3. TELEPHONE WAITING TIMES

First published in “DMatematisk Tidsskrift” B, Vol. 31 (1920), p. 25.

1. Formulating the problem; how to reach the solution.

For some years, all the experts — particularly, perbaps, in Denmark —
have been aware that the application of the theory of probabilities
constitutes the only possible way of attaining fully rational methods in
telephone administration. This holds good with respect to the exploita-
tion of lines and the utilization of the work of operators, and it is especially
valid for the newest, more or less automatic telephone systems. I have
treated some of the problems of primary importance in this connexion
in an article in “Elektroteknikeren”, 1917 (and later in “Elektrotech-
nische Zeitschrift””, 1918, and ‘“The Post Office Electrical Engineers’
Journal”’, 1918), in which, however, I have omitted — for the sake of
brevity — some of the proofs, and stated only the resulting formulae
and. numerical expressions. I shall mention only one important problem
here, viz. that of finding the probability that the delay in answering, or
waiting time, shall not exceed a given quantity z, expressed as a function
of z. The given quantities, then, are: — The number of available lines,
x; the duration of the call, ¢; and the intensity of traffic, y (i. e. the average
number of conversations proceeding simultaneously, or, in a different
wording, the average number of calls during the time ¢. It is presup-
posed that y << z; also, that a calling subscriber who cannot be connected
at once because all x lines are occupied, will always wait — possibly in a
“queue’” with other waiting subscribers — until he gets through. The dura-
tion of the calls ¢ is here assumed to be constant; this assumption holds
good with respect to trunk calls, but is less accurate in the case of local
calls, the latter generally being of rather variable duration which gives
rise to a problem of a kind somewhat different from the one we propose
to deal with here. For convenience, the unit of time should either be
considered equal to the duration of calls, or it should be chosen in such
a way that there will be an average of 1 call per unit of time; the latter
method is the one preferred here, and thus ¢ = y.
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The solution of our problem can be reached, or, at least, approached
in rather different manners; as a rule, the special case of = 1 (one line)
will be found, easier to handle than the general case. For instance, a differ-
ential equation can be derived,

(o) ra—(3) 7@+ () e — . (2 e = e —o;
f(z) = 0 for all negative values of z being known in advance, it is pos-
sible, by integration of the above, to determine the variations of the
function, first from z = 0 to z = ¢, then from z = ¢ to z = 2¢, &c. The
determination of the integration constants, however, will cause diffi-
culties; everything works out smoothly only in the special case of z = 1,
as further described in my article in “Nyt Tidsskrift for Matematik”,
1909, where this case is treated in the indicated manner.
Instead, an integral equation may be employed, viz.

[va] S
y® 1

—_ .’
f(z) MSOJ‘(Z + u—1) m e “du
which immediately leads to a (sometimes) rather convenient numerical
solution, but hardly to an explicit mathematical solution.

In the following we shall move along a quite different path, beginning
with the introduction of a set of constants: a,, ay, @, . ... a, 4; these
are functions of y, or, if you like, of a, a denoting the ratio of ¥ to z. These
constants are determined, as we shall see, by inference from some ele-
mentary considerations leading to the employment of certain infinite

. T
series, all the terms of which are values of the function ¢V - %, and
in a tabular representation of the function, the terms of each series
will be placed along one or another oblique line, and distributed at equal
intervals. K. Pearson’s collection of tables contains such a table, although

- for positive values of y only; a similar table comprising negative values

of y is given below in the appendix'). It should further be noted, with

y° .
respect to the function ¢ 7 - i' , that its significance for the present
x!

problem, and for several other ones as well, depends on the following
important theorem, the mathematical contents of which was found by
Poisson: The probability of an arbitrary number of calls () being orig-
inated during an interval of time with an average number of calls v,

') This table is omitted in the present reprint, as it is identical with Table 2, p. 137,
to which the reader is referred.
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. X
is equal to ¢! l’ I give a simple proof of this theorem in the appen-

dix below.

In some cases, the determination of the constants ag, @1, 05 .... a,
in the manner indicated is very useful; in other cases, such as when a is
great (nearly 1), it is very unpractical, however, as the series then are
slowly convergent. We shall therefore also give the determination of
the constants in a different and more aesthetic form. We introduce a seb
of auxiliary terms, most often imaginary, B, y, ... ., their total number
being z when o is included; they are determined by means of a certain
transcendental equation in which they are roots. By using a theorem set
forth by Mr. J. L. W. V. Jensen, Telephone Engineer-n-Chief, Ph. D.,
the infinite series mentioned can then be summed. The solution of our
problem will then appear in a simple and convenient form.

