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Cerebellar stellate cells form inhibitory synapses with Purkinje cells, the
sole output of the cerebellum. Upon stimulation by a pair of varying in-
hibitory and fixed excitatory presynaptic inputs, these cells do not re-
spond to excitation (i.e.,, do not generate an action potential) when the
magnitude of the inhibition is within a given range, but they do respond
outside this range. We previously used a revised Hodgkin-Huxley type
of model to study the nonmonotonic first-spike latency of these cells and
their temporal increase in excitability in whole cell configuration (termed
run-up). Here, we recompute these latency profiles using the same model
by adapting an efficient computational technique, the two-point bound-
ary value problem, that is combined with the continuation method. We
then extend the study to investigate how switching in responsiveness,
upon stimulation with presynaptic inputs, manifests itself in the context
of run-up. A three-dimensional reduced model is initially derived from
the original six-dimensional model and then analyzed to demonstrate
that both models exhibit type 1 excitability possessing a saddle-node on
an invariant cycle (SNIC) bifurcation when varying the amplitude of I,;,.
Using slow-fast analysis, we show that the original model possesses three
equilibria lying at the intersection of the critical manifold of the fast sub-
system and the nullcline of the slow variable /15 (the inactivation of the
A-type K* channel), the middle equilibrium is of saddle type with two-
dimensional stable manifold (computed from the reduced model) acting
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as a boundary between the responsive and non-responsive regimes, and
the (ghost of) SNIC is formed when the l15-nullcline is (nearly) tangential
to the critical manifold. We also show that the slow dynamics associated
with (the ghost of) the SNIC and the lower stable branch of the critical
manifold are responsible for generating the nonmonotonic first-spike la-
tency. These results thus provide important insight into the complex dy-
namics of stellate cells.

1 Introduction

The cerebellum, in coordination with the brain, plays a central role in con-
troling body posture, movements, and some rhythmic physiological pro-
cesses such as heart beats and breathing (Arshavsky & Orlovsky, 1986;
Brooks & Thach, 2011; Holmes, 2000; Wolf, Rapoport, & Schweizer, 2009).
The main electrical activities seen in the cerebellum are formed in the cere-
bellar cortex, which consists of three layers: the molecular layer on the
top, the Purkinje layer in the middle, and the granular layer at the bottom
(Miall, 2013; Palay & Chan-Palay, 1974). The GABAergic signals sent deep
into the nuclei by the Purkinje cells are controlled by the interactions be-
tween inhibitory inputs from interneurons, such as basket and stellate cells
(Korn & Axelrad, 1980), and excitatory inputs from parallel and climbing
fibers (Eccles, Llinds, & Sasaki, 1964; Morton & Bastian, 2004). Cerebellar
stellate cells also receive excitatory and inhibitory inputs from parallel fibers
and other stellate cells (Albus, 1971; Liu, Lachamp, Liu, Savtchouk, & Sun,
2011), making such presynaptic inputs play a significant role in determin-
ing the type of activities generated by Purkinje cells (Midtgaard, 1992b;
Mittmann, Koch, & Héusser, 2005).

Stellate cells are spontaneously active; they tonically fire action poten-
tials (APs) when isolated (Hausser & Clark, 1997; Llano & Marty, 1995;
Midtgaard, 1992a). However, recent experimental evidence suggests that
the intrinsic excitability properties of these neurons (including firing thresh-
old, firing frequency, and first-spike latency) temporally change during
whole-cell configuration before they all eventually stabilize around 30 min
post-sealing /breakthrough into the cell (Molineux, Fernandez, Mehaffey, &
Turner, 2005). This phenomenon was previously termed run-up and was in-
vestigated dynamically using a revised Hodgkin—-Huxley (HH) type model
(Mitry, Alexander, Farjami, Bowie, & Khadra, 2020) that was adopted from
(Anderson et al., 2010; Molineux et al., 2005). The model consists of five
ionic currents: fast Na® (Ina), delayed rectifier Kt (Ix), A-type Kt (Ia),
T-type Ca?* (Ir), and leak (I.) currents. The study in Alexander, Mitry, Sa-
reen, Khadra, and Bowie (2019) showed that the increase in excitability
during run-up from 0 min (pre-run-up) to 30 min (post-run-up) is due to
shifts in the activation and inactivation curves of Iy, and I5. This model
was shown to exhibit type 1 excitability and to possess a saddle-node on an
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invariant cycle (SNIC) bifurcation, a hallmark of type I excitability (Franci,
Drion, & Sepulchre, 2012; Izhikevich, 2000), when the membrane potential
was plotted as a function of applied current I,pp. During run-up, the SNIC
was shown to shift both downward, indicating a more hyperpolarized fir-
ing threshold, and leftward, indicating a lower rheobase (Mitry et al., 2020).
The ghost of the SNIC (Izhikevich, 2006; Sherman & Ha, 2017) was also
shown to produce a slow region in state-space through which solution tra-
jectories travel at a slower rate, producing intriguing dynamics.

One peculiar feature of stellate cells is their ability to generate non-
monotonic first-spike latency as a function of membrane holding potential
(Molineux et al., 2005). More specifically, when these neurons are presented
with decreasing magnitudes of hyperpolarizing holding potential (bias cur-
rent I,;,s), followed by a fixed depolarizing test current (Iiest) in a step proto-
col, their first-spike latency initially increases, then decreases until it reaches
a plateau. It was shown that the nonmonotonic latency profile is caused
by the differences in Vi, of the steady-state inactivation parameters of
the outward A-type K* and low-threshold inward T-type Ca*? channels
(Molineux et al., 2005). Further analysis of this feature (Mitry et al., 2020)
revealed that the nonmonotonic latency is preserved during run-up. More-
over, the latency can be made arbitrarily large if the amplitude of Iies in
the step current is chosen in such a way that the response of the system
lies very close to the stable invariant manifold of a saddle or a saddle-node
equilibrium (Mitry et al., 2020). Mitry et al. (2020) have suggested that the
ghost of the SNIC, along with the “distance” from an attracting periodic or-
bit (starting from a given holding potential), are both involved in producing
the nonmonotonic latency profile. The effects of these two factors individ-
ually or collectively on the response of the system, however, have not been
tackled.

Stellate cells also show interesting dynamics in response to a pair of in-
hibitory and excitatory presynpatic (dynamic) inputs. Indeed, experimen-
tal evidence has shown that applying three pairs of such presynaptic inputs
with increasing magnitude of inhibition (starting from 0 pS), while keeping
the magnitude of excitation fixed, causes the cell to switch from being re-
sponsive (able to fire an action potential, AP) to nonresponsive (unable to
fire an AP) and back to responsive again (Molineux et al., 2005). This means
that the middle pair of presynaptic inputs with an intermediate magnitude
of inhibition produces “paradoxically” a graded response (without an AP).
Prior to firing an AP, however, the response generated by the third pair
(when the inhibition is high) is actually slightly lower in amplitude than
the one generated by the middle pair, indicating that the AP firing thresh-
old isnot well characterized. In other words, the firing threshold is modified
when the amplitude of the inhibition is varied. The revised HH-type model
in Mitry et al. (2020) was successful in capturing both of these phenomena
during pre- and post-run-up, namely, the nonmonotonic latency profile and
the switching in responsiveness. For the latter, it was shown that the model
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can switch three times (rather than once) between responsive and nonre-
sponsive regimes as the magnitude of the inhibition is monotonically in-
creased without explaining how the switching phenomenon is dynamically
produced.

In this study, we analyze the response of stellate cells to such inhibitory
and excitatory presynaptic inputs, using a dynamical systems approach, to
decipher their various activities. Applying a slow-fast analysis, we explain
how the ghost of the SNIC, along with the traveling time from a steady
state to an attracting periodic orbit, plays roles in generating the switching
phenomenon and the nonmonotonic first-spike latency. We do so using the
revised pre- and post-run-up HH-type model introduced in Molineux et al.
(2005) and then reparameterized in Mitry et al. (2020). The bifurcation anal-
ysis performed in Mitry et al. (2020) is expanded in new directions by adapt-
ing advanced and efficient computational techniques, such as the two-point
boundary value problem (2PBVP) and continuation in Auto, to recompute
the nonmonotonic first-spike latency and the boundary defining the switch-
ing in responsiveness (all of which were previously computed manually).
Because of the computational efficiency of these techniques, we explore a
larger parameter space and provide an explanation as to how the slow re-
gion formed by the ghost of the SNIC is created and how it can give rise to
nonmonotonic latency. Model reduction is then applied to show that at least
three dimensions are needed to generate the switching phenomenon, and a
comparison between the full and reduced models is conducted to demon-
strate that they are both type 1 oscillators possessing a SNIC bifurcation
with respect to the applied current I . In our slow-fast analysis, we treat
the inactivation of A-type K* as the slow variable. We conclude, based on
this analysis, that (the ghost of) the SNIC is formed when the /i5-nullcine
is (nearly) tangential to the critical manifold of the fast subsystem. Further-
more, we show that the slow dynamics caused by the ghost of the SNIC
is due to the bottleneck effect created when the ha-nullcine and the critical
manifold of the fast subsystem are close (Rinzel & Baer, 1988; Sardanyés,
2009). Our analysis also reveals that this slow dynamics, together with how
long trajectories travel along the lower branch of the critical manifold, pro-
duces the nonmonotonic first-spike latency profile.

