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Confounding and Collinearity in Multiple Linear Regression

Basic Ideas

Confounding: A third variable, not the dependent (outcome) or main independent
(exposure) variable of interest, that distorts the observed relationship between
the exposure and outcome. Confounding complicates analyses owing to the
presence of a third factor that is associated with both the putative risk factor
and the outcome.

For example, consider the mortality rate in Florida, which is much higher than
in Michigan. Before concluding that Florida is a riskier place to live, one needs
to consider confounding factors such as age. Florida has a higher proportion
of people of retirement age and older than does Michigan, and older people are
more likely to die in any given interval of time. Therefore, one must “adjust”
for age before drawing any conclusions.

One of the epidemiologist’s tools for discovering and correcting confounding is
stratification, which in the preceding example would have the epidemiologist
compare mortality rates in Florida and Michigan separately for people in across
a range of age groups. Indeed, such stratified analyses, should often be a first
step towards investigating confounding.

Another way would be to use multiple regression, to derive mortality rates for
Florida compared to Michigan adjusted for any differences in age (and possibly
for other confounding factors).

Criteria for a confounding factor:

1. A confounder must be a risk factor (or protective factor) for the outcome
of interest.

2. A confounder must be associated with the main independent variable of
interest. For example, the confounder must be unevenly distributed as far
as the independent variable is concerned, as in the smoking and occupation
example of last class. Smoking was a confounder for the outcome of cancer,
because smoking is associated with cancer, and was unevenly distributed
among occupation categories.

3. A confounder must not be an intermediate step in the causal pathway
between the exposure and outcome. [This last criterion above has been
controversial of late.]
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Confounding arises:

• Confounding by indication: When evaluating the effect of a particular
drug, many times people who take the drug differ from those who do not
according to the medical indication for which the drug is prescribed.

• Selection bias: Not everyone invited to participate in a study participates,
causing imbalance between groups.

• Recall bias: Not everyone with an exposure recalls their exposure history
correctly, perhaps causing uneven recall in different groups.

• Many other ways, including unbalanced groups by chance, especially in
smaller studies.

Example:

Hypothesis: Caffeine intake is associated with heart disease. Which of the
following are likely to be confounding factors?

Factor Low Caffeine Intake High Caffeine Intake
Current Smoker (%) 12% 27%
Age (mean years) 36.3 37.1
Body Mass Index (mean) 28.4 24.3
Regular Exercise (%) 24% 14%
Female Gender (%) 43% 41%
Type A personality (%) 16% 28%
Hypertension (%) 9% 16%

Any variables with imbalances are potential confounders, such as smoking, BMI,
exercise, and Type A personality. All of these factors are potentially associated
with heart disease, and are imbalanced between high and low intake groups.

Is hypertension a confounder here? Many would say no, because it is presumably
in the causal pathway towards heart disease.

Collinearity: Collinearity (or multicollinearity or ill-conditioning) occurs when in-
dependent variables in a regression are so highly correlated that it becomes
difficult or impossible to distinguish their individual effects on the dependent
variable.

Thus, collinearity can be viewed as an extreme case of confounding, when essentially
the same variable is entered into a regression equation twice, or when two variables
contain exactly the same information as two other variables, and so on.

Example: It makes no sense for an independent variable to appear in a regression
equation more than once. Suppose some independent variable (say, Y = height in
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inches) is regressed on X1 = age in children, and the resulting regression equation is
(no claim to reality here!)

height = 20 + 3× age

Now suppose we attempt to fit an equation in which age appears twice as a indepen-
dent variable. Suppose X2 = age2 is an exact copy of the first age variable, and we
attempt to fit a regression equation that includes both avriables, as follows:

height = alpha + β1age + β2age2

Note that there is no unique solution to this equation. For example, all of the above
“solutions” are equivalent:

height = 20 + 3× age + 0× age2

or

height = 20 + 0× age + 3× age2

or

height = 20 + 1× age + 2× age2

or

height = 20 + 1.5× age + 1.5× age2

and so on. Note that all of these equations will produce exactly the same predictions.