In the following I shall pass in view the two special cases explicitly
and uniformly, first z = 1, 7. e. 1 line (in sections 2—6), then z = 2,
7. e. 2 lines (in sections 7 — 11); consequently, I have considered it
unnecessary to account for the proof of the general case expressly.

2. The simpler case of x = 1; definition of a,.

We understand by @, the probability that there will be no waiting
time after an arbitrary call. Here we have immediately oy = 1 — a, a,
being the probability that the line is unoccupied, and a« being the prob-
ability that it is occupied. .

3. The table and the oblique lines.

When z and y both are variable, the table of the Poisson function ¢~ ym‘
z!

will fill & plane; we may begin with placing an z-axis and a y-axis in the
plane (e. g. the z-axis downwards, and the y-axis pointing to the right),
and then inscribe each separate value of the function as near as possible
to the point determined by the coordinates x and y. Incidentally, we
shall have to deal with integral values of x only; and if desired, the nega-
tive values of = can be omitted, the function here being 0. Now, we imagine
a certain set of oblique lines being laid in the plane, all having the direc-
tional coefficient «. On each line we select a number of equally spaced
points, each interval corresponding to an increase of 1 in the abscissa,
and of « in the ordinate. The sum of the functional values under con-
sideration is denoted by the letter o, to which is added as indices the
coordinates of one of the points, the situation of all the other points being
also given hereby. If this point is situated on the x axis, however, the
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second index — which is 0 — may be omitted, for the sake of brevity.
We permit these series to go on infinitely in both directions or, if you
choose, in the one direction, and in the other direction until the terms
automatically become equal to 0. If only those of the terms corresponding
to points with positive ordinates be included in the series, the sum is
denoted by s; if only the other terms, viz. those corresponding to points
with negative ordinates (and 0), be included, the sum is denoted by r.
In both cases are added indices, as previously mentioned. Thus, we have
always vy, = o,

3

' In many cases o and s are identical and r = 0, viz. when the oblique line
intersects the negative part of the z-axis. The convergence of the series
is easily realized.

4. Relations concerning a,.

Regardless of the fact that we have already found the value of a, it
will now be useful to prove the. following relations:—

ay =1 —a,s, l

—2
0 =1—as,, | (1—2)
where, in accordance with the foregoing,
al (2 a)?
— —2a
Sg = ¢ 1!—]—6 ——2! 4+ ...
(3—4)

0 (2 a)t

a
Sy =€ % — | g2 + o
o 0! 1!

As we shall see later, the two equations (1-—2) can be given a different
form by introducing the sums o instead of the sums s; but we will prove
them, first in the above form.

The equation (1) can be proved as follows: By considering in detail
all the cases where an arbitrary call suffers a waiting time, it will be seen
that the cases can be distributed, or arranged in groups, thus:—

1) During the preceding time interval of duration ¢ (or a) there was 1 call

2) - - - - - - - 24 - were 2 calls

3 - - - - - - - 3% - - 3calls,
ete.

An infinite number of groups is obtained; considering, however, that the
probabilities in question form a convergent series, there can be no doubt
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that the aggregate probability 1 — a, sought-after really exists in the
form of a certain limit value; a similar remark could be made at several
points in the following. Care should be taken, in the arranging in groups
mentioned, that no case be placed under two different groups; to avoid
uncertainty in this respect we will decide upon always preferring the group
with the higher number to that with the lower number. Agreement with
this is found in that, in group no. 1 above, 1 call is stated (i. e., just one
call, and no more), and the following groups are in analogy with this;
_ but the cases which, accordingly, should be included must now be sifted
further. It is easily seen that the probability that a case really belongs
under the group where it has been placed temporarily, is identical with.
the probability that an arbitrarily chosen call will not have to suffer a
waiting time; in other words, it is equal to a,. For, if we suppose that a
case has been put, temporarily, under (e. g.) group 3, then we know
that there were 3 calls during the preceding time interval of 3 ¢; but that
is all we know. We must then take the point of time that is 3 ¢ pre-
vious to the call and, from there, seek further baek in time; first an
interval ¢, to see whether 1 call can be found here; then an interval 2 ¢,
to see whether 2 calls can be found here; &c. We must, thus, under-
take the same investigation — although starting from a different point
of time — as when we recently began enumerating the cases leading to

a waiting time. — Accordingly, we get
L u at oa (2 a)?
oy = —faoe 1—1—{-8 _2!‘—+....
or, shorter, ' e = 1 — a8y, q. e. d.