2 Methods

2.1 Mathematical Model. A revised HH-type model for cerebellar stel-
late cell electrical excitability was previously developed (Mitry et al., 2020).
The model more accurately captures the experimental data during both pre-
and post-run-up with a few changes in parameter values of the steady-state
(in)activation curves of ionic currents from the original model presented in
Molineux et al. (2005).

The revised five-dimensional model, referred to hereafter as the full sys-
tem, is given by
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2.1)

CV =Lpp—Ina—Ik—LL —Is—It
X = (Xeo —X)/Tw, X =h,n,np,ha, ht,

where C is the membrane capacitance, I pp is the applied current, x is the
gating variable of each ionic current I, (n = Na, K, L, A, T), x« is its steady
state, and t, is its time constant. The ionic currents are
INa = 8Na mio h (V - ENa)a

IK = JK Tl4 (V — EK),

I =gu(V —Ev),

In = ganaha (V — Ex),

It = gr 100 hr (V — Eca),
where g, is the maximum ionic conductance, E, is the reversal potential, 171,
is the steady-state activation of Ina, and mr,« is the steady-state activation

of It. These functions and parameters are the same as those presented by
Mitry et al. (2020). The steady-state (in)activation functions are of the form

1

Xoo = —FF—— 7>
T e (V—ua)/5e

x =m,h,n,na, ha, my, hr.

The time constant for the inactivation of Na™ current is given by

2Aw
vV - Vc)z + w?’

Th:y0+4n

and the time constant for the activation of K* current is given by

6
Tn = W.
Parameter values of the full system (during both pre- and post-run-up) are
identical to those presented in Mitry et al. (2020) and are listed in Tables 1
and 2.

To study the response of the system to stimulation, we use either a
current-step protocol Lpp = Ipias + (liest — Ibias)H (t — t*), where H(t —t*) is
the Heaviside step function, consisting of a bias current (L,s) that hyperpo-
larizes the stellate cell model to a rest state (holding membrane potential),
followed by a test current (liest) applied at f = t* that depolarizes the stel-
late cell model above the threshold, or apply a presynaptic (dynamic) input
Lapp = Ibias + (Isyn — Ibias)H(t — t*) (Mitry et al., 2020; Molineux et al., 2005),
where Iy, is the sum of two alpha functions, one of which is shifted 15 time
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Table 1: Parameter Values of the Full System, Equation 2.1, and the Reduced
Model, Equation 2.3, That Do Not Change During Run-Up.

Parameter Value Parameter Value Parameter Value

C 1.50148 uF/cm? 2Na 3.4 mS/cm? Ena +55 mV
A 322 ms.mV 9K 9.0556 mS/cm? Ex —80mV
Yo 0.1 ms SL 0.07407 mS/cm? EL —38mV
Ve —74mV gA 15.0159 mS/cm? Ex —80mV
w 46 mV g7 0.45045 mS/cm? Eca +22 mV

Table 2: Parameter Values of the (In)activation Functions of the Full System,
Equation 2.1, and the Reduced Model, Equation 2.3.

Activation Inactivation
Current vy (MV) sy (mV) 17y (ms) vy (MV) sy (mV) 7y (mMs)
INa —37 (—44) 3.0 - —40 (—48.5) —4.0 7(V)
Ik -23 5.0 (V) - - -
Ia —27 (—41) 13.2 5 —80 (—96) —6.5(—9.2) 10
It -50 3.0 - —68 -3.75 15

Note: Two values are presented for parameters that are affected by run-up (without
parentheses: pre-run-up; between parentheses: post-run-up).

units away from the origin, given by

Iiyn = it (V +82) e H(t) + Gexc (t — 15) V e 271 ¢ (¢t — 15).
2.2)

Figure 2A shows a graphical illustration of such a presynaptic input. The
magnitude of the inhibition/excitation (ginh/gexc) Will be varied throughout
this study, whereas o1 = —1.25 ms™! and o, = —3 ms~! are kept fixed.

Like all other HH-type models, differences in timescales between the
different variables of the full system, equation 2.1, exist. A straightforward
way to assess the timescale separation of these variables is to compare the
maximum changes occurring in their derivatives over a full AP cycle. This
is done in Figure 1, where the time traces of the derivatives of the gating
variables—f (black), 71 (green), 114 (orange), Jia (blue), and it (red)—of sys-
tem 2.1 are shown, indicating that 4 is the slowest variable and can be
treated as a parameter in our slow-fast analysis. According to Figure 1, the
gating variable h is also slow and can be treated as a parameter, but it is
not as slow as ha.

2.2 Model Reduction. There are always limitations to visualizing
topological objects with more than three dimensions, produced by
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Figure 1: Time traces of variations in the (in)activation variables of ionic
currents— (black), 7 (green), 115 (orange), Jia (blue), and hir (red)—during a
full AP cycle. The curves /15 and /iy are very close to one another and are not
discernible. The inset shows a magnification of these two curves.
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Figure 2: (A) Graphical representation of the presynaptic input defined by
equation 2.2, whose inhibitory (different shades of blue) and excitatory
(different shades of orange) components are both dynamic. (B) Graphical rep-
resentation of the presynaptic input defined by equation 2.4, whose inhibitory
component (different shades of blue) is dynamic but excitatory component
(orange) is a current pulse.

high-dimensional systems. With a five-dimensional model like the full sys-
tem, equation 2.1, it is not possible to visualize the geometry of topologi-
cal objects such as manifolds associated with saddle-type steady states and
limit cycles.

To resolve this problem, we develop a reduced model analogous to sys-
tem 2.1. This is done by replacing the inactivation of Na* currenth by 1 —n,
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where 7 is the activation variable of K* current, as well as replacing the ac-
tivation and inactivation variables of A-type K current, na and hy, by n
and hr, respectively, where h is the inactivation of T-type Ca®* channel.
This generates a new current, given by Ix := gk nht (V — Vk). The result-
ing three-dimensional model (referred to hereafter as the reduced model)
becomes

CV = Iapp — 8Na mgo (1 - H)(V - VNa) — 8K 1’14 (V - VK)
- (V=Vi)—gxnhr (V= Vi) —grmr.ehr (V —Vca)
n o= (noo - n)/rn

ht = (h1.00 — h1)/15,

2.3)

where the steady-state (in)activation functions 1, 11a, 17,00 and hit o are
the same as those presented for system 2.1 and specified in section 2.1. Its
parameter values are provided in Tables 1 and 2. The reduced model differs
from the full system in many respects, but as we will see, it preserves some
of the dynamics of the full system and can be used to provide insight into
how switching in responsiveness is produced. It is important to point out
here that applying such a model reduction by substituting the (in)activation
functions of certain voltage-gated ion channels with other equivalent ones
has been previously used to simplify the analysis (Bérgers, 2017; Fernandez,
Engbers, & Turner, 2007; Krinskii & Kokoz, 1973). Indeed, by doing so, the
computation and visualization of (un)stable manifolds of steady states and
periodic orbits become feasible, shedding light on the nontrivial dynamics
of the full system that are otherwise undecipherable.

2.3 Simplification of the Presynaptic Input. We expect that the struc-
ture of the full system becomes displaced or deformed during the appli-
cation of the excitatory component of the presynaptic input defined by
equation 2.2. This will be problematic when studying how this structure
governs switching in responsiveness, one of the key features we are ana-
lyzing. To resolve this issue, we replace the excitatory component of the
alpha function in equation 2.2 by a current square pulse applied for 5 ms
while the dynamic inhibitory input (applied for 5 ms) is removed as soon as
the excitatory input is applied. The application of such excitatory input will
not displace or deform the bifurcation structure of the full system and keep
it frozen in time during the application of excitatory pulse and when there
is no more input (i.e., after removing the pulse). With these simplifications,
we obtain the following expression for the presynaptic input,

Iygn = Ginnt (V +82) e H(t) H(5 — t) + Gexe H(t —5) H(10 —t), (2.4)

where o is the same as in equation 2.2. For a graphical illustration of such
presynaptic input, see Figure 2B.
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2.4 Software and Numerical Methods. We use the pseudo-arc-length
continuation software package Auto (Doedel, 1981; Doedel & Oldeman,
2010) for computing the bifurcation diagrams and the latency profiles
throughout the letter with the help of XPPAUT (freeware developed by
Bard Ermentrout available online at http://www.math.pitt.edu/~bard
/xpp/xpp-html). The code for regenerating the figures is available online
(Farjami, Alexander, Bowie, & Khadra, 2019).