The problem is that age and age2 are “collinear” variables, meaning that they each
give exactly the same information. Most computer programs will either give an error
message or at least a warning message if you include two collinear variables, as there
is no unique choice for β1 and β2, an infinite number of choices being equally good.
In fact, any choice in which β1 + β2 = 3 are all perfectly equivalent.

Note that collinearity does not affect the ability of a regression equation to predict the
response, all of the above equations will make exactly the same predictions. However,
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collinearity poses a huge problem if the objective of the study is to estimate the
individual effects of each independent variable.

Strictly speaking, “collinear” implies an exact linear relationship between variables.
For example, if age is age in years, but age 2 is age in months, they are collinear
because age2 = age× 12.

In general, it is not necessary to have “perfect” collinearity to cause severe problems,
two variables which are highly correlated will cause a “near-collinearity” problem.
This is why I suggested to always look at a correlation matrix of all variables before
running a multiple linear regression, so that such potential problems can be flagged
in advance.

In practice, collinearity or high correlations among independent variables will gener-
ally have the following effects:

1. Regression coefficients will change dramatically according to whether other vari-
ables are included or excluded from the model. For example, think about
whether age2, a copy of the age variable, is included or excluded in a model
that includes age.

2. The standard errors of the regression coefficients will tend to be large, since the
beta coefficients will not be accurately estimated. In extreme cases, regression
coefficients for collinear variables will be large in magnitude with signs that
seem to be assigned at random. If you see “non-sensical” coefficients and SD’s,
collinearity should be immediately suspected as a possible cause.

3. Predictors with known, strong relationships to the response will not necessarily
have their regression coefficients accurately estimated.

4. Tolerance: If variables are perfectly collinear, the coefficient of determination
R2 will be 1 when any one of them is regressed upon the others. This is the
motivation behind calculating a variable’s “tolerance”, a measure of collinearity.
Each predictor can regressed on the other predictors, and its tolerance is defined
as 1 − R2. A small value of the tolerance indicates that the variable under
consideration is almost a perfect linear combination of the independent variables
already in the equation, and so not all these variables need to be added to the
equation. Some statisticians suggest that a tolerance less than 0.1 deserves
attention, although this is somewhat arbitrary.

5. The tolerance is sometimes reexpressed as the Variance Inflation Factor (VIF),
the inverse of the tolerance (= 1/tolerance). Tolerances of 0.10 or less become
VIFs of 10 or more.

6. In general confidence intervals for regression coefficient from highly correlated
variables will be wider than if the predictors were uncorrelated.
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7. If the low value of tolerance is accompanied by large standard errors and thus
wide confidence intervals, another study may be necessary to sort things out,
unless subject matter knowledge can be used to eliminate some variables from
the regression from “theory” alone.

Let’s look at some examples, and see what happens in such situations:

# Create an age variable with n=100

age <- round(rnorm(100, mean=50, sd=10), 2)

# Create an exact copy of this age variable

age2 <- age

# Create another version of this age variable,

# but add a small amount of error, so not an exact copy

age3 <- age + rnorm(100, mean=0, sd=4)

# Create an dependent variable that depends on age, with some error

height <- 20 + 3*age +rnorm(100, mean=0, sd=10)

# Insert all variables into a data frame

height.dat <- data.frame(age, age2, age3, height)

# Check correlation matrix of these four variables

cor(height.dat)

age age2 age3 height

age 1.0000000 1.0000000 0.9265653 0.9497912

age2 1.0000000 1.0000000 0.9265653 0.9497912

age3 0.9265653 0.9265653 1.0000000 0.8973626

height 0.9497912 0.9497912 0.8973626 1.0000000

# Look at some scatter plots

pairs(height.dat)
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Note the extremely high correlations fund here, with age and age2 perfectly corre-
lated (correlation = 1), and age and age3 quite highly correlated. Note also good
correlations between all age variables and the outcome height.

Thus, we have created the perfect conditions for both collinearity and confounding
(admittedly a bit artificial here) to occur.