The equation (2) can be proved in a quite similar manner; we shall not

dwell on that, however, as equation (1) strictly speaking will suffice. By .

inserting o instead of s, the appearance of equations (1) and (2) becomes
simpler and more uniform, viz.

1 = ay0, } (5—6)

1 =a40_4.

The significance of these two- equations (their number could easily be
increased) is, for the present, that a, can be found by means of either of
them (we leave out of account that we have already found a, in a simpler
way here where x = 1). But they are, as a matter of fact, significant in
another respect also, which will be dealt with later.
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5. The summation of the infinite series.

The infinite series o, as employed in the above, can be summed by
means of a theorem by Jensen (Acta mathematica XXVI, 1902, p. 309,
formula 7). With slightly altered denotations, the theorem reads:

1 —zz,_a’j+e—(u+a)__(_a"_{;a)j+e__(a+2a). (d+2a)2+

e, (7
i—a 2 "0 11 21 (™

and it is valid for all values (real and imaginary) of o when 0n1y| ae”® !
1

< —, and also | a | < 1. It is valid, at any rate, for the values of «
e

we are using here, »iz. the positive numbers between 0 and 1. Just now
we shall consider 2 special cases only: @ = 0 and @ = . Then we have

0 1 (2 a)z 1
—0 —a —2a
o= e g e g T T,
(8—9)
a0 (2 o)t 1
—a —2a
o_1 = e 0"‘+ 11 ....——1 a

Using (8—9) and (5—6) we find that a, = 1 — o which we knew already.
Simple expressions can also be found for the quantities s, although not
quite so simple as in the case of o.

6. The application of a, to the solution of the main problem.

We will now find 8 < j , 5. e. the probability of a waiting time greater
than z, or its complement S (; . For this purpose, we return to the
equation (1) which we shall now proceed to generalize. On the left-hand
side we substitute S <——<— for a,, and on the right, s, _,, for s,; in other

2

words, we move the oblique line concerned a step z to the left. The equation
thus obtained,

or (10)

11
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is proved in quite the same manner as the original equation (1). Also the
equation (2) can be generalized in a similar way, but we need not go
into that. ‘

The equation (10) has the drawback of containing an infinite series
which, however, can be easily replaced with a finite series. We have

0, —z T S0, —2 = %0,—2) (11)
Qo " O, —z) = 1, (12)

the latter resulting from Jensen’s theorem.
By means of this, we get from (10)

. >
N ( i ) =1-—ayrg _y (13)
or '
<
S (g) B azo’l”(o’ — 2" . (14)

This formula is valid for all values of 2, but the number of terms resulting
depends on whether we are dealing with first interval, 0 <z <i, or
second interval, t < z < 2%, &c. As I have done elsewhere, certain special
constants by, by Cg, €1, Cs C3; &C., can here be used to write the formulae
concerning each separate interval, but these constants are easily derivable
from @, As a magtter of fact, the formula (14) expresses everything in the
~ simplest and most convenient form. :

7. The case of @ = 2; definition of a, and a,.

We understand by @, the probability that there will be no waiting
time after an arbitrarily chosen call (or that there will be at least one
unoccupied line); by a, we understand the probability that there will be
no waiting time after a call when there has been another call immediately
preceding it (or that a random call will find both the lines concerned
unoccupied). We get directly the relation,

Gy + =2 (1 —a); (15)

for, a, is the probability that there will be at least 1 line unoccupied at
at any arbitrarily chosen moment, and a, is the probability that there
will be 2 unoccupied lines; and 2 (1 — a) is the average number of un-
occupied lines. — A number of equations sufficient for the determina-
tion of @, and a, will be given later.
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8. The table and the oblique lines.