We also adapt a 2PBVP technique to compute the stable manifold of a
saddle equilibrium of the reduced model as a family of orbit segments in
Auto. Here, we briefly explain how we use 2PBVP to do so (for a detailed
description, see Krauskopf et al., 2005). Each orbit segment u(s) € R® (0 <
s < 1), which lies on the manifold, is a solution of the rescaled system,

1 = TF(u), (2.5)

where F is the right-hand side of the reduced model, equation 2.3.

A set of three boundary conditions is also needed to make the orbit seg-
ment a well-defined solution of the rescaled system, equation 2.5. These
boundary conditions can be arbitrarily distributed at the start (k) and at the
end (3 — k) of each orbit segment, where k =1, 2, or 3. The boundary con-
ditions are (hyper)surfaces transverse to the start and end of each orbit seg-
ment. For example, suppose we have a system that possesses a saddle equi-
librium with two negative eigenvalues. To compute the two-dimensional
stable manifold of the equilibrium, we choose k = 2 boundary conditions
at the start of the orbit segment. These boundary conditions lie along the
circumference of a tiny ellipse around the equilibrium in the plane spanned
by the stable eigenvectors corresponding to the negative eigenvalues of
the saddle equilibrium. There are many ways to choose the other 3 —k =1
boundary condition at the end of the orbit segments; for instance, it can be
set to a plane, a sphere, or any surface transverse to the orbit segments, to
name just a few. Changing one of the boundary conditions along the ellipse
circumference generates a family of orbit segments that together form the
manifold. Note that the first orbit of the manifold can be computed by inte-
grating backward in time or using a homotopy step (Krauskopf et al., 2005;
Farjami, Kirk, & Osinga, 2018). This is the technique used for computing the
two-dimensional stable manifold of the saddle equilibrium that belongs to
the reduced model, equation 2.3.

We also use 2PBVP to recompute the latency profile in a more computa-
tionally efficient and systematic manner than previously done in Mitry et al.
(2020). The same as for computing the stable manifold, we first rescale the
orbit segments to the time interval [0,1]. We then set three boundary condi-
tions at the start of the first orbit segment in such a way that the start of each
orbit segment lies at a stable equilibrium of the full system when it is hyper-
polarized by Ipi,s and no L is applied. We also set the boundary conditions
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at the end of the orbit segments on top of the first spike with respect to the
membrane potential when dV/dt = 0. The first response of the full system
is computed for a fixed value of Iy;,s by integrating forward in time while
Liest is applied. The computation is stopped as soon as dV/dt = 0 is satisfied.
Varying Ii,s in the current-step protocol while keeping the integration time
free and dV/dt = 0 at the end of each orbit segment generates the nonmono-
tonic profile of the first-spike latency. Note that we use the same value of
Liest for computing each nonmonotonic first-spike latency profile.

When the full system is not responsive to dynamic presynaptic inputs,
the first-spike latency of the response is infinite. To compute the boundary
between responsive and nonresponsive regimes, we use a similar 2PBVP
setup and let the magnitude of inhibition g, (or excitation gex.) vary. The
latency increases unboundedly as ginn (gexc) approaches the boundary due
to a connection from a stable to a saddle equilibrium. We set the latency at
a very large value and approximate the boundary in the (gexc, ginn)-plane.
One can use Lin’s method (Krauskopf & Riess, 2008) to detect the moment
of connection between the stable and saddle equilibria and continue the
boundary in (gexc, ginn)-plane while the connection is preserved.

3 Results

3.1 Type I Excitability and Nonmonotonic Latency Profile. Mitry et al.
(2020) showed that the bifurcation diagram of the full system, equation 2.1,
with respect to I,pp produces a saddle-node on an invariant cycle (SNIC) bi-
furcation, where a family of periodic orbits and a saddle-node bifurcation
of equilibria meet and the firing period becomes infinitely large. Figure 3
shows that, indeed, the bifurcation diagrams of system 2.1 with respect to
Lipp for the pre- and post-run-up parameter sets exhibit the same under-
lying dynamics manifested as type 1 excitability, with three branches of
stable (solid) and unstable or saddle (dotted) equilibria (black lines) merg-
ing at two saddle-node bifurcations, denoted Fy and F,. The envelopes of
limit cycles (green lines), representing the maxima and minima of the peri-
odic orbits with respect to V, consist of stable (solid) and unstable (dotted)
branches of limit cycles. The envelopes of stable limit cycles terminate at
a SNIC bifurcation, while the envelopes of unstable limit cycles emanate
from a subcritical Hopf bifurcation, denoted H. These envelopes of stable
and unstable limit cycles eventually meet at a saddle-node bifurcation of
periodic orbits, denoted FP.

The slow region associated with the ghost of the SNIC (the region cre-
ated by values of I, to the right of F1 where the periodic branch is stable),
along with the “location” of the initial condition (determined by a hy-
perpolarizing bias-current L, = Ipias preceding a depolarizing test current
Lapp = liest in the current-step protocol) relative to the attracting periodic or-
bit give rise to the nonmonotonic latency profiles (Mitry et al., 2020). Fig-
ure 4 shows that the model produces first-spike latency profiles that are
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Figure 3: Bifurcation diagrams of the full system, equation 2.1, with respect
to Lpp during (A) pre- and (B) after-run-up. Black solid (dotted) lines indicate
branches of stable (unstable/saddle) equilibria; green solid (dotted) lines show
envelopes of stable (unstable) limit cycles. Two saddle-node bifurcations F1 and
F2 connect three branches of equilibria. The envelopes of unstable limit cycles
emanating from a subcritical Hopf bifurcation H collide with the envelopes of
stable limit cycles at a saddle-node bifurcation of periodic orbits, FP. The en-
velopes of stable limit cycles eventually terminate at a SNIC bifurcation.
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Figure 4: Nonmonotonic first-spike latency of the full system, equation 2.1,
with respect to the holding potential Viq4 for (A) pre-, and (B) post-run-up,
computed using the 2PBVP and continuation methods. The difference between
Jiest and Ignic is almost the same for both cases. The applied test current Iy for
pre- and post-run-up are —0.17 pA and —0.24 pA, respectively.
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nonmonotonic, computed systematically and efficiently using 2PBVP, for
the two sets of parameters corresponding to Figure 3A (before run-up) and
Figure 3B (after run-up). Mitry et al. (2020) showed that these latency pro-
files (previously computed manually for each pulse) can be made arbitrarily
large for a wider range of holding potentials during the post-run-up period
(corresponding to the biphasic component and the tail of the profile, but not
in between), while this is more limited during pre-run-up (restricted only to
the nonmonotonic component of the profile) as et —> I;NIC. As shown in
Figure 3, when I, = Isnic, there are two equilibria in the full system, equa-
tion 2.1. One of these equilibria is a saddle-node possessing a stable man-
ifold. Therefore, perturbing the system from its resting state by applying
Lapp = liest while Liesp —> I;NIC makes the response of the system lie directly
on the stable manifold of the saddle-node and, as a result, causes the first-
spike latency to become unbounded. It was further demonstrated that the
remaining range of holding potentials associated with post-run-up can still
produce transient single-spike activity when I pp = liest < I;NIC. In this lat-
ter case (see Figure 4), the full system, equation 2.1, has three equilibria, one
of which (middle) is of a saddle type possessing a stable manifold (SMS).
Applying a test current L, = liest = Isms, which makes the response of the
system land exactly on the stable manifold of the saddle equilibrium, gives
rise to infinite latency in the single transient spike regime (Mitry et al., 2020).
Succinctly, the location of the initial conditions, as specified by the holding
potential, relative to the stable manifolds of both the saddle-node or saddle,
was shown to be the key determinant of such outcomes (Mitry et al., 2020).

