Methodological Approaches To Study Receptors

Lecture #2

Determining the Stoichiometry of Receptors

Dr. Derek Bowie, Department of Pharmacology & Therapeutics, Room 1317, McIntyre Bldg, McGill University

Determining the Stoichiometry of Receptors

1. Selective Tagging

Mutagenesis or Selective Drugs

Subunit Copy Number

2. Constraining Stoichiometry

Covalently-Coupled Subunits

Relative Subunit Position

4 Different Classes of Subunit $\alpha, \beta, \gamma \text{ and } \delta$

Multiple Isoforms for Each Subunit

 $\alpha_{1-6}\,\beta_{1-3}\,\gamma_{1-3}\,\,\delta_1$

Members of Superfamily of Channels

Others include 5-HT & nACh receptors

1. Selective Tagging-Mutagenesis

Conserved Leucine Residue Increases Agonist Sensitivity

α 1 (L ₂₆₃ S)	CAA	GGT	TGT	CAT	GGT	ACT	AAC	GGT	CGT	CAC	TCC
$\beta 2$ (L ₂₅₉ S)	GAT	TGT	GGT	CAT	CGT	ACT	GAC	AGT	TGT	AAT	TCC
γ 2 (L ₂₇₄ S)	GAG	AGT	GGT	CAT	CGT	ACT	GAC	AGT	CGT	GAT	TCC

<u>Subunit</u>	<u>EC50</u>				
αβγ	46 μM				
$lphaeta\gamma_{m}$	1 μM				
<mark>α_mβγ</mark>	0.3 μM				
$\alpha\beta_{m}\gamma$	0.03 μM				

1. Selective Tagging-Mutagenesis

GABA_A Receptor Stoichiometry

Theory: how many α subunits?

For a single α subunit = 2 components

<u>For two α subunit</u> = 3 components

Experiment: how many α subunits?

D/R curve has 3 components

 EC_{50} values, 0.26, 2.3 & 36 μM

Therefore, mature GABA_{A} receptors contain two α subunits

Experiment: how many β subunits?

D/R curve has 3 components

 EC_{50} values, 0.025, 0.94 & 39 μM

Therefore, mature $GABA_A$ receptors contain two β subunits

Experiment: how many y subunits?

D/R curve has 2 components

 EC_{50} values, 1 & 41 μ M

Therefore, mature $GABA_A$ receptors contain one γ subunit

1. Selective Tagging-Mutagenesis

GABA_A Receptor Stoichiometry

Question: Does wildtype/mutant subunit fraction affect outcome?

All D/R curves have 3 components

Similar findings for β and γ subunits

1. Selective Tagging-Mutagenesis

GABA_A Receptor Stoichiometry

Interpretation

Mature GABA_A receptors contain;

 $\begin{array}{l} \textbf{2 x } \alpha_1 \text{ subunits} \\ \textbf{2 x } \beta_2 \text{ subunits} \\ 1 \text{ x } \gamma_2 \text{ subunit} \end{array}$

Cyclic Nucleotide-Gated Channels

Activated by intracellular cyclic nucleotides cAMP cGMP

Roles in Sensory Transduction

visual or olfactory signaling

Members of Superfamily of Channels Others K channels, Glutamate receptors

Cyclic Nucleotide-Gated Channels

Experiment: Wildtype a1 RET subunit (bovine retinal channel)

 $\underline{\alpha 1}$ Homomers

Tetramers or Pentamers?

Low channel conductance, 30 pS Small Pore Diameter, 5.9 Angstroms

Cyclic Nucleotide-Gated Channels

Experiment: Chimera RO133 subunit (catfish pore region)

RO133 Homomers

Tetramers or Pentamers?

High channel conductance, 85 pS Larger Pore Diameter, 6.5 Angstroms

Cyclic Nucleotide-Gated Channels

Experiment: Mixing RET & RO133 subunits

Intermediate conductance levels consistent with heteromeric assemblies

RO133

4

RET

2

3

Cyclic Nucleotide-Gated Channels

Experiment: Mixing RET & RO133 subunits

Question

Is there 3 or 4 Intermediate conductance levels?

Cyclic Nucleotide-Gated Channels

Two Possibilities: Mixing RET & RO133 subunits

Tetramer:

4 Intermediate conductance levels

Pentamer: 4 Intermediate conductance levels

Cyclic Nucleotide-Gated Channels

Experiment: Is Order of Subunit Assembly Important?

Covalently-Coupled Subunits

The Importance Of The Relative Subunit Position Can Be Determined

Cyclic Nucleotide-Gated Channels

Theory: Is Order of Subunit Assembly Important?

Tetramer: 1 Intermediate conductance levels

Pentamer: 4 Intermediate conductance levels

Cyclic Nucleotide-Gated Channels

Experiment & Interpretation Is Order of Subunit Assembly Important?

Tetramer: 1 Intermediate conductance levels

Conclusion: CNG channels assemble as tetramers

Determining the Stoichiometry of Receptors

What Have We Learned?

1. Selective Tagging Using Mutagenesis

GABA_A receptors assemble as pentamers

2. <u>Constraining Stoichiometry Using Tandem Dimers</u>

CNG channels assemble as tetramers

Further Reading

1. Chang, Y., Wang, R., Barot, S. and Weiss, D.S. (1996) Stoichiometry of a recombinant GABA_A receptor. J. Neurosci, 16, 5415-5424.

2. Liu, D, Tibbs, G.R. and Siegelbaum, S.A. (1996) Subunit stoichiometry of cyclic nucleotide-gated channels and effects of subunit order on channel function. Neuron, 16, 983-990.