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Montréal, Québec

2014-07-01

A thesis submitted to McGill University in partial fulfillment of the requirements of
the degree of Doctor of Philosophy

c©Zhihui (Amy) Liu, 2014



DEDICATION

This thesis is dedicated to my parents, Qiulan Zhao and Yunsheng Liu.

ii



ACKNOWLEDGEMENTS

I have many people to thank, for having supported me in the past years and

assisted me in completing this thesis.

My deepest thanks go to my supervisor Dr. James Hanley for his mentorship,

support and advice (both professional and personal). I cannot thank him more for

selecting an interesting and challenging thesis topic for me. He believes in “see one,

do one, teach one”, and made sure that I get training in teaching (e.g. Unit 8 epi-

demiology teaching) and in applied health research (e.g. CKCis project), in addition

to my thesis work. His passion for statistics has greatly influenced those around him.

He has always made himself available, even when he was on sabbatical, thousands

of miles away. He has truly been a wonderful mentor to me.

I am sincerely grateful for my co-supervisor Dr. Nandini Dendukuri, for al-

lowing me freedom to make my own mistakes and discoveries, whilst ensuring that I

remained on the right track. She has always promptly responded to my questions and

concerns, and her encouragement was instrumental especially when my manuscripts

received not-so-glowing reviews. I would also like to thank both of my supervisors

for financially supporting my traveling to conferences.

I am continuously grateful for the CKCis project lead Dr. Simon Tanguay, for

his support, guidance and confidence in me, and for sharing his clinical expertise in

kidney cancer during the past three years. He kindly tries to protect my time but

also pushes me to move forward. Together with the project manager Ms. Wendella

Hamilton, their dedication has been a constant inspiration to me.

iii



Highest regards go to Dr. Rebecca Fuhrer, forever the chairwoman in my mind,

for her total commitment and dedication to our department.

I thank Dr. Olli Miettinen for encouraging us to always think from the first

principles: Nullius in verba. I am privileged for having met and attended lectures

from the greatest modern epidemiologist.

I thank Dr. Erin Strumpf for serving on my thesis committee and helping out

with my first manuscript. Many thanks to Dr. Robert Platt for his causal inference

course which was unexpectedly helpful in reshaping my thinking, and for agreeing

to serve as my internal examiner. Thank you to Dr. Thomas Lumley for serving as

my external examiner.

I gratefully acknowledge the financial support I received through the McGill

International Doctoral Awards for my PhD studies and the CIHR Operating Grant

for studying my thesis topic.

I thank our faculty members for their daily effort to provide us with excellent

learning opportunities and the friendly Student Affairs Officers for making Purvis

Hall a home to us all. A big thank you to Luc Villandré for translating the the-
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ABSTRACT

Evidence of benefits due to cancer screening is commonly reported as the mor-

tality reduction over the entire follow-up window of a randomized screening trial.

However, such a single number summary statistic is of limited use in projecting the

timing, duration and magnitude of the mortality reductions that would be expected

from a sustained screening program, of longer duration and possibly with a differ-

ent screening regimen. Meta-analyses, by averaging such measures from trials with

varying follow-up windows and screening regimens, have produced summaries that

are even less meaningful.

This thesis, composed primarily of four manuscripts, presents theoretical and

methodological developments for measuring the mortality reductions due to cancer

screening. The objective is to project the time-specific reductions in mortality that

would be produced by a sustained screening program, using data from randomized

trials, with the aim to give policy makers and funders more accurate evidence on

how effective screening programs are and could be.

In the first manuscript, we propose using a mortality reduction curve, instead

of a single-number summary, to address the mortality impact (timing, magnitude,

and duration) of a screening program. We illustrate when and how such curves from

randomized trials could be computed, and how they could be used to project reduc-

tion patterns expected with different screening regimens.
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In the second manuscript, instead of modelling the entire history of the can-

cer progression, we develop a novel probability model to address the mortality re-

ductions, by parametrizing the conditional probability of being helped by a single

round of screening, given that the cancer would have proven fatal otherwise. We (i)

show that this conditional probability can be directly interpreted as the reduction

in disease-specific mortality, (ii) suggest a parametric form for it, based on which we

formulate a likelihood function, and (iii) extend this model to accommodate unequal

allocation, less than full compliance, combination of information across trials with

different regimens, as well as different regimens within a trial. Two case studies are

presented using data from screening trials for lung and colorectal cancers.