3.2 Slow-Fast Analysis. In many physiological systems, some pro-
cesses may evolve significantly faster than others. In neurons, membrane
voltage, together with some gating variables (e.g., the Na™ activation vari-
able), is dynamically faster relative to the other variables such as Ca®*
(Ermentrout & Terman, 2010; Keener & Sneyd, 2009). One can thus apply
timescale separation and slow-fast analysis to study the rich dynamics of
such systems. That involves treating the slow variables as parameters and
studying the dynamics of the fast subsystem in response to perturbations
in these parameters. This can provide valuable insights into the dynamics
of the full system (Desroches et al., 2012).

In this section, we apply these techniques and treat the slowest variable
ha of the full system, equation 2.1, as a parameter; the remaining part of the
model will be called the fast subsystem. Note that ki is also slow; treating
it, however, as a parameter along with h5 produces bifurcation structures
that are identical to those presented below (results not shown). A plot of
the bifurcation diagram of the membrane voltage V (one of the variables of
the fast subsystem) onto the (V, /15 )-plane is shown in Figure 5. The line of
stable (solid) and unstable/saddle (dotted) equilibria of the fast subsystem
(black line) has four branches separated by three saddle-node bifurcations,
denoted SNy, SNy, and SN3. The equilibria on branches between SNy and
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Figure 5: Bifurcation diagram of the fast subsystem of system 2.1 for the set
of post-run-up parameters in (V, hi5)-plane and for I,;,s = —0.6 pA. Black solid
(dotted) lines indicate stable (unstable/saddle) branches of equilibria; green
solid (dotted) lines correspond to envelopes of stable (unstable) limit cycles;
the magenta line is the his-nullcline in the (V, hix)-plane. Four branches of sta-
ble and unstable/saddle equilibria of the fast subsystem, separated by three
saddle-node bifurcations SNy, SN», and SN3, form the critical manifold of the
full system. The envelope of unstable limit cycles (green) emanating from a sub-
critical Hopf bifurcation (HB) undergoes a saddle-node bifurcation of periodic
orbits (SNP) and terminates at a SNIC bifurcation. The hx-nullcline intersects
the critical manifold at E4, E5, and Eg, representing the equilibria of the full
system, equation 2.1.

SNy and beyond SNj for large values of V are of the saddle type, whereas
the equilbria on the other two branches, namely, between SN, and SNz and
beyond SNy for large values of /15, are stable. The equilibria between SN
and SN3 become unstable at a subcritical Hopf bifurcation (HB). The max-
ima and minima of the family of periodic orbits with respect to V form en-
velopes of limit cycles (green). The envelope of unstable limit cycles (dotted)
emanating from HB undergoes a saddle-node bifurcation of periodic orbits
(SNP) with the envelope of stable limit cycles (solid). This latter envelope
eventually terminates at a SNIC bifurcation.

Figure 5 also shows the hs-nullcline (magenta), a hypersurface in a six-
dimensional space, whose intersection with the (ha, V')-plane is plotted. The
nullcline intersects the critical manifold of the fast subsystem at three equi-
libria on different branches, denoted E4, E, and Es. The equilibria E1 and
Es are attracting, while E; is of a saddle type. When a step current is ap-
plied, the critical manifold gets deformed slightly, but the /5-nullcline re-
mains unaltered, keeping the order and stability properties of these three
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Figure 6: (A) The response (orange) of the full system, equation 2.1, during
post-run-up for It = —0.2 pA starting from the equilibrium E; set by Iyas =
—0.3 pA. The response is projected onto the two bifurcation diagrams of the
membrane voltage V with respect to the inactivation variable hx for Lpp = Ibias
(faded colors) and I,pp = Iiest (dark colors). The faded bifurcation diagram is not
clearly visible because it is very close to the dark bifurcation diagram. The h-
nullcline (magenta) is also plotted in the figure. (B) Magnification of the curves
inside the blue box in panel A, highlighting dynamics near the left knees (SNy)
of the faded and dark bifurcation diagrams.

steady states unchanged. It should be noted that the direction of the flow of
solution trajectories on the right (left) side of the ix-nullcline is to the left
(right).

To explain how the ghost of the SNIC in this system manifests itself, we
focus here on the parameter range between the saddle-node bifurcation of
periodic orbits (SNP) and the right saddle-node (SNy). Figure 6 shows the
projection of the solution trajectory of the full system, equation 2.1, (orange)
during post-run-up generated by a current-step protocol with ly,s = —0.3
pA and liest = —0.2 pA. The response is superimposed onto the bifurcation
diagram of the fast subsystem, together with the /15-nullcline shown in Fig-
ure 5. Because of the step current applied on the full system, one would
expect the system to produce two bifurcation diagrams for V with respect
to ha at Lyj,s = —0.3 pA and at [iest = —0.2 pA. Plotting these two bifurca-
tion diagrams in faded and dark colors, respectively, in Figure 6A reveals
that they are almost overlaying on top of each other (with the former not
discernible from the latter). Nonetheless, applying e still induces a slight
rightward shift in the bifurcation diagram of the fast subsystem (see Fig-
ure 6B). This causes the intersection of the faded bifurcation diagram with
the ha-nullcline—the stable equilibrium E4 representing the initial condi-
tion for the solution trajectory—to disappear. As a result, when applying
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Figure 7: (A) The response (orange) of the full system, equation 2.1, during
post-run-up for I = —0.2 pA starting from the equilibrium E; set by Ipi.s =
—0.6 pA. The response is projected onto the two bifurcation diagrams of the
membrane voltage V with respect to the inactivation variable fip for Lpp = Iyias
(faded colors) and ILpp = liest (dark colors). The fip-nullcline (magenta) is also
plotted in the figure. (B) Magnification of the curves inside the blue box in
panel A, highlighting dynamics near the left knees (SNy) of the faded and dark
bifurcation diagrams.

the step current, the trajectory moves toward the lower branch of the criti-
cal manifold and then jumps up toward the envelope of stable limit cycles
where it starts oscillating. This limit cycle represents an attracting periodic
orbit of the full system.

As shown in Figure 6B, the /1p-nullcline and the equilibrium branch of
the fast subsystem are very close to each other near SNy when Lpp = liest =
—0.2 pA. This means that the full system is about to undergo a saddle-
node bifurcation. The created passage is called the “ghost of a bifurca-
tion” or “slow region,” characterized by a very slow flow of trajectories
and no well-defined boundary. In other words, x is very close to zero for
x =V, h,n,na, ha, hr in this region. Prior to the application of s, when
Inias = —0.3 pA, Ej is very close to SNy, thereby generating a trajectory for
the full system that takes a short path through the slow region. The first-
spike latency for such trajectories in this case is not large, even though they
evolve very slowly through the slow region.

As already discussed, initially for high holding potentials, the latency of
the response of the full system, equation 2.1, significantly increases when
the bias current I,s decreases (see Figure 4). For I;,s = —0.6 pA, the latency
is large, and the slow-fast configuration in Figures 7A and 7B shows that E;
moves toward a smaller V-value along the h5-nullcline. This means that the



Modeling Cerebellar Stellate Cell Excitability 641

\
7

-60 }

SC NP
7

-0.02 0.02 0.06 0.01 0.02 0.03
’LA hA

E;

Figure 8: (A) The response (orange) of the full system, equation 2.1, during
post-run-up for lis = —0.2 pA starting from the equilibrium E4 set by Ly, = —2
PA. The response is projected onto the two bifurcation diagrams of the mem-
brane voltage V with respect to the inactivation variable i for Lpp = s (faded
colors) and L,pp = liest (dark colors). The ha-nullcline (magenta) is also plotted in
the figure. (B) Magnification of the curves inside the blue box in panel A, high-
lighting dynamics near the left knees (SNy) of the faded and dark bifurcation
diagrams.

response of the system spends more time on the lower (stable) branch of the
critical manifold of the fast subsystem inside the slow region.

Based on the discussion thus far, one might expect the latency to increase
when I,,;,s decreases. However, that is not what we see; instead, we find that
the first-spike latency significantly drops after the initial increase, generat-
ing a nonmonotonic profile. Figures 8A and 8B show a trajectory for the full
system, equation 2.1, for I;,s = —2 pA superimposed on the bifurcation dia-
gram of the fast subsystem, together with /15 -nullcline (the slowest variable)
during post-run-up, as done in Figures 6 and 7. The equilibrium E4 (which
determines the initial condition of the trajectory) moves to much smaller
values of V (about —70 mV). When the test current is set to Liest = —0.2 pA,
the solution moves toward the lower stable branch of the critical manifold
of the full system, equation 2.1, and tracks a short segment of it. The solu-
tion trajectory then leaves the branch of equilibria before reaching the slow
region. This change in behavior of the response allows the trajectory to get
around the slow region without passing through it. Nonetheless, the solu-
tion still travels a longer distance along the critical manifold compared to
the two previous cases, slowing down propagation. However, the latency
caused by traveling along this branch is significantly smaller relative to that
induced by the slow region.