So, let’s see what happens if we try some regressions in R:

# First regressions for each variable separately:

> regression.out <- lm(height ~ age)

> multiple.regression.with.ci(regression.out)

$regression.table

Call:

lm(formula = height ~ age)

Residuals:

Min 1Q Median 3Q Max

-24.0449 -8.6023 0.9563 6.7564 23.3206

Coefficients:

Estimate Std. Error t value Pr(>|t|)
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(Intercept) 24.78685 4.86760 5.092 1.71e-06 ***

age 2.87555 0.09569 30.051 < 2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 9.864 on 98 degrees of freedom

Multiple R-Squared: 0.9021, Adjusted R-squared: 0.9011

F-statistic: 903.1 on 1 and 98 DF, p-value: < 2.2e-16

$intercept.ci

[1] 15.12726 34.44645

$slopes.ci

[1] 2.685659 3.065444

---------------------------------------------

> regression.out <- lm(height ~ age2)

> multiple.regression.with.ci(regression.out)

$regression.table

Call:

lm(formula = height ~ age2)

Residuals:

Min 1Q Median 3Q Max

-24.0449 -8.6023 0.9563 6.7564 23.3206

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 24.78685 4.86760 5.092 1.71e-06 ***

age2 2.87555 0.09569 30.051 < 2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 9.864 on 98 degrees of freedom

Multiple R-Squared: 0.9021, Adjusted R-squared: 0.9011

F-statistic: 903.1 on 1 and 98 DF, p-value: < 2.2e-16

$intercept.ci

[1] 15.12726 34.44645

$slopes.ci

[1] 2.685659 3.065444
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---------------------------------------------

> regression.out <- lm(height ~ age3)

> multiple.regression.with.ci(regression.out)

$regression.table

Call:

lm(formula = height ~ age3)

Residuals:

Min 1Q Median 3Q Max

-36.17548 -10.52226 -0.04571 9.48116 34.08627

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 38.2819 6.5937 5.806 7.91e-08 ***

age3 2.6032 0.1293 20.130 < 2e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 13.91 on 98 degrees of freedom

Multiple R-Squared: 0.8053, Adjusted R-squared: 0.8033

F-statistic: 405.2 on 1 and 98 DF, p-value: < 2.2e-16

$intercept.ci

[1] 25.19693 51.36687

$slopes.ci

[1] 2.346546 2.859789

Note the identical results for age and age2, expected since these two variables are in
fact identical copies of each other. Here the CIs are include the known true values
for α, which was 20, and β, which was 3. Note also the imperfect estimates for age3,
where the CIs for both the intercept and slope did not include the known true values.
This is because of the measurement error, where age3 is not really the true age, but
the age with an error added. Looking ahead, we will later see how to adjust for this
measurement error. The point for this lecture, however, was imply to create another
independent variable highly but not perfectly correlated with age.

Now, what happens if we try to regress two or more variables at a time, when they
are either perfectly or almost perfectly correlated to each other?

> regression.out <- lm(height ~ age + age2)
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> multiple.regression.with.ci(regression.out)

$regression.table

Call:

lm(formula = height ~ age + age2)

Residuals:

Min 1Q Median 3Q Max

-24.0449 -8.6023 0.9563 6.7564 23.3206

Coefficients: (1 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 24.78685 4.86760 5.092 1.71e-06 ***

age 2.87555 0.09569 30.051 < 2e-16 ***

age2 NA NA NA NA

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 9.864 on 98 degrees of freedom

Multiple R-Squared: 0.9021, Adjusted R-squared: 0.9011

F-statistic: 903.1 on 1 and 98 DF, p-value: < 2.2e-16

$intercept.ci

[1] 24.59696 24.97675

$slopes.ci

[,1] [,2]

[1,] -7.229775 12.98088

[2,] -54.767366 64.50257

-------------------------------------------

> regression.out <- lm(height ~ age + age3)

> multiple.regression.with.ci(regression.out)

$regression.table

Call:

lm(formula = height ~ age + age3)

Residuals:

Min 1Q Median 3Q Max

-24.4084 -7.6603 0.2975 6.7863 21.6914

Coefficients:

Estimate Std. Error t value Pr(>|t|)
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(Intercept) 24.1934 4.8563 4.982 2.74e-06 ***

age 2.5321 0.2529 10.011 < 2e-16 ***

age3 0.3551 0.2423 1.465 0.146

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 9.807 on 97 degrees of freedom

Multiple R-Squared: 0.9042, Adjusted R-squared: 0.9022

F-statistic: 457.9 on 2 and 97 DF, p-value: < 2.2e-16

$intercept.ci

[1] 14.55507 33.83179

$slopes.ci

[,1] [,2]

[1,] 2.0301561 3.0341345

[2,] -0.1258707 0.8361079

-------------------------------------------

> regression.out <- lm(height ~ age + age2 + age3)

> multiple.regression.with.ci(regression.out)

$regression.table

Call:

lm(formula = height ~ age + age2 + age3)

Residuals:

Min 1Q Median 3Q Max

-24.4084 -7.6603 0.2975 6.7863 21.6914

Coefficients: (1 not defined because of singularities)

Estimate Std. Error t value Pr(>|t|)

(Intercept) 24.1934 4.8563 4.982 2.74e-06 ***

age 2.5321 0.2529 10.011 < 2e-16 ***

age2 NA NA NA NA

age3 0.3551 0.2423 1.465 0.146

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 9.807 on 97 degrees of freedom

Multiple R-Squared: 0.9042, Adjusted R-squared: 0.9022

F-statistic: 457.9 on 2 and 97 DF, p-value: < 2.2e-16

$intercept.ci
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[1] 23.69144 24.69542

$slopes.ci

[,1] [,2]

[1,] 2.051156 3.013135

[2,] -9.532557 10.242794

[3,] -15.013555 24.726103

We note several points:

1. In the presence of perfect collinearity, R cleverly notices the collinearity, prints a
message to this effect, and then automatically deletes one of the variables from
the model, leaving a reasonable model where parameters are estimated. So, a
model with age and age2 provides the same results as a model with just age,
because age2 is automatically dropped, and a model with age, age2 and age3 is
the same as a model with just age and age3, again because age2 is dropped.

2. Not all programs do this, some will just return an error message and stop.

3. Note that our customized R function did not work properly. This is because the
order we are expecting for outputs in the object “regression.out” has changed
because of the dropped variable. We must be careful about such special cases.

4. When age and age3 are included, note that the coefficient of age is biased
downwards, due to presence of similar variable age3. We are lucky in that the
CI for age still includes 3, but this will not always be the case. For example,
create a stronger age3 variable, and observe the difference:

# Before, we used age3 <- age + rnorm(100, mean=0, sd=4)

# now try with smaller SD for age3:

> age3 <- age + rnorm(100, mean=0, sd=1)

>

> regression.out <- lm(height ~ age + age3)

>

> multiple.regression.with.ci(regression.out)

$regression.table

Call:

lm(formula = height ~ age + age3)

Residuals:

Min 1Q Median 3Q Max

-26.808 -8.351 2.029 7.041 22.338
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 24.0917 4.8571 4.960 3e-06 ***

age 1.4109 0.9690 1.456 0.149

age3 1.4757 0.9716 1.519 0.132

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 9.799 on 97 degrees of freedom

Multiple R-Squared: 0.9044, Adjusted R-squared: 0.9024

F-statistic: 458.7 on 2 and 97 DF, p-value: < 2.2e-16

$intercept.ci

[1] 14.45173 33.73166

$slopes.ci

[,1] [,2]

[1,] -0.5124352 3.334136

[2,] -0.4526711 3.403996

Notice now that the effect of adding age3 to the model with age is much more extreme,
the effect of 3 essentially becomes split between the two very similar variables, roughly
1.5 each. Note also the much larger SEs for age, for example, changed from 0.25 to
almost 1, a four-fold increase in uncertainty. Note that this caused very wide CIs for
both age and age3.