Here, too, we use the previously mentioned table and define certain
sums, partly finite, partly infinite, and denoted by the letters o, 7, and s;
and we attach the definitions to certain oblique lines having the direc-
tional coefficient « and being situated in the plane of the table. The only
distinction is that the difference in abscissa for the successive points
selected along an oblique line is not 1, but-2; the difference in ordinate is
not a, but 2 . As before, we use two indices, viz. the abscissa and ordinate
for one of the points; the ordinate, however, can be omitted when equal
to 0. Additional distinctive marks consisting of 1 vertical stroke, re-
spectively 2 vertical strokes are prefixed in the cases where there is a risk
of mistaking the previously defined sums for those now introduced.
We have also here ‘

T, v =+ Sz, y) = O, y)» (16)

where the symbol ¢ indicates the inclusion of all terms (or all which are
not 0); s, on the other hand, indicates the inclusion of those only which
correspond to points with positive ordinates; and 7, that only those cor-
responding to negative ordinates, and 0, are included. — (¢ and s are
equal and 7 = 0 in many cases, viz. when the oblique line intersects the
negative part of the x axis, or possibly the positive part between the
points = 0 and » = 1.

9. Determination of a, and a,.
We will prove that
' @y =1—(a:8g + ays; )l ,
g =1— (a5 1+ aes, ) ¢ (17—19)
0 =1—(as5_5+ aos_l),l

where, in accordance with the foregoing,

3 2¢)5
§; = et — T2 (—_-)——i— .
31 51
2 (2)
__ i — 2 0
TR T
(20—23)
f (21)3
_ o~ -y
S_q=2¢ 1!+e 31 + ..
10 21)2
S :e“"t——l—e_zt( )~}—

—2 0! 21
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or, if you like,

e (20, (4a)®
§ = ¢€ 31 + € Al -
(2 a)? (4 a)*
__ y—2a M —da
%o = T TR
(24—27)
(2 o)t (4 a)?
. ,—2a —4a
S_3=2¢ 1 + € 31 |-
g (2a) (4 a)?
_ ,—2a —4da
S_p=2¢ o1 + € T -+ ..

As we shall see later, the equations (17—19) can be expressed in a dif-
ferent form by introducing the sums o instead of the sums s; but we will
prove them in the form as given above.

The equation (17) can be proved as follows: If we consider all the cases
where an arbitrary call must suffer a waiting time, it will be evident
that these cases can be arranged in various groups, such as:—

1) During the preceding time interval of the duration ¢ (or 2 «) there were
2 or 3 calls

2) - - - - - - - - 214 there were
4 or 5 calls

3) - - - - - - - - 3t there were
6 or 7 calls,

and. so on.

Care should be taken, however, that no one case be placed under two
different groups; to avoid uncertainty in this respect we will decide upon
always preferring the group with the higher number to that with the
lower number. Agreement with, this is found in that, in group no. 1 above,
the specification reads “2 or 3 calls” (i. e. and no more), and the follow-
ing groups are in analogy with this; but the cases which, accordingly,
should be included must now be sifted further. It will be necessary to
distinguish, within group no. 1, between a subordinate group a (2 calls)
and a subordinate group b (8 calls), and. similarly within the other groups.
Tt is now easy to see that the probability that a case really belongs under a
subordinate group o where it has temporarily been placed, is identical
with the probability that an arbitrarily chosen call will not have to suffer
a waiting time; in other words, a,. Likewise, the probability that a case
temporarily placed under a subordinate group b really belongs there,
is the same as the probability that an arbitrary call will not have to wait
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and furthermore finds both lines unoccupied; in other words, ¢, Hence
we have ‘

o (2t)5
. —i — 2t "/
“"(6 TR

+ G—Et A

—t
a1:1~a1<e 21 1l

2 2¢)4
t (L’Jr)

or Gy = 1— (3,89 -+ @g8y), q.e.d.

The equations (18) and (19) can be proved in a similar manner, but we
shall not dwell on that.
By inserting o instead of s, the equations (17—19) become simpler
and more uniform, viz.
I =ay00 —+ ayoy
Il =ay0_41 + ay0, [ (28—30)

1l =ay0_5 + ayo_,

The significance of these three equations (their number could easily be
increased) is that the constants ¢, and a, can be determined by means
of any two of them (or by any one of them when the equation (15) is
utilized). Incidentally, they are also significant in another respect which
we shall see later.

