188 PARAMETRIC PROPORTIONAL HAZARDS MODEL

ment, Edmunson ¢t al. (1979) compared the anti-tumour effects of cyclophiy
phamide alone and cyclophosphamide combined with adriamyein. The trinl
involved 26 women with minimal residual disease and who had experiencod
surgical excision of all tumour masses greater than 2 ¢m in diameter. Tol
lowing surgery, the patients were further classified according to whether thi
residual disease was completely or partially execised. The age of the pation
and their performance status were also recorded at the start of the trial. Tl
response variable was the survival time in days following randomisation (o
one ot other of the two chemotherapy treatments. The wvariables in the darn
set are therefore as follows:

Time:  Survival time in days,
Status:  Event indicator (0 = censored, 1 = uncensored),
Treat: Treatment (1 = single, 2 = combined),
Age:  Age of patient in years,
Rdisease:  Extent of residual disease (1 = incomplete, 2 = complete |,
Perf  Performance status (1 = good, 2 = poor).

The data, which were obtained from Therneau (1986), are given in Table b0

In modelling these data, the factors Treaf, Rdisease and Perfeach have [y
levels, and will be fitted as variates that take the values given in Tabile 50
This does of course mean that the baseline hazard function is not direetly
interpretable, since there can be no individual for whom the values of all thew
variates are zero. From both a computational and interpretive viewpaint, it i
mare convenient to relocate the values of the variables Age, Rdisease, Forf nl
Treat, Il the variable Age — 50 is used in place of Age, and unity is subdrictol
from Rdisease, Perf and Treal, the baseline hazard then corresponds 1o the
hezard for an individual of age 50 with incomplete residual disease, ool
performance status, and who has been allocated to the eyelophosphinniile
eroup. However, the original variables will be used in this example.

We begin by identifying which prognostic factors are associated with (he
survival times of the patients. The values of the statistic —21log L on fitting »
range of models to these data are given in Table 5.7.

When Weibull models that contain just one of Age, Rdisease and eif i
fitted, we find that both Age and Rdisease lead to reductions in fhe valie of
—2log L that are significant at the 5% level. After fitting Age;, the vannhlo
Rdisense and Perf further reduce —2log L by 1.903 and 0.048, respectivily
neither of which is significant at the 10% level. Also, when Age i addod 1o the
model that already imcludes Rdisease, the reduction in 2 log Lo TR0 o
1 d.f., which is highly significant (P < 0.001). This leads us Lo the convlusin
that Age is the only prognostic variable that needs Lo be ineorporatad Tt

model.
The term associated with the treatment effect is now added to e aondel
The value of —2 log L s then redueed By 2440 an 1 el This pecdiebfon ol 24l

i ol it lnege snough Tor i to be significant al the 1059 biswrsel (1" == O VIN)
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Table 5.6 Survival itmes of ovaran cancer patients.

Patient Time Status Treat Age Rdisease Perf
1 156 1 1 66 2 2
2 1040 0 1 38 2 2
3 59 1 1 72 2 1
4 421 0 2 53 2 1
5 329 1 1 43 2 1
6 769 0 2 59 2 2
7 365 1 2 64 2 1
8 770 o 2 57 2 !
9 1227 o 2 59 1 2

10 268 1 1 74 2 2
11 475 1 2 59 2 2
12 1129 0 2 53 1 1
13 464 1 2 56 2 2
14 1206 0 2 44 2 1
15 638 1 1 56 1 2
16 563 1 2 55 1 2
17 1106 0 1 44 ! 1
18 431 1 1 50 2 1
19 855 0 1 43 1 2
20 803 0 1 39 1 1
21 115 1 1 T4 2 1
22 744 0 2 50 1 il
23 477 0 1 64 2 il
24 448 0 1 56 1 2
25 353 1 2 63 1 2
26 377 0 2 58 1 1

Table 5.7 Vuolues of —210gf, on fitting

models to the data in Table 5.6.

Variables in model —2log L
none 59.534
Age 43.566
Rdisease 55.382
Perf 58.849
Age, Rdisease 41.663
Age, Perf 43.518
Age, Treat 41.126
Age, ‘Treat, Treat x Age 39.708
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There iz therefore only very alight evidence of a difference in the effect of the
twio chemotherapy treatmients on the hazard of death.