As indicated by Figure 4, the latency increases gradually while decreas-
ing the holding potentials beyond the biphasic component of the profile.
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Figure 9: (A) The response (orange) of the full system, equation 2.1, during pre-
run-up for lies = —0.15 pAsstarting from the equilibrium E; set by Iyias = —2 pA.
The response is projected onto the two bifurcation diagrams of the membrane
voltage V with respect to the inactivation variable /15 for Lpp = Ipias (faded col-
ors) and Lpp = liest (dark colors). The ky-nullcline (magenta) is also plotted in
the figure. (B) Magnification of the curves inside the blue box in panel A, high-
lighting dynamics near the left knees (SNy) of the faded and dark bifurcation
diagrams.

Although the trajectory no longer passes through the slow region, travel-
ing along the lower branch of stable equilibria of the fast subsystem (also
associated with slow dynamics) is the reason for such an increase in first-
spike latency. The hyperpolarization of V by applying a larger magnitude of
Lyias keeps the solution longer along the branch of equilibria, which in turn
makes the latency of the first spike longer. According to Figure 4, the latency
during post-run-up (panel A) is higher than that associated with pre-run-
up (panel B) for all holding potentials (Vio1q). In other words, the latency
profile in panel A is elevated compared to panel B, while the difference be-
tween the maximum and minimum latency is almost the same. To illustrate
how the difference in latency between pre- and post-run-up is generated,
we plot in Figure 9 the bifurcation diagrams of the fast subsystem during
pre-run-up when lL,,s = —2 pA (faded colors) and It = —0.15 pA (dark
colors) and superimpose the /15-nullcline (magenta) along with the solution
trajectory induced by the step current (orange) on the diagram. Comparing
the location of the stable equilibrium E1, formed by the /15-nullcline and the
critical manifold, in this figure to that seen during post-run-up in Figure 8,
we see that Eq is left-shifted in the former case (i.e., has lower ha value),
even though both are subjected to the same bias current I;,s = —2 pA. This
allows the solution trajectory starting from E; to track the lower branch of
the fast subsystem during pre-run-up for a longer distance, which increases
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the latency to the first spike. For the results obtained here, we have chosen
the difference between Lest and Isnic (i-e., |lest — Isnic|) to be almost equal
for both pre- and post-run-up to facilitate comparison.

3.3 Dual Role of Inhibition. Molineux et al. (2005) and, later, Mitry
et al. (2020) suggested that increasing the magnitude of the presynaptic in-
hibitory input (ginn) applied to the full system, equation 2.1, prior to an
excitatory input with a fixed magnitude (gexc) produces switching in re-
sponsiveness three times (Mitry et al., 2020). This suggests the presence of
two regimes in the parameter space (gexc, ginn) in which the full system is
either capable of generating an AP (responsive) or incapable of doing so
(nonresponsive). In this section, we first show that switching in responsive-
ness during post-run-up depends only on ginn, while during pre-run-up, it
depends on ginn and gexc. We also explain how the existence of a connect-
ing orbit determines the boundary between responsive and nonresponsive
regimes in several parameter spaces defined by the four parameters: ginn,
Sexcs Ibias (the magnitude of the bias current applied immediately prior to
presynpatic inhibition) and Tinp, (the time duration of inhibition prior to the
application of presynpatic excitation, referred to hereafter as “time to excita-
tion”). We investigate this phenomenon during post-run-up and determine
how all of these factors affect the switching phenomenon.

Figure 10A shows that the boundary between responsive and nonre-
sponsive regimes in the three parameter spaces (gexc: inh) Al, (Ibias, Sinh)
A2, and (Tinh, ginn) A3 is an S-shaped fold with two knees. In all of these
panels, the nonresponsive (responsive) regime lies to the left (right) of the
boundary. In Figure 10A1, the dashed line between the two knees of the
S-shaped boundary shows that for a fixed magnitude of the excitatory in-
put (gexc = 1.6), the full system switches from responsive to nonresponsive
and then back to responsive and finally switches to nonresponsive again
while increasing ginn. This is verified in Figure 10B, where four different val-
ues of gy along the dashed line in panel A1, labeled A", B-, C*, and D™,
are selected and time-series simulations of the full system, equation 2.1, are
performed; at At and C* (when ginn = 0, 2 pS, respectively), the model is
responsive, producing APs upon stimulation, while at B~ and D~ (when
Sinh = 1, 3 pS, respectively), it is nonresponsive with no AP. The full system
in all of these simulations is set at the equilibrium point E1 with a hold-
ing potential of Vjoq = —54.57131 mV, and each curve is divided into two
segments, with the first (cyan) representing the response of the full system
prior to excitation and the second (orange) representing the response after
applying the excitatory input.

Similar outcomes to those obtained in Figure 10A1 are also observed
for the two-parameter combinations (Ipias, ginh) A2 and (Tinn, inh) A3 when
considering the response of the full system to a pair of inhibitory/excitatory
presynaptic inputs during post-run-up. In both cases, an S-shaped bound-
ary between responsive (to the right of the boundary) and nonresponsive
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Figure 10: (A) The boundary between responsive and nonresponsive regimes
of the full system, equation 2.1, during post-run-up in the (gexc.Qinn) Al,
(Iias> &inn) A2, and (Tinh., ginn) A3 planes computed using the 2PBVP and con-
tinuation methods. The bias current is ly,s = —0.24 pA in panels Al and A3.
(B) Time-series simulations of the full system in response to a pair of inhibitory
and excitatory presynaptic inputs separated by 15 ms as defined by equation 2.2.
Each simulation includes two segments based on when the excitatory input is
applied—cyan (orange): immediately prior to (after) excitatory input. The mag-
nitudes of the inhibition and excitation used in panel B are indicated by the blue
dots along the vertical dashed line in panel Al, denoted by A*, B~, C*, and D~.
In these simulations, the holding potential is set at V = —54.57131 mV, when
the model is unable to generate any spike.

(to the left of the boundary) regimes is obtained, allowing for switching be-
tween them when ;s and Tinp, respectively, lie between the two knees of
the boundary. The switching phenomenon in panel Al has been studied
in Mitry et al. (2020) where the authors manually computed the bound-
ary by evaluating the response over an entire rectangular regime of interest
in (gexc ginh)-space. Here, the boundaries in Figure 10A are computed in a
more systematic and efficient way using the 2PBVP and continuation meth-
ods described in section 2.4.

Based on the results obtained in Figure 10 for post-run-up, we can
conclude that in the three parameter combinations considered here, the
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magnitude of the inhibition (ginn) is a key to producing switching (as sug-
gested in Molineux et al., 2005). In particular, varying the magnitude of
the excitation (gexc) cannot lead to switching in responsiveness, implying
that the profile of the excitatory input does not matter. This means that one
can replace the latter by a square pulse of excitatory input, an important
feature that will become clear later. Furthermore, based on the simulations
performed in Figure 10B, the V-values of the C* curve prior to spiking (i.e.,
during the plateau phase) lie beneath the V-values of the B~ curve imme-
diately following excitation (even though it does not exhibit an AP). That
type of behavior was previously observed in experimental recordings (Mo-
lineux et al., 2005) and in model simulations (Mitry et al., 2020; Molineux
et al., 2005). To understand the dynamics of this peculiar phenomenon, we
need to use the reduced model, equation 2.3.

3.4 Presynaptic Input during Pre-Run-Up. Up to now, we have fo-
cused on the post-run-up behavior of the full system, equation 2.1. In this
section, we use the pre-run-up parameter set (see Table 2) to study the
switching phenomenon during pre-run-up and compare its underlying dy-
namics to that seen during post-run-up. We apply the same dynamic input,
equation 2.2, used during post-run-up.