Example

Here is another example, using real data:

In 1993, an experiment was conducted at Ohio State University exploring the rela-
tionship between heart rate and the frequency at which that person stepped up and
down on steps of various heights. The response variable, heart rate, was measured in
beats per minute. There were two different step heights: 5.75 inches (coded as 0), and
11.5 inches (coded as 1). There were three rates of stepping: 14 steps/min. (coded
as 0), 21 steps/min. (coded as 1), and 28 steps/min. (coded as 2). This resulted in
six possible height/frequency combinations. Each subject performed the activity for
three minutes. Subjects were kept on pace by the beat of an electric metronome. One
experimenter counted the subject’s pulse for 20 seconds before and after each trial.
The subject always rested between trials until her or his heart rate returned to close
to the beginning rate. Another experimenter kept track of the time spent stepping.
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Each subject was always measured and timed by the same pair of experimenters to
reduce variability in the experiment. Each pair of experimenters was treated as a
block.

Order: the overall performance order of the trial
Block: the subject and experimenters’ block number

Height: 0 if step at the low (5.75”) height,
1 if at the high (11.5”) height

Frequency: the rate of stepping. 0 if slow (14 steps/min),
1 if medium (21 steps/min), 2 if high (28 steps/min)

RestHR: the resting heart rate of the subject before a trial,
in beats per minute

HR: the final heart rate of the subject after a trial, in beats per minute

Block Height Frequency RestHR HR
2 0 0 60 75
2 0 1 63 84
2 1 2 69 135
2 1 0 69 108
2 0 2 69 93
4 1 1 96 141
4 1 0 87 120
4 0 0 90 99
4 1 2 93 153
4 0 2 87 129
3 1 1 72 99
3 0 1 69 93
3 1 0 78 93
3 0 2 72 99
3 1 2 78 129
5 0 0 87 93
1 1 1 87 111
6 1 2 81 120
5 0 2 75 123
1 0 1 81 96
6 1 0 84 99
1 1 0 84 99
5 1 1 90 129
6 0 1 75 90
1 0 0 78 87
6 0 0 84 84
5 0 1 90 108
1 0 2 78 96
6 1 1 84 90
5 1 2 90 147
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We will now analyze these data in R. We will follow these steps:

1. Enter the data.

2. Look at some simple descriptive statistics

3. Look at univariate regressions for each variable.

4. Compare these coefficients to those from a full multivariate model.

5. Possibly eliminate variables from the model that look unimportant.

6. State conclusions by looking at confidence intervals, including stating whether
there may be any confounding or not.

# Enter the data which is saved somewhere as hr.txt

> heart.dat <- read.table(file="g:\\hr.txt", header=T)

# Take a quick look at the data, which seems fine.

> heart.dat

Block Height Frequency RestHR HR

1 2 0 0 60 75

2 2 0 1 63 84

3 2 1 2 69 135

4 2 1 0 69 108

5 2 0 2 69 93

6 4 1 1 96 141

7 4 1 0 87 120

8 4 0 0 90 99

9 4 1 2 93 153

10 4 0 2 87 129

11 3 1 1 72 99

12 3 0 1 69 93

13 3 1 0 78 93

14 3 0 2 72 99

15 3 1 2 78 129

16 5 0 0 87 93

17 1 1 1 87 111

18 6 1 2 81 120

19 5 0 2 75 123

20 1 0 1 81 96

21 6 1 0 84 99

22 1 1 0 84 99
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23 5 1 1 90 129

24 6 0 1 75 90

25 1 0 0 78 87

26 6 0 0 84 84

27 5 0 1 90 108

28 1 0 2 78 96

29 6 1 1 84 90

30 5 1 2 90 147

> summary(heart.dat)

Block Height Frequency RestHR HR

Min. :1.0 Min. :0.0 Min. :0 Min. :60.00 Min. : 75.0

1st Qu.:2.0 1st Qu.:0.0 1st Qu.:0 1st Qu.:72.75 1st Qu.: 93.0

Median :3.5 Median :0.5 Median :1 Median :81.00 Median : 99.0

Mean :3.5 Mean :0.5 Mean :1 Mean :80.00 Mean :107.4

3rd Qu.:5.0 3rd Qu.:1.0 3rd Qu.:2 3rd Qu.:87.00 3rd Qu.:122.3

Max. :6.0 Max. :1.0 Max. :2 Max. :96.00 Max. :153.0

# Notice that some factor variables are not being treated that way, so:

# Recall case is important in R, frequency is NOT the same as Frequency!

> heart.dat$Block <- as.factor(heart.dat$Block)