A more detailed analysis of the data from the US National Lung Screening Trial

is presented in the third manuscript. We demonstrate that our model can be fitted to

both individual-level data and aggregated data, with very little precision lost when

using the aggregated data.

All the aggregated mortality data used in this thesis were extracted via a new

reconstruction technique we propose in the fourth manuscript. Using examples and

an error analysis, we illustrate the extent to which, with what accuracy and precision,

and in what circumstances, information can be recovered from the various electronic

formats. Compared with previous approaches, one advantage of ours is that observer

variation is completely eliminated and thus the extraction is completely replicable.
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ABRÉGÉ

On illustre communément les bienfaits attribuables au dépistage du cancer par

la réduction de la mortalité observée à travers la période de suivi d’un essai ran-

domisé de dépistage. Toutefois, une telle statistique numérique n’est pas très utile

pour prédire le moment, la durée et la magnitude de la réduction de la mortalité

résultant d’un programme de dépistage soutenu, plus long et, possiblement, compor-

tant un régime de dépistage différent. Les méta-analyses impliquent un calcul de la

moyenne de ces mesures, obtenues à partir d’essais avec des périodes de suivi et des

régimes de dépistage variables, et produisent par conséquent des estimés sommaires

difficiles à interpréter.

Cette thèse, formée de quatre manuscrits, présente des développements théoriques

et méthodologiques permettant la mesure de la réduction de la mortalité attribuable

au dépistage du cancer. Nous cherchons à prévoir à travers le temps, à l’aide de

données tirées d’essais randomisés, la réduction de la mortalité résultant d’un pro-

gramme soutenu de dépistage du cancer. Nous souhaitons ainsi donner aux décideurs

politiques et aux agences de financement une idée plus précise de l’efficacité observée

et potentielle des programmes de dépistage.

Dans le 1er manuscrit, nous proposons d’utiliser une courbe de réduction de

la mortalité plutt qu’une statistique numérique unidimensionelle afin de quantifier

l’impact d’un programme de dépistage. Nous illustrons quand et comment une

telle courbe, dérivée à partir de résultats d’essais randomisés, peut être produite,

et comment on peut l’utiliser pour prédire les motifs de réduction espérés à partir de
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différents programmes de dépistage.

Dans le 2e manuscrit, au lieu de modéliser l’historique entier du cancer, nous

développons un nouveau modèle probabiliste quantifiant l’impact sur la mortalité,

en paramétrisant la probabilité conditionnelle de bénéficier d’une seule ronde de

dépistage, à condition que le cancer soit fatal autrement. Nous démontrons tout

d’abord que cette probabilité conditionnelle peut être interprétée directement comme

une réduction de la mortalité spécifique au cancer. Nous suggérons par la suite une

formulation paramétrique pour cette probabilité, à partir de laquelle nous obtenons

une fonction de vraisemblance. Enfin, nous élargissons le modèle afin de permettre

une allocation inégale, une adhérence incomplète, et la combinaison d’informations

provenant d’essais comportant des régimes différents ou provenant de régimes différents

à l’intérieur d’un même essai. Nous présentons deux études de cas avec des données

d’essais de dépistage des cancers colorectaux et du cancer du poumon.

Nous présentons dans le 3e manuscrit une analyse plus détaillée des données

tirées des US National Lung Screening Trials. Nous démontrons que notre modèle

peut être appliqué à des données individuelles ou agrégées, la perte de précision étant

minime quand les données sont agrégées.

Nous avons extrait toutes les données de mortalité agrégées par l’intermédiaire

d’une nouvelle technique de reconstruction que nous proposons dans le 4e manuscrit.