For comparison, when Treat alone is added to the mull model, the value ol
—2log L is reduced from 59.534 to 58.355. This reduction of 1.179 is certainly
not significant when compared to percentage points of the chi-aquared iy
iribution on 1 d.f. Tpnoring Age therefore leads to an underestimate of 1l
magnitude of the treatment effect.

To explore whether the treatment difference is consistent over age, the
teraction term formed as the product of Age and Treat is added to the modol
On doing 8o, —2log L is only reduced by 1.419. This reduction is nowlire
near being significant and so there 15 no need to include an interaction fern
in the model.

The variable Treqt will be retained in the model, since interest centres on
the magnitude of the treatment effect. The fitted model for the haszand ol
death at fime ¢ for the ith individual is then found to be

fa(t) = exp{0.144 Age, — 1.023 Treat, } X317,

where A = 5,645 x 107 and 4 = 1.822. In this model, Treat = 1 for eyclophion
phamide alone and Treat = 2 for the combination of cyclophosphamide witl)
adriamycin. The hazard for a patient on the single treatment, relative to one
on the combined treatment, is therefore estimated by

1 = exp{(—1.023 x 1) — (—1.023 x 2)} = 2.78.

This means that & patient receiving the single chemotherapy treatmont
nearly three times more likely to die at any given time than a patient o
the combined freatment. Fapressed in this way, the benefits of the cambinol
chemotherapy treatment sound to be great. However, when aceound, is Laloy
of the inherent variahility of the data on which these results are based, this
relative hazard is only significantly greater than unity at the 12% level (/'
(.118).

The median survival fime can be estimated for patients of a given age oo
given treatment from the equation

5 /5
§(50) = { ] Hes } |
Aexp(.144 Age — 1.023 Treat)
For example, & woman aged 60 (Age = 60) who is given cyclophosplinnide
alone { Treat = 1) has an estimated median survival time of 423 days, wheom
someone of the same age on the combination of the two chemothernpy Lrond
ments has an estimated median survival time of 741 dayvs. Conbidence mtorvls
for these estimates can be found using the method lustraved o Fampilo 50

5.7 The Gompertz proportional hazards model

Although the Weibull model is the most widely used paramebeie progo ool
hazards model, the Gomperta miodal has found application i domogeaphiy gl
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the biological sciences. Indeed the distribution was introduced by Gomperta
I 1825, as a model for human mortality.
The hazard function of the Gompertz distribution is given by

Rt} = Ae,

lor 0 < ¢ < o0, and A = 0. In the particular case where # = (), the hazard func-
tiom has a constant vahie, A, and the survival times then have an exponential
iligtribution. The parameter § determines the shape of the liazard function,
psitive values leading to a hazard function that increases with time, The
lizard function ean alao be expressed as i(t) = exp(a +01), which shows that
e log-hazard function is linear in ¢, On the other hand, from equation (5.7),
{i Weibull log-hazard function is linear in logt. Like the Weibull hazard
function, the Gompertz hazard increases or decreases monotonically,
The surviver function of the Gompertz distribution is given by

st =em{5a-e"},
niil the corresponding density function is
f(t) = AP exp { g{'l - f“}} .

The pth percentile is such that

1 f 100 —n
t[p:l =§log-{1 - Il{!g(*wp)}1

Iytim which the median survival time is
| o
t(50) = 7 log {1 +3 log 2} :

A plot of the Gompertz hazard function for distributions with a median of
Al = —0.2,0.02 and 0.05 is shown in Figure 5.15. The corresponding
wilpen of A are 0,141, 0,028, and 0.020.