Figure 11 shows the boundary (solid line) between the responsive and
nonresponsive regimes in the (gexc, ginn)-plane (panel A), together with six
representative time-series simulations of the responses (panels B and C)
at different parameter values within the (gexc, ginn)-plane (highlighted by
the blue and red dots in panel A, respectively). In panel A, the gi,n-axis is
shown in logarithmic scale for better visualization. The boundary in panel
A is computed by continuing a response of equation 2.1 with a very large
latency (see section 2.4 for more details). As shown, the boundary has two
folded parts with four knees, allowing for switching in responsiveness to
occur along the ginp OF gexc directions when the other is kept fixed (compare
to post-run-up in Figure 10A1). Switching between responsive and nonre-
sponsive behaviors occurs along these folds. The time-series simulations
of the full model during pre-run-up when ginn (gexc) are varied are shown
in Figure 11B (Figure 11C) using the parameter combinations of (gexc, Sinh)
highlighted by the blue (red) dots. These parameters are labeled A*, B~,and
C* (at, B~ and y ™), on the vertical (horizontal) dashed line in Figure 11A.
The blue (red) dots show that increasing the magnitude of the inhibition ginn
(excitation gexc) While keeping the excitation gex (inhibition ginp) fixed pro-
duces switching. More specifically, Figure 11B shows that for gexc = 3 pS, the
full system, equation 2.1, produces APs when gi,, = 0 (A™), 3 pS (CT) but
does not do so when ginn = 1 pS (B™). Figure 11C shows that for gin = 30,
the full system produces APs when gex. = 4.2 (¢™), 5.7 pS (™), but does
not do so again when gexc =5 pS (7). In other words, unlike post-run-
up, switching in responsiveness can occur in both directions: along increas-
ing values of ginn and gexc While keeping the other fixed. Indeed, the full
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Figure 11: (A) The boundary between responsive and nonresponsive regimes
of the full system, equation 2.1, during pre-run-up in the (gexc, inh)-plane for
Ihias = —0.2 pA computed using the 2PBVP and continuation methods. To im-
prove visualization, gin is shown in logarithmic scale. The boundary exhibits
two folds in the ge« (upper fold) and ginn (lower fold) directions, allowing for
repetitive switching between responsiveness and nonresponsiveness to occur
along the vertical dashed (when gey is fixed), horizontal dashed (when giny is
fixed), and diagonal dotted lines. (B, C) Time-series simulations of the full sys-
tem in response to a pair of inhibitory and excitatory presynaptic inputs as de-
fined by equation 2.2. Each simulation includes two segments based on when
the excitatory input is applied—cyan (orange): immediately prior to (after) ex-
citatory input. The magnitudes of the inhibition and excitation used in panels B
and C are indicated by the blue dots (labeled A*, B, C*) and red dots (labeled
at, B, y*) along the vertical and horizontal dashed lines in panel A, respec-
tively. In these simulations, the holding potential is set at V = —46.80090 mYV,
when the model is not able to generate any spike.

system can also produce switching seven times when the magnitudes of
ginh and gexc are changed along the diagonal dotted line in Figure 11A. This
suggests that the relative magnitudes of inhibition versus excitation play in-
tricate roles in determining the response of stellate cells during pre-run-up
(the more relevant model to the in vivo properties of stellate cells).
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By targeting the conductances of some specific ion channels, one can con-
trol the size of the folded parts within the boundary during pre-run-up or
even get rid of them altogether. The conductances of Na™ and K* chan-
nels do not affect these folds (and thus the switching phenomenon), but
the conductances of T-type Ca** or A-type K* channels do so. Specifically,
decreasing gt initially makes the knees of the lower fold closer while shift-
ing the upper fold downward until it merges with the lower one, causing
the repetitive switching phenomenon to disappear and the boundary to be
without folds, that is, monotonic (results not shown). Similarly, increasing
g makes the switching range with respect to gex. smaller until it eventually
disappears (results not shown).

In addition to the switching phenomenon, the full system, equation 2.1,
during pre-run-up also exhibits this peculiar behavior associated with the
firing threshold seen in Figure 10B during post-run-up in response to a pair
of inhibitory /excitatory presynaptic inputs. Figures 10B and 11C show that
the voltage amplitude in the time-series simulations for B~ and g~, respec-
tively, surpasses that of C* and y ™ immediately prior to firing. We explain
later the underlying dynamics governing this phenomenon for both post-
and pre-run-up.

3.5 Dynamics of the Reduced Model. In this section, we show that al-
though our model reduction approach causes changes in the behavior of
the full system described by equation 2.1, the resulting reduced model de-
scribed by equation 2.3 still preserves some of the dynamic properties of
the full system during pre-run-up, including its responses to presynaptic in-
puts. Indeed, by plotting the bifurcation diagram of V' of the reduced model
with respect to L,pp in Figure 12, we obtain a bifurcation structure similar to
that seen in Figure 3. More specifically, we obtain a cubic-like critical mani-
fold (black line), consisting of three branches of stable (solid) and unstable/
saddle (dotted) equilibria that connect at saddle-node bifurcations (LP4 for
the lower two branches and LP; for the upper two branches), and envelopes
of limit cycles (green lines), representing the maxima and minima of a fam-
ily of stable (solid) and unstable (dotted) limit cycles. As in Figure 3, the
bifurcation diagram in Figure 12 shows that an envelope of unstable limit
cycles emanates from a subcritical Hopf bifurcation (H) in the upper branch
of the critical manifold (where the equilibria switch their stability proper-
ties from stable to unstable) and meets an envelope of stable limit cycles at
a saddle-node bifurcation of periodic orbits, denoted FP4. This later stable
envelope undergoes two successive saddle-node bifurcations of periodic
orbits, denoted FP, and FP3, and switches its stability properties at every
point. Finally, the envelope of stable limit cycles that is formed after FP3 ter-
minates at a SNIC bifurcation that, as we have indicated, underlies type 1
excitability seen in the full model, equation 2.1.

To verify if the reduced model, equation 2.3, is able to generate the
switching between responsive and nonresponsive regimes analogous to
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Figure 12: Bifurcation diagram of the reduced model, equation 2.3, with respect
to Lpp during pre-run-up. Black solid (dotted) lines indicate stable (unstable/
saddle) branches of equilibria; green solid (dotted) lines show envelopes of
stable (unstable) limit cycles. Two saddle-node bifurcations LP1 and LP, con-
nect three branches of equilibria of the reduced model. The envelope of un-
stable limit cycles emanating from a subcritical Hopf bifurcation (H) undergoes
three successive saddle-node bifurcations of periodic orbits (FP¢, FP», and FPg),
switching stability at every bifurcation point. The envelope of stable limit cycle
that eventually forms terminates at a SNIC bifurcation.

those seen in the full system, equation 2.1, we applied the modified presy-
naptic input defined by equation 2.4 to the reduced model. As indicated ear-
lier, we use such a presynaptic input rather than the one defined by equation
2.2 because the application of a dynamic excitatory input will displace or
deform the critical manifold of the system. Our results (not shown) reveal
that for a fixed excitatory current pulse, the system switches three times be-
tween responsive and nonresponsive regimes when the magnitude of the
inhibitory inputis increased. These outcomes are identical to those obtained
by the full system when subjected to such presynaptic input.

3.6 Stable Manifold of the Saddle Determines the Firing Thresh-
old. Having shown that the reduced model captures some properties of
the full system during pre-run-up, we aim next to use it to study how
the firing threshold induced by presynaptic inputs is determined. With the
performed modifications on the input protocol and reducing the pre-run-
up full system, equation 2.1, to the pre-run-up reduced model, equation
2.3, we can compute the stable manifold of the saddle equilibrium associ-
ated with equation 2.3 and determine the relative position of the solution
with respect to the manifold in defining the firing threshold. By explain-
ing the switching phenomenon in this reduced model, we would be able to
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deduce how switching is produced in the full system, equation 2.1, when
the dynamic input, equation 2.2, is applied.

As indicated in Figure 12, when I,, = —1.5 pA, the reduced model,
equation 2.3, has three equilibria: one stable on the lower branch, one saddle
on the middle branch, and another stable on the upper branch, each denoted
&1, &, and &, respectively. The saddle equilibrium &, has a one-dimensional
unstable manifold and a two-dimensional stable manifold associated with
one positive and two negative eigenvalues, respectively. We compute the
stable manifold of & as a family of orbit segments using the 2PBVP and
continuation methods in Auto (see section 2.4).

Figures 13A and 13B show a portion of the stable manifold W*(&,) (blue
surface) of the saddle equilibrium &, (red X) from two different angles plot-
ted in the (ht, n, V)-space. These panels also show a red dot that corre-
sponds to the location of the stable equilibrium &; for a given Ip,s. Panels A
and B show that close to the equilibrium &, the manifold looks like a horse
saddle; it increases on the right and left sides and decreases from the other
two sides at the back and front. The declining back side eventually plateaus,
whereas for the rising sides, one of them plateaus on the left side and the
other spirals and accumulates on itself on the right. In fact, the stable man-
ifold accumulates on the stable manifold of a saddle periodic orbit in back-
ward time that exists for this set of parameters and separates the attracting
equilibria & from &. These spirals are small at one end and become larger
at the other end, making the manifold extend to +oco. When a presynap-
tic input is applied, this stable manifold may shift in the (ht, 1, V')-space.
To resolve this problem, the presynaptic input defined by equation 2.4 is
used; its excitation component is applied as a pulse (rather than as a dy-
namic input). Moreover, the dynamic inhibition is removed as soon as the
excitation is applied. The absence of an excitatory input guarantees that the
stable manifold of the saddle & remains frozen in time and fixed in space
after removing excitation without affecting its switching properties.