à l’aide d’exemples et d’une analyse d’erreurs, nous illustrons la précision de l’information

qu’on peut recouvrer à partir de différents formats électroniques. Comparativement

aux approches précédentes, la ntre a l’avantage d’éliminer la variation entre obser-

vateurs et par conséquent, l’extraction est complètement reproductible.
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CHAPTER 1
Introduction

Screening for a disease is pursuit of its early, pre-symptomatic diagnosis, with

the aim to reduce the probability of dying from the disease [61]. Over the last

century, a range of activities, which we now think of as health or medical screening,

have been developed. These activities include the use of bloodspot tests in newborn

babies, the Mantoux test to screen for exposure to tuberculosis, the Beck Depression

Inventory to screen for depression, ultrasound scans for abdominal aortic aneurysm,

computerized tomography (CT) or magnetic resonance imaging (MRI) scans of the

whole body for the worried well, as well as screening for cancers – such as pap smear to

detect potentially precancerous lesions and prevent cervical cancer, mammography to

detect breast cancer, colonoscopy to detect colorectal cancer, and faecal occult blood

test for colorectal cancer. In many countries, elementary schools screen students

periodically for hearing and vision deficiencies and dental problems. Italy launched a

nationwide systematic cardiac screening program in 1982 for all competitive athletes

to prevent sudden cardiac death during sports [18].

Among these, screening for cancer has been one of the most controversial ac-

tivities. Canada and other countries have devoted a lot of resources to screening

programs for cancer over the last 40-50 years. Despite many long and costly ran-

domized screening trials (for breast, prostate, lung and colorectal cancers) involving

large numbers of participants, we do not have good answers to the question of how
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large the ‘returns’ (in terms of the numbers of cancer deaths averted) are for the dol-

lars spent on actual screening programs that have been in operation. Policy makers

and funders are thus faced with a wide array of uncertain and conflicting figures.

Worse, the public has become confused by different advice from various authorities,

although these authorities all have the same data.

The benefit, particularly reductions in cancer deaths, is studied typically by

means of a randomized trial (or a meta-analysis of randomized trials), in which

asymptomatic persons are randomly assigned to receive either a number of screening

examinations or usual care, and then are followed up for cancer-specific deaths. Given

the need to first establish proof of concept, most screening trials have been in a

hypothesis-testing (zero vs. non-zero reduction) framework. Understandably, results

are announced when the accumulated mortality reduction first becomes statistically

significantly different from zero, as in the European Randomized Study of Screening

for Prostate (ERSPC) [80] and the US National Lung Screening Trial (NLST) [72].

However, for funders, the question is not whether the reduction is ‘almost definitely’

nonzero – presumably by now we all know that screening saves some lives, but

rather “how many fewer cancer deaths would there be every year in their country or

administrative region as a result of a screening program with a specific regimen?”

Influential reports of many randomized screening trials (in cancers of the prostate,

colon, and lung) have appeared recently [80, 8, 72]. The reported mortality reduc-

tions were all around 20%. Presumably, the resulting reductions depend on the type

of the cancer being screened for, the screening technique used (e.g. PSA for prostate

cancer, sigmoidoscopy for colorectal cancer, computed tomography for lung cancer),
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the screening regimen (the number of screenings and their spacing), the characteris-

tics of the screenees (age at the start of screening, high or low risk for a particular

cancer), as well as the compliance rate. In some trials, the modest reductions are

not surprising, if there was only one round of screening. However, in many of them,

this 20% is merely an artifact of early-reporting rules. It is not because every single

trial produces a 20% mortality reduction, but because the results were announced

when the cumulative reduction reaches 20%.

As Miettinen [60] pointed out, “the research need is for estimation of meaningful

component measures of both the good and the harm... All of this - centrally including

the need for estimation rather than mere hypothesis-testing - should go without

saying, but does not at present.” Estimation of the ‘good’ is what this thesis aims

to address. The objective is to project the time-specific reductions in mortality that

would be produced by a sustained screening program, using data from randomized

trials, in order to give policy makers and funders more accurate evidence on how

effective screening programs are and could be.

