysiology have inspired more than one generation of ap-
plied mathematicians, myself included. Or Nancy Kopell, the co-author of some of
the most profound results in coupled oscillators, now working with experimentalists
in neuroscience. The late, and much missed, Joel Keizer was originally a physical
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chemist, specialising in non-equilibrium thermodynamics, but later in life turned to
biological modelling, constructing some of the most important models of bursting
oscillations and calcium dynamics [9]; partly as a result of the efforts of Joel Keizer,
in the study of calcium oscillations and waves the connections between experimen-
talist and theoretician are now close and commonplace. For a final example, let me
point to the current work of Sakmann and Neher [10] on synapses, where we see
an impressive combination of modeling and experiment in which both the mathe-
matics and the physiology are crucial and nontrivial. In just about every area of
physiology, from neurons to the kidney, from the retina to the cochlea, from the
behaviour of single receptor proteins to the control of whole-body hormonal oscilla-
tions, mathematical methods have remained an integral part of modern physiology.

The ease with which mathematical methods may be used in physiology is due, in
great part, to two complementary things. On the one hand, physiology has always
been a highly quantitative science. Studies of ion channels and neurons, of kidney
function or the circulatory system have always required a detailed knowledge of
mathematics and physics, today no less than before, and the data obtained are, in
general, highly reproducible. This means that models can be held to a high standard
of accountability, necessitating sophisticated methods for their construction and
analysis and providing a space for the mathematical modeller to work. On the
other hand, the rise of the computer has allowed for the construction of ever more
detailed models and the analysis of such models by people who may not have a
rigorous mathematical training but who are expert in computational approaches
and visualisation. As a result, nowadays a large part of the interaction between
modellers and experimentalists takes place in the common domain of the simulation.

Having painted such a rosy picture of happy mathematicians and smiling ex-
perimentalists skipping hand-in-hand across a field of daffodils, I must address the
obvious question. If, as I claim, there is such a rich history of mathematical bi-
ology and physiology, why then are there not mathematical physiologists in every
math department? Why do tensions still exist between those mathematicians of a
purer persuasion and those working at the experimental coal-face? Why is the cur-
rent high fashion of mathematical biology often seen as something new and radical?
Mathematical physiologists who concentrate on understanding and answering a sci-
entific question rather than developing new mathematical techniques run the risk
of being considered second-rate by their theorem-inclined colleagues, while those
same colleagues understandably resent being considered elitist and irrelevant. The
complete difference in philosophy between these two ends of the spectrum can make
mutual understanding difficult. Only 15 years ago, one of the great leaders of math-
ematical biology in the 20th century, James Murray, likened mathematical biology
to a camel train being annoyed by barking dogs but continuing nonetheless [11].
And let us not forget that mathematicians are not solely to blame; there have been
few jobs for mathematicians in physiology departments in the last 30 years. Not to
mention that one still hears, as I have heard so many times in the past: “Mathemat-
ical modelling? It’s all garbage. Stay in your ivory tower and leave us real people
alone.” However, although I don’t entirely understand why, I believe that these
times are passing, if not gone already. Now we have a plethora of jobs for mathe-
matical biologists across the world; we have grant money from the NIH and NSF
targeted specifically to interdisciplinary research; we even have an NSF-funded in-
stitute, the Mathematical Biosciences Institute (http://www.mbi.osu.edu), devoted
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entirely to mathematical biology. I believe that the true value of mathematical biol-
ogy is once again widely appreciated. The exact reasons for this change may escape
me, but I appreciate the result.

When I was an undergraduate student studying mathematics (of the purer sort),
I got an old black book out of the library, a book called Lectures on Nonlinear
Differential Equation Models in Biology, published in 1977 [12] by some guy Murray
I’d never heard of. When I read that book I knew right then that is what I was
going to do. I knew nothing at all about physiology or mathematics, or very much
of anything really, but I decided this was for me. (As it happens, some two years
later I applied to go to Oxford to do my doctorate with Murray. I have it on the
very best authority that he looked at my application, thought to himself “Sneyd?
That’s a funny name” and threw it into the rubbish bin. Ah well.) Thus I know
from personal experience that good books are crucial, that they can have a profound
effect on students, and that without them to inspire the next generation, a field
will wither and die.

Which (to get finally to the topic of this review, as promised earlier) is reason
enough to welcome the recent book Nonlinear Dynamics in Physiology and Medicine
[13], edited by Beuter, Glass, Mackey and Titcombe, four members of the Center
for Nonlinear Dynamics, or CND. With six Canadian universities as participating
members, spanning physiology, mathematics, neurology and physics departments,
and with some of the best mathematical physiologists in the world, the CND stands
out as one of the great international centres. Not only that, but the CND has also
organised a number of summer schools (in 1996, 1997 and 2000) that have served
as the training ground for many younger modellers. The book edited by Beuter
et al. is a compilation of notes from these summer schools. It’s partly a terse
mathematics book (particularly the first few chapters on nonlinear dynamics) and
partly a presentation of somewhat unconnected research questions (replication of
blood cells, the pupil light reflex, reentry in excitable media, and muscular tremor),
but it gives a clear picture of the mathematics that arises from the study of physi-
ological dynamical systems (despite the title, there really isn’t much on medicine).
The application of nonlinear dynamics to physiology has a long and illustrious his-
tory, beginning with the work of Weiner, Rosenbluth, Van der Pol, Bonhoeffer and
FitzHugh, with modern applications in neurophysiology, calcium dynamics, cardiac
electrophysiology, and a host of other areas. Although the breadth of this book is
considerably less than this — it really deals only with the work of people at the
CND, with little attention to much else — it is well worth having just for that.
As part of the Springer Interdisciplinary Applied Mathematics series [14] it joins a
line of books that are leading the way in showing how mathematics can be usefully
applied to biology and physiology.

Given the current drive to sequence genomes, it is easy to forget that knowing the
alphabet does not mean we have deciphered the language. Mathematical models
are crucial, not only for the initial steps of finding the gene sequences, but also
for the subsequent study of how a genetic alphabet can organise and control a
complex structured physiology. Thus, while we list each A, C, G and T, let us also
remember the words of Francis Bacon exhorting us to be neither ant nor spider.
Let us attempt to be neither busy collectors of data nor spinners of intellectual
cobwebs, but instead let us digest from both flower and field, using mathematics
and experiment jointly to advance our understanding of some of the most important
scientific questions of our time.
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