To illustrate how the stable manifold of & determines how the response
of the reduced model to a presynaptic input defined by equation 2.4, we
superimpose in Figures 13C to 13E three solution trajectories generated by
such a presynaptic input while varying the magnitude of the inhibition
(ginn)- As indicated before, the reduced model, equation 2.3, can become
nonresponsive for intermediate magnitudes of the inhibition (gin,) while
keeping the excitatory input fixed. In Figures 13C to 13E, we choose ginn = 0
pS (responsive, panel C), 1 pS (nonresponsive, panel D), and 2.5 pS (respon-
sive, panel E) and keep the excitatory pulse e\ fixed at 4.1 pA for 5 ms.
Each solution is divided into three orbit segments: the first segment (cyan)
is formed during the application of the inhibitory input, the second seg-
ment (orange) is formed during the application of the excitatory input after
removing the inhibition, and the last segment (green) is the remaining por-
tion of the trajectory when the presynaptic input is removed completely.
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Figure 13: (A) Stable manifold W*(&,) (blue surface) of the saddle equilibrium
& (red X) of the reduced model, equation 2.3, during pre-run-up. The red dot
is the stable equilibrium &; (functioning as the initial condition for one solu-
tion trajectory). (B) Another view of W*(&,), together with the response curve
(magenta line) formed by the set of all points within a family of solution tra-
jectories when the presynaptic inputs are removed. (C-E) Three representative
solution trajectories of the reduced model induced by presynaptic inputs de-
fined by, equation 2.4, starting from the stable equilibrium &;. Trajectories are
divided into three segments based on the presynaptic input; cyan (orange) seg-
ments correspond to the inhibitory (excitatory) portion of the presynaptic input
immediately prior to (after) the excitatory (inhibitory) input, while the green
segment corresponds to the remaining part of the trajectories when the presy-
naptic input is removed.

For ginn = 0 and 2.5 pS, the reduced model, equation 2.3, generates a
spike in the form of a trajectory in the (i, n, V)-space that starts from the
stable equilibrium &;, makes a large excursion around the manifold W*(&,),
and returns to the same side as &, (see Figures 13C and 13E). For ginn =1
pS, the reduced model does not generate a spike, and its solution quickly
returns to the stable equilibrium &;. The superposition of the responses gen-
erated by the reduced model onto the stable manifold of Figure 13A shows
that the two-dimensional stable manifold W*(&,) of the saddle equilibrium
& acts as a separatrix for each response. Removing the excitatory input
while the trajectory is still below the manifold, where the stable equilibrium
& lies, causes a quick return to £;. However, when the input is removed and
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the trajectory is on the other side of W*(&,), the reduced model generates a
large excursion (i.e., an AP) around the manifold to reach &;. The reason that
the trajectory returns back to &; rather than converging to & is because of
the stable manifold of the saddle-type periodic orbit, defining the bound-
ary of the basin of attraction of &. Although the stable manifold of & is
displaced or deformed upon the removal of the excitatory input pulse, it
remains fixed during the application of the excitatory pulse and after its
removal.

The three responses shown in Figures 13C to 13E are representative of
the switching phenomenon that occurs with the reduced model during an
increase in ginn. When considering a whole family of such trajectories over
an entire range of ginn € [0, 50] pS, one can generate a response curve (the
magenta line in Figure 13B) formed by the set of all points where trajecto-
ries switch from orange (induced by excitation) to green (not induced by
any presynaptic input). This response curve possesses three segments de-
pending on its location relative to the stable manifold W*(&;). The first seg-
ment lies on top of W*(&,), which means that the response of the reduced
model has to make a large excursion to reach the other side of the mani-
fold before settling back at the stable equilibrium &;. The second segment,
in the middle of the response curve, lies underneath the manifold W*(&,),
on the same side as &;. This means that the reduced model, equation 2.3,
generates only graded responses in which trajectories return to the equilib-
rium as soon as the excitation is removed. Finally, the third segment lies on
top of W*(&,), producing outcomes similar to those seen with the first seg-
ment of the response curve. In other words, the response curve (magenta)
intersects the stable manifold W*(&;) twice, allowing the reduced model to
exhibit switching behavior at each crossing. Further analysis of the response
curve shows that it actually intersects the manifold a third time in the back
of the manifold for higher values of ginn (not shown in Figure 13 to allow
for visual clarity). This is to be expected in view of the fact that excitable
systems do not fire when the magnitude of the inhibition is too high. Given
that the three intersections between the response curve and the manifold
W?(&,) lie on the manifold, it means that the response trajectories associ-
ated with these particular points eventually converge to the equilibrium &,,
creating a connecting orbit between the attracting equilibrium &; and the
saddle equilibrium &,. Based on this, we can conclude that the boundary
between the responsive and nonresponsive regimes is determined by the
stable manifold of the saddle equilibrium W*(&;) (i.e., W*(&;) acts as a sepa-
ratrix between the two regimes). Moreover, the first-spike latency of trajec-
tories in the responsive regime increases when the excitation is removed at
a point closer to W*(&;). Unlike the slow dynamics induced by the ghost of
the SNIC in section 3.2, the increase in latency here is due to the slow flow
close to the saddle equilibrium &. In fact, when the response lies close to
W*(&,), it tracks the manifold toward &, and spends a significant amount of
time in its vicinity before returning to &;.
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The underlying dynamics of this switching phenomenon is identical to
that seen in the post-run-up model, with the stable manifold of the saddle
playing a key role in defining the threshold (results not shown). In other
words, the saddle equilibrium preserves its effects in producing switching
during run-up in cerebellar stellate cells.

3.7 Implications on the Full System. The analysis of the three-
dimensional reduced model when subjected to a brief fixed excitation pulse
can provide us with good insight into how the full system, equation 2.1,
behaves with a dynamic presynaptic input. By using the original dynamic
input protocol given by equation 2.2, which changes with time, the mani-
fold W*(Ey) shifts slightly during excitation but eventually settles back to its
original location as time goes to infinity, when excitatory presynaptic input
exponentially converges to 0. Increasing the magnitude of the inhibitory in-
put pushes the full system response trajectories toward the manifold. For a
certain magnitude of the inhibitory input, the trajectory lands on the man-
ifold and converges to the saddle equilibrium E;. This creates a connect-
ing orbit between the attracting equilibrium E4 and the saddle equilibrium
E> in a manner similar to that produced by the reduced model, equation
2.3. In fact, this connecting orbit is associated with the “coincidence” of the
response curve (similar to the magenta line seen in Figure 13B) with the
five-dimensional stable manifold of the saddle equilibrium W*(Ez). When
the response curve is above W*(E>) for certain magnitudes of the inhibi-
tion/excitation, the full system is responsive (fires APs), and when it is be-
low W*(E»), itis not (does not fire APs). The shape of the boundary between
the responsive and nonresponsive regimes of Figure 8A1 is thus dictated by
the shape of the manifold and how it interacts with the (gexc, $inh)-plane.

Figure 14 shows two responses of the full system, equation 2.1, during
pre-run-up superimposed onto the bifurcation diagram of the fast subsys-
tem along with the /15 -nullcline (see also Figure 5). Two trajectories are plot-
ted when gexc = 3 pS and ginn = 0.85370 pS (see panel A) or ginn = 2.05334
PS (see panel B), respectively, and color-coded cyan and orange based on
when the inhibition and excitation are applied as explained in Figures 13C
to 13E. In both cases, the pair of (gexc, ginn) lies at the intersections of the
S-shaped boundary and the dashed line in Figure 10 (i.e., they coincide with
where the response curve intersects with the W*(Ey)). As expected, the two
trajectories formed by these two pairs eventually converge to the saddle
equilibrium Ej (see Figure 14).