> heart.dat$Height <- as.factor(heart.dat$Height)

> heart.dat$Frequency <- as.factor(heart.dat$Frequency)

# Redo summary, notice that it is now corrected.

> summary(heart.dat)

Block Height Frequency RestHR HR

1:5 0:15 0:10 Min. :60.00 Min. : 75.0

2:5 1:15 1:10 1st Qu.:72.75 1st Qu.: 93.0

3:5 2:10 Median :81.00 Median : 99.0

4:5 Mean :80.00 Mean :107.4

5:5 3rd Qu.:87.00 3rd Qu.:122.3

6:5 Max. :96.00 Max. :153.0

# Note balance in the design, good for defeating confounding

# because all variables are balanced.

# Scatter plot for continuous variables, boxplots for the rest:

> plot(heart.dat$RestHR, heart.dat$HR)

# To simplify typing
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> attach(heart.dat)

> boxplot(list(Block1=HR[Block==1], Block2=HR[Block==2],

Block3=HR[Block==3], Block4=HR[Block==4],

Block5=HR[Block==5], Block6=HR[Block==6]))

> boxplot(list(Height0=HR[Height==0], Height1=HR[Height==1]))

> boxplot(list(Frequency0=HR[Frequency==0], Frequency1=HR[Frequency==1],

Frequency2=HR[Frequency==2]))
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# Univariate regression for each variable

# [For brevity, just show a portion of the results here]

> regression.out <- lm(HR ~ RestHR, data=heart.dat)

> multiple.regression.with.ci(regression.out)

$regression.table

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.6861 28.8532 0.509 0.61475

RestHR 1.1589 0.3584 3.234 0.00313 **

--------------------------------------------

> regression.out <- lm(HR ~ Block, data=heart.dat)

> multiple.regression.with.ci(regression.out)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 97.800 7.964 12.281 7.73e-12 ***

Block2 1.200 11.262 0.107 0.9160

Block3 4.800 11.262 0.426 0.6738

Block4 30.600 11.262 2.717 0.0120 *

Block5 22.200 11.262 1.971 0.0603 .

Block6 -1.200 11.262 -0.107 0.9160
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# Note that category 1 is the "reference category",

# whose mean is given by the intercept.

# Also note that only category 4 reaches "significance",

# very common for this to happen for categorical variables.

---------------------------------------------

> regression.out <- lm(HR ~ Height, data=heart.dat)

> multiple.regression.with.ci(regression.out)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 96.600 4.531 21.321 <2e-16 ***

Height1 21.600 6.408 3.371 0.0022 **

# Category 0 is the reference.

---------------------------------------------

> regression.out <- lm(HR ~ Frequency, data=heart.dat)

> multiple.regression.with.ci(regression.out)

$regression.table

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 95.700 5.576 17.164 4.72e-16 ***

Frequency1 8.400 7.885 1.065 0.29617

Frequency2 26.700 7.885 3.386 0.00219 **

# Category 0 is the reference, only Frequency2

# is "significant".

---------------------------------------------

# Now compare these estimated coefficients with

# the full model, to check for any differences in

# estimated parameters

> regression.out <- lm(HR ~ RestHR + Block + Height + Frequency, data=heart.dat)

> multiple.regression.with.ci(regression.out)

$regression.table

Call:

lm(formula = HR ~ RestHR + Block + Height + Frequency, data = heart.dat)
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Residuals:

Min 1Q Median 3Q Max

-15.8984 -4.0292 0.2189 5.9545 9.7953

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 65.5002 34.8943 1.877 0.07517 .