I strmightforward to see that the Gompertz distribution has the propor-
il hinzards property, deseribed in Section 5.4, since if we take fig(t) = Ae™,
Wik iihig (1) i slso a Gompertz hazard function with parameters oh and 8.

e genernl Gompertz proportional hazards model, for the hazard of death
Wl b Lo the bl of o individuals, is expressed as

hilt) = exp(Brry; + Baas + » - - + Byps ) Ne™,

Whiene oy w2y, 0o gy ire the values of p explanatory variables Xy, Xy, 0o X
Bt ath bdividond, @ = 1,2, .. 0, and the @'s, A and @ are unknown pa-
pibnebers e moded onn be fibted by masdmising the likelihood function piven
W e ooy (012 o (003), The S-conflicients ure interpreted as log-hasard
piblon, el sdierontive modals are compored using the approach described in
oo thon B0, Noosew princlples aee involyed
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Figure 5.15 Hazard functions for a Gomperts distribution with @ median of 20 vnd
f= —0.2, .02 and (.05

Erample 5.11 Chemotherapy in ovarian cancer patients

In Example 5.10 on the survival times of ovarian cancer patients, a Weibu!|
proportional hazards model that contained the variables Age and Treal w
fitted. For comparison, a Gompertz proportional hazards model that contang
these two variables is now fitted. Under this model, the fitted hazard funcioo
for the ith patient is

ﬁ,- (t) = exp{ill?l'z Age; — n&da ﬁmtl}iﬂxp(ﬂﬁ],

where & = 1.706 x 107 and # = 0.00138. The change in the value of —2 1o/
an adding: Trent to the Gompertz proportional hazards medel that contpne
Age alone is now 1.686 (P = 0.184). The hazard ratio lor the treatment ollccl
which is now exp(0.848) = 2.34, is therefore smaller and less significant unde
this model than it was for the Weibull model.

5.8 Model choice

Ome attraction of the proportional hazards model for survival data g that 10

not necessary Lo adopt a specifie probability distribution for the survival tines
However, when a Weibull distribution is appropriate for the obsorved suraival
data, the parametric version of the proportional hagerds model provides o
more suitalle hasis for modelling the duta.

Diagnostic plots based on the Tog-cutmulative higard Tunetion, descpibed o
Section 5.4.1, may throw Hght an whethor the msmmption of Weilull suey o
times is plavsibile, bt as s alrendy Bovo potited out, tlis bechidioe n olten
not informative L the prosenoe of axplaimtory saotaldes Gt abloed anrsivel
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times. In such circumstances, to help choose between the Cox and Weibull
proportional hazards models, it can be useful to fit the Cox regression model
mnd examine the shape of the baseline hazard function. The fitted Weibull
binseline cumulative hazard function, or the fitted baseline survivor function,
tnn also be compared with the corresponding estimates for the Cox regression
model, as deseribed in Section 5.5.3.

A suitable analysis of residuals, to be discussed in Chapter 7, can be used

o investigate whether one model fits better than the other. However, it will

unly be in exceptional circumstances that model-checking diagnostics provide
vonvineing evidence that one or other of the two models is more acceptable.
In general, discrimination between a Cox and a Weibull proportional haz-
niils model will be difficult unless the sample data contain a large number of
ileath times. In cases where there is little to choose between the two models
in terms of goodness of fit, the standard errors of the estimated J-parameters
in Lhe linear component of the two models can be compared. If those for
e Weibull model are substantially smaller than those for the Cox model,
(he Weibull model would be preferred on grounds of efficiency. On the other
buined, if these standard errors are similar, the Cox model is likely to be the

Cmidel of choice in view of its less restrictive assumptions.

0.8 Further reading

The properties of the exponential, Weibull and Gompertz distributions are
prosented in Jobnson and Kotz (1970). A thorough discussion of the theory
ol imssimam likelihood estimation is included in Barpett (1999) and Cox and
Wnkley (1974), and a useful summary of the main results is contained in

linkley, Reid and Snell (1991). Numerieal methods for obtaining maximum

lilwliliond estimates, and the Newtop-Raphson procedure in particular, are
doiribied] by Eweritt (1987) and Thisted (1988), for example; see also the
domeription in Section 3.3.3 of Chapter 3. Byar (1982) presents a comparison
of the Cox and Weibull proportional hazards models: One other distribation
willy the proportional hazards property is the Parelo disfribution, This model
b brely vsed in practice, but see Davis and Feldstein (1973) for further defails,