4 Summary and Conclusion

In this study, we investigated the dynamic properties of a Hodgkin—-Huxley
type of model previously developed in Molineux et al. (2005) and later re-
vised in Mitry et al. (2020). We demonstrated that the model, labeled the
full system, produces several features associated with neuronal excitability
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Figure 14: Responses of the full system, equation 2.1, to dynamic inputs with
Sexe = 0.3 pS and (A) ginn = 0.85370 pS, or (B) ginn = 2.05334 pS superimposed
onto the bifurcation diagram of the fast subsystem in Figure 5 during pre-run-
up. The black line is the critical manifold of the fast subsystem, close to SNy,
consisting of stable (solid) and unstable (dotted) branches; the magenta line is
the ha-nullcline; cyan/orange lines show the trajectories color-coded based on
when the inhibition (cyan) and excitation (orange) are applied during a presy-
naptic input. Notice that for a certain combination of inhibition and excitation,
the solution trajectories starting from the stable equilibrium E; (red dot) can
eventually land on the saddle equilibrium E; (red X).

that are consistent with those observed in cerebellar stellate cells. More
specifically, it produces the nonmonotonic first-spike latency during both
pre- and post-run-up upon the application of a current-step protocol that
consists of a bias current (Ly,s), of varying amplitudes, and a fixed test cur-
rent (fest). It also produces the switching phenomenon, in which the full sys-
tem alternates between two different states: responsive (able to generate an
action potential, AP) and nonresponsive (unable to generate an AP), when
the amplitude of an inhibitory presynaptic input, preceding an excitatory
one, is increased. Using continuation techniques in the software package
Auto, we developed a two-point boundary value problem (2PBVP) setup
to recompute some of the results in Mitry et al. (2020) in a more system-
atic manner. The efficiency of these methods allowed us to investigate the
potential role of other factors in the responsiveness of the system. By ap-
plying slow-fast analysis and the 2PBVP method, we were able to provide
a detailed explanation as to how the nonmonotonic first-spike latency is
generated, to compute the stable manifold of a saddle and thus illustrate its
role in generating the switching phenomenon.
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As Mitry et al. (2020) showed we verified that the full system is a type 1
oscillator possessing a saddle-node bifurcation on an invariant cycle (SNIC)
when the membrane voltage is plotted as a function of I,pp. Mitry et al.
(2020) showed that the nonmonotonic latency during pre- and post-run-up
is caused by the “ghost of the SNIC” that forms when a system’s dynamics
is very close to (but not yet at) a saddle-node bifurcation. Using slow-fast
analysis, we examined the effects of the SNIC bifurcation on first-spike la-
tency of the full system. Exploiting this approach, we were able to show
how the creation of a slow passage between the nullcline of the slow vari-
able (ha) and the critical manifold of the full system increases the latency
significantly (creating a bottleneck effect). This increase is finite for values of
Lipp = liest larger than I, = Isnic. The latency decreases significantly when
the response of the full system does not pass through the ghost of the SNIC.
Our results revealed that the effect of the initial condition on the latency
is not as significant compared to that produced by the ghost of the SNIC;
however, the initial condition does play a role when the solution of the full
system induced by a step current is not affected by the ghost of the SNIC.
In this case, we showed that the distance from the SNIC bifurcation or the
attracting limit cycle (measured using the arc length) is not the main factor
in explaining the gradual increase in the first-spike latency, but rather the
traveling time of the solution when following the critical manifold. When
the holding potential decreases, the A-type K is activated, causing the re-
sponse of the full system to track the critical manifold in the (15, V)-plane
for a longer distance. The slow flow along this lower branch of the critical
manifold as a result creates longer latencies. When plotting the /15-nullcline
on top of the critical manifold of the full system, we obtained three steady
states—two stable equilibria and one of saddle type. We found that the in-
variant stable manifold of the saddle equilibrium divides the various trajec-
tories emanating from different initial conditions (holding potentials) into
two groups: ones that pass through the slow region associated with the
ghost of the SNIC and others that do not. The latter group shows an in-
crease in first-spike latency when moving along the critical manifold.

As suggested by Figure 1, the gating variable it is also slow, with a
timescale comparable to that for i15. One can thus analyze the dynamics
of the full system, equation 2.1, using slow-fast analysis by assuming that
it has two slow variables: 5 and k. Doing so produces three-dimensional
bifurcation structures whose intersections with the (f4, V)-plane are identi-
cal to those displayed in Figures 5 and 9 (results not shown). This indicates
that extending our analysis to two slow variables would not provide addi-
tional information on how slow dynamics through the ghost of the SNIC
and lower stable branch of the critical manifold are produced in the full
system.

For the second feature, the switching phenomenon, we showed that
it occurs while varying the magnitude of inhibition g, and keeping
the magnitude of excitation gex fixed in a presynaptic input defined by
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equation 2.2. This was consistent with previous experimental observa-
tions showing that gi,, is key to producing switching (Molineux et al.,
2005). Using a 2PBVP and continuation methods, we calculated systemati-
cally the boundary between responsive and nonresponsive regions within
the (gexc: §inh)~» (§inh» Ibias)-, and (inn, Tinn)-planes and showed that all ex-
hibit an S-shaped fold. Previously, this boundary was calculated during
post-run-up by discretely scanning an entire domain of interest within the
(gexm &inh )'Space'

Based on the shape of the boundaries, we concluded that the profile of
excitatory input does not affect the switching phenomenon during post-
run-up and that identical results can be obtained by replacing this compo-
nent of the dynamic input (i.e., excitation) by a short current square pulse.
To further study the underlying dynamics of this phenomenon, we formu-
lated a three-dimensional reduced model, given by equation 2.3, from the
full system, equation 2.1, generated by replacing the activation variable of
A-type KT current (m4) with the activation variable of the delayed rectifier
K™ current (n), the inactivation variable of Nat current by 1 — 1, and the
inactivation variable of A-type K* current (f4) by the inactivation variable
of T-type Ca" current (7). Using the resulting three-dimensional reduced
model, we were able to establish that the type 1 excitability and switching
in responsiveness seen in the full system are preserved. We computed the
two-dimensional stable manifold of the saddle equilibrium of the reduced
model to speculate what underlies the switching phenomenon in the full
system. Our results revealed that the position of this stable manifold rel-
ative to the solution trajectories upon the removal of presynaptic inputs
of varying ginn determines whether an AP can be generated. We argued
that some solution trajectories starting from the stable equilibrium lying
below the stable manifold of the saddle actually cross the manifold upon
excitation, loop around it, and return back to the stable equilibrium form-
ing an AP (responsive), while those that do not cross end up generating a
graded response by returning to the stable equilibrium immediately (non-
responsive). Crossing the stable manifold of the saddle is thus determined
by where exactly solution trajectories lie relative to the manifold in state-
space upon the application of the excitatory presynaptic input. By plotting
the set of all such points in (i, 1, V')-space (see the magenta line in Figure
13B), we obtained a response curve that intersects the stable manifold of the
saddle equilibrium three times, giving rise to the switching phenomenon.

The reduced model, equation 2.3, along with the simplification applied
on the excitatory component of the presynaptic input, helped us gain good
insight into the dynamics of the full system injected with the original dy-
namic input, equation 2.4. We defined the boundary between responsive
and nonresponsive regimes in the (gexc, inh)-plane as a connection between
a stable equilibrium and a saddle equilibrium and used it to compute the
stable manifold of the saddle. The S-shaped fold of the boundary allows
for switching to occur between responsive and nonresponsive regimes. We
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found that the configuration of the stable manifold of the saddle equilib-
rium dictates the shape of that boundary and when a trajectory can fire an
AP or not.

We also investigated the dynamics of the full system, equation 2.1, dur-
ing pre-run-up characterized by having higher first-spike latencies com-
pared to post-run-up. In the pre-run-up case, our calculations showed that
the switching phenomenon occurs not only with respect to ginh When gexc
is kept fixed but also with respect to gexc While keeping g;n fixed. This was
due to the fact that the boundary between responsive and nonresponsive
regimes exhibits two folds allowing switching to occur seven times along
a diagonal line crossing the boundary six times (see Figure 11A). In gen-
eral, we found this phenomenon to be more pronounced during pre-run-
up compared to post-run-up, highlighting its importance to stellate cell ex-
citability in vivo.

Changing the conductances of Nat and K* currents did not affect
the folds of the boundary (switching phenomenon); however, increasing
A-type K* conductance or decreasing the T-type Ca?* conductance re-
moved these folds altogether and made repetitive switching between the
two regimes disappear. Detecting these outcomes experimentally is quite
challenging in the pre-run-up case, as the cell may run up during electro-
physiological recording in whole-cell configuration.

The inhibitory and excitatory inputs that stellate cells receive from dif-
ferent sources create very complicated dynamics in their response, which
in turn affects the GABAergic presynaptic inputs onto Purkinje cells, the
primary output of the cerebellum. Providing a deep understanding of the
dynamic properties of stellate cells can thus shed light on the behavior of
the entire network within the cerebellum in vivo.
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