RestHR 0.1874 0.4353 0.431 0.67137

Block2 0.9662 8.2908 0.117 0.90838

Block3 -2.8990 6.1834 -0.469 0.64426

Block4 21.5927 6.0529 3.567 0.00193 **

Block5 16.3019 5.3150 3.067 0.00608 **

Block6 -5.3626 4.8664 -1.102 0.28356

Height1 20.8128 3.5752 5.821 1.07e-05 ***

Frequency1 9.2031 3.4756 2.648 0.01544 *

Frequency2 24.9921 3.4845 7.172 6.03e-07 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 7.611 on 20 degrees of freedom

Multiple R-Squared: 0.9044, Adjusted R-squared: 0.8614

F-statistic: 21.03 on 9 and 20 DF, p-value: 2.533e-08

$intercept.ci

[1] -7.288011 138.288404

$slopes.ci

[,1] [,2]

[1,] -0.720578 1.095455

[2,] -16.328035 18.260518

[3,] -15.797328 9.999389

[4,] 8.966474 34.218904

[5,] 5.215017 27.388712

[6,] -15.513617 4.788494

[7,] 13.354991 28.270622

[8,] 1.953209 16.453072

[9,] 17.723583 32.260715

For ease of comparison, let create the following table:
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Multivariate Univariate
Variable Estimate Std. Error Estimate Std. Error
(Intercept) 65.5002 34.8943
RestHR 0.1874 0.4353 1.1589 0.3584
Block2 0.9662 8.2908 1.200 11.262
Block3 -2.8990 6.1834 4.800 11.262
Block4 21.5927 6.0529 30.600 11.262
Block5 16.3019 5.3150 22.200 11.262
Block6 -5.3626 4.8664 -1.200 11.262
Height1 20.8128 3.5752 21.600 6.408
Frequency1 9.2031 3.4756 8.400 7.885
Frequency2 24.9921 3.4845 26.700 7.885

From the above table, we note the following:

1. There is only mild confounding for most variables, but RestHR changed very
substantially. While most estimates do move around a bit, for the most part
movement is all easily within the confidence intervals, and many SEs were large
anyway. There was substantial confounding with RestHR, however. Looking
back at the data set, one suspects that subjects did not fully return to their
true Resting HEart Rates after each trial. For example, looking at the data
from Block2, we see that RestHR changes from 60 to 69 as exercise gets more
difficult. Thus, after accounting for the other variables, RestHR appears to
become less important a predictor.

2. The SEs are much smaller from the multivariate model compared to the uni-
variate model. This often happens: if “good” independent variables are added
to a model, then the residual SD decreases, so SEs, which depend in large part
on the residual SD, decrease.

3. From confidence intervals, we see that Block4 is at least 8 beats, and up to 34
beats faster than Block1 (reference), which seems clinically important. Height
makes at least a 13 beat difference, and both Frequency1 and Frequency2 are
different from Frequency0, although not all values in the CI’s are clinically
relevant for Frequency1.

4. Important: Other categories are inconclusive, due to wide CIs, so more re-
search is needed for them. We cannot conclude that these variables are unim-
portant!! This is an extremely common misconception made by researchers
everywhere!!
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One way to View Confounding

Suppose we have a model with Y as the outcome, X as a dichotomous variable of
main interest, and C as a potential confounder. If we ignore the confounder, then we
would run this model:

Y = α + β1X

From that model, the effect of a one unit change in X is simply β1.

However, if we add the potential confounder to the model, the model becomes:

Y = α∗ + β∗
1X + β2C

where it can be shown that

β∗
1 = β1 − β2(CX=1 − CX=0)

So, there are several possibilities:

1. If C is not related to X, then CX=1 − CX=0 ≈ 0, and β∗
1 ≈ β1.

2. If C is not related to Y , then β2 ≈ 0, and β∗
1 ≈ β1.

In both of the above cases, there is in fact no confounding, so, not surprisingly,
β1 stays the same, regardless as to whether C is in the model or not.

3. If C is in fact related to both X and Y , we have confounding, and β1 is a biased
estimate of the true effect of X on Y , owing to the confounding from C. Thus,
we must include C in the model, use β∗

1 as the estimate the effect of X on Y .

The magnitude of the bias depends both on the strength of the relationship
between C on Y , as measured by β2, and on the strength of the relationship
between X and C, as measured by CX=1 − CX=0.