10. Introduction of the new constant B, summation of the infinite series,
and determination of a, and ,.

The infinite series, in the summation of which we are now interested,
are the following:

| 0t ., (2a)p (4 a)®
— 0 —2a —4a
lon = qp et et
| 0t (2 a)? (4 a)t
i — o0 —2a —4da
log = p et et
(31—34)
_ —oq (2t (40)?
oy = R TR
| 9 (2a)° (4 a)?
| 2a —4 a
192 0! ' TR

We know the sums of the following series which are closely related to
those just mentioned (Jensen’s theorem, equation no. 7 above):
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. (—a)° o ot R a? ou (2a)?
e TR TR A Tl B ¥
0o 1 (2a)? sa (3a)?
|O’° = el 0! ‘+6_a *”iT' +6—2a—‘)!— —l_e 8 T—l—
W L (2a)t o (Ba) . (4a)?
o =¢€ @ o1 —l— 2‘1*17*' 8 ‘2—| +6 4O'T—|—....
(20)° (Ba)' |, (4a? _ (5a)®
. ,—2a —3 a 4a S5a
O e TR e B TRl S Y

4

1—a

1

1—a

1

1—a

1

.—1_——a_

(35— 38)

The series ¢ and |o only differ in that every second of the terms
contained in the latter is missing in the former. Now, we obtain from

the equations (35—38):

1 gy (1P 0t oy 12
—jon = (ae™?) o (ae a)“ﬂ"i‘(ae )1?!+'
00 11 7 92
o0 = (00— loe Py H(ae
| 10 21 32
a 10'_1 = (qe_a)l 0l —;-* (ﬂ.e_a)z —]T'Y‘ —}— (Cte_a)3 *2" —;—“ e e
20 3t : 42
a? ‘0'_2: (aeﬁa)z o1 -+ (ae#a)s —1“1- -+ ((16—_-‘1)4t E 4+ ...

A scheme of obtaining the values of the four quantities

1

2 .
ow oo arfos @t o,
a

(39—42)

by removing every second term (viz. those with odd exponents) from the
four series above, all of which are arranged according to the powers of

ag ®

series with a new constant 8, as given by the equation

Be“ﬁ =-—ae *

, can be put in practice in a convenient way by replacing o in each

and then taking the mean value of the old and the new result. The equation
will always have one, and only one, serviceable (negative) root (. e. one

to which Jensen’s theorem can be applied).
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Thus, we get

LI
« Y T2 \a(l—a) T B(1—B)

1 1 1
| _E< 1= 1.8 >

(43—45)

1 a B
=Ly

\ 1 o2 Jed
* ’}0—2*5< —a © 1—/8)

or, .

| oo =+ (ci=at 70=5)
T2 el—a) BA—P)

1 1 1
g =3< T—a l—ﬁ>

(47—50)

1 a B
?10_1—-2—;( 1. T 1-/3)

1 a B2
lo—s 2a2( 1 —a lﬁﬁ)

It is possible, of course, to find the quantities ” s just as we have
found the quantities || o (expressed in terms of o and B), but the ex-
pressions will not be quite so neat. — From the equations (28—30) and
(47—50) we now obtain

[ (51—52)

which, by insertion, will satisfy not only (28—30), but also all those
analogous to the latter, 1. e. more generally the equation i

@10, + @g0,; = 1;
for we get

27 a

.?’<ﬁ 1 n 1 )
a—p 2\ (1—a) B (1—B)

2 (l—a) B 'cw+l 1 L 1 _1
i a—f 2\ (1—a) FF1—p)



168 A. K. Erlang:

11. Applying the quantities found, a, and a,, to the solution of the main
problem.

We shall now determine S|~ , 7. e. the probability of a waiting time
z

. < . .
greater than z; or its complement S|— ). We consider the equation (17)

z
and on the right s, and s, with s, __,, and s, _,), respectively; in other
words, we move the oblique line concerned a step z to the left. The equation
thus obtained,

which we will now generalize. On the left side we replace @, with § <i),

<
N (z) =1-—(a1" 50, -z + %o Sq, —z) (563)
or
>
S < . ) = @y " S, —z) T ®o " S, —z) (54)
/

can be proved in quite the same manner as the equation (17). Also (18)
and (19) can be generalized in a similar way, but we need not go into
that. "

Now, the infinite series in the equations (53—54) can be replaced with
finite ones. We have

"0, —z T S0, —z = %0, —z) (65)
Ta, —2) T Sa,—s = %, —2) -~ (56)
@100, —z + A0, —p = 1 (57)
hence
>
. < Z) =1 —ayg, sy — @4, —2) (58)
or
<<
y (?> - @aT(o, —z) T o1, —2) (59)

The formula is valid for all values of z. The number of terms con-
tained in the formula depends on whether z belongs in the first interval
0 <z < t, or in the second interval ¢ < z << 2¢, and so on.

It is easy to write out, as I have done elsewhere, the special formulae
valid for the separate intervals; the constants involved here, by, by, b,
bg; ¢y, €y, Cg, Cg, Cy, 55 &c., are easily derived from. a, and a,. However,
the formula (58—59) really expresses everything, and perhaps even in
the very best form, at that.
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12. Appendix.

The proof of the theorem used in the above, viz.: When, during a given
time, the average number of calls is y, the probability of x calls being
originated will be

S, =¢"? LAy
’ x!

Let it be assumed that the time in consideration represents a portion
of a very long time over which a correspondingly great number of calls
is dispersed so that y calls, at an average, fall within the time portion
considered. The duration of the latter can be called ¥, the unit of time
being chosen in such a manner as to give an average of 1 call per unit

of time. Let wus suppose that, in a certain case, say, 5 calls occur
within the time ¥, and let us move y a short distance dy; then. there will

5d

be a probability 2% that 1 of the 5 calls is shut out so that the number
y

is reduced to 4. Vice versa, if we had 4 calls before y was moved, there will
5d

be a probability 2 of gaining 1 new call by the movement. But the
Y

transitions from 5 to 4 and vice versa must neutralize each other, and so

S — =28,
Y

This result — and analogous results — give us the ratio between the
successive members of the sequence Sy, Sq, S,, - ... ; these must then be
proportional to

. ¥ vy

o1 o2l 3t
As, necessarily,

Seg+8;+8,+.... =1,
and as ‘
y v 9 4
L=ttt =

we obtain

7 1
Sy =¢€"7Y, S]:e"l’%, nge_y:/—f—....,

q. e d.
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Table 1.
Values of the congtants a, for z = 1; a, and a, for x = 2.
xz =1 =2
a o ay aq
0-0 10 1-000000 1-000000
1 09 0-982234 0-817766
2 8 935507 664493
3 7 866418 533582
4 6 779180 420820
5 5 676741 323259
6 4 561316 238684
7 3 434633 165367
8 2 298104 101896
9 1 152892 047108
1-0 0 000000 000000
Table 2.

<
Values of §|— | for « = 1 and = = 2.
z

z=1.

1-0

| Q
Y
S
—
[
w
'y
[z
=]
3
oo
©

00 1-000 | 1:000 |1-000 |1-000 |1-000 |1-000 {1-000 |1-000 [1-000 |1-000 |1-000
1 0-900 | 0995 | 1:000 |1-000 |1-000 |1-000 |1-000 |1-000 |1-000 |1:000 |1-000
2 800 884 | 0-977 |0-991 |0-998 |0:999 |1-000 |1-000 |1-000 |1-000 |1-000
3 700 774 855 945 967 983 | 0°992 [ 0996 [0-998 [0-999 |0-999
4 600 663 733 810 895 923 947 965 977 984 990

500 553 611 675 746 824 856 885 910 931 947
400 442 489 540 597 659 729 761 792 822 849
300 332 366 405 448 495 547 |. 605 635 665 694
200 221 244 270 298 330 364 403 445 470 495
100 111 122 135 149- 165 182 201 223 246 261
000 000 000 000 000 000 000 000 000 000 000

S 0 ®ao o

—
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x = 2. N
z
\ 0 1 2 3 4 5 6 X 8 9 | 10
a
00 1-000 | 1-000 | 1-000 |1-000 {1-:000 |{1-000 |1:000 |{1-000 |1-000 |1-000 |1:-000
1 0-982 [0-995 | 1-000 | 1-000 |1:000 |1-000 |1:000 |1-000 |1:000 |1-000 |1-000
2 936 960 | 0-980 | 0-994 |0-999 |1-000 |1-000 |1-000 |1-000 {1-000 |1-000
3 866 899 928 953 974 10-989 [0-995 | 0997 [0-999 | 0-999 | 1-000
4 779 815 849 881 911 938 960 976 985 989 | 0-992
5 677 712 748 783 817 849 880 909 931 949 961
6 561 594 627 661 695 729 762 794 824 852 877
7 435 462 490 520 550 580 611 642 673 703 732
8 298 318 339 361 384 407 432 457 482 508 533
9 153 164 175 187 200 213 227 241 2566 272 288
1-0 000 000 000 000 000 000 000 000 000 000 000