While the existing data on screening effectiveness originates from randomized

screening trials with only a few rounds of screening, an object of inference more

relevant to decision making is the effect of a sustained screening program, with a

longer duration and possibly different screening regimen, implemented in a popula-

tion. This distinction between screening trials and screening programs is central to

what follows. Furthermore, screening trials are fundamentally different from trials of

therapeutics, as screening itself is not an intervention; the participants in a screening

trial are asymptomatic, and any mortality effect can only manifest with a delay after
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the screening examination. These characteristics of screening present several statis-

tical challenges, and as we argue, the related statistical theory and methodology is

presently underdeveloped, despite the importance of the problem and the substantial

resources spend on cancer screening. Thus, the work in this thesis potentially has

important public health implications.

The remainder of the thesis is constructed as follows.

In Chapter 2, I use a recent report on a mammography screening trial for breast

cancer as an example to review and illustrate some of the principles of cancer screen-

ing.

In Chapter 3, by studying a particular micro-simulation model, I show why the

prevailing approach of modelling the entire disease history is not suitable for our

purpose of projecting the mortality reductions of a screening program. This serves

as a motivation for us to pursue a completely different approach.

In Chapter 4, we propose using a ‘mortality reduction curve’, instead of a single-

number mortality reduction, to address the mortality impact (timing, magnitude,

and duration) of a screening program. We illustrate when and how such curves from

randomized trials could be computed, and how they could be used to project the

reduction patterns expected with different screening regimens.

In Chapter 5, we develop a novel probability model to address the mortality

reductions, by parametrizing the conditional probability of being helped by a single

round of screening, given that the cancer would have proven fatal otherwise. We (i)

show that this conditional probability can be directly interpreted as the reduction

in disease-specific mortality, (ii) suggest a parametric form for it, based on which we
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formulate a likelihood function, and (iii) extend this model to accommodate unequal

allocation, less than full compliance, combination of information across trials with

different regimens, as well as different regimens within a trial. Two case studies are

presented using data from screening trials for lung and colorectal cancers.

A more detailed analysis of the data from the US National Lung Screening Trial

is presented in Chapter 6. We demonstrate that our model can be fitted to both

individual-level data and aggregated data, with very little precision lost when using

the aggregated data.

All the aggregated mortality data used in this thesis were extracted via a new

data reconstruction technique that we propose in Chapter 7, based on Kaplan-Meier

or Nelson-Aalen survival-type curves. Using worked examples and an error analysis,

we illustrate the extent to which, with what accuracy and precision, and in what

circumstances, information can be recovered from the various electronic formats in

which such curves are stored. Compared with previous approaches, one advantage

of ours is that observer variation is eliminated and thus the extraction is completely

replicable.

Chapter 8 is a summary.
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CHAPTER 2
Mammography Screening: a Controversy that Refuses to Die

In this chapter, we review some history of cancer screening, and the controversies

around it, especially relating to randomized screening trials.

2.1 Cancer screening - an orientation

In the medical community, one of the earliest advocates of screening is the

British physician Horace Dobell who gave a series of lectures in 1861 encouraging

doctors to periodically check everyone irrespective of their health status [77, p. 1].

In 1900, Dr. George Gould presented a paper at the American Medical Association

meeting, recommending annual health checks to Americans, just like “ranchers check

their cattle, merchants check their stock, generals check their armies and government

check their budgets” [77, p. 3]. Although many doctors initially felt that it was a

waste of their time and expertise, the practice of the periodic health examinations

was endorsed by the American Medical Association in 1922 and had become standard

by the 1950s, driven by life-insurance companies [77, p. 6].

The fact that abnormalities were found in the tests was sufficient to convince

many people that screening was needed. Whether or not the benefit outweighed the

unintended harm and associated costs had not been a concern [77, p. 7]. By 1957,

authoritative bodies such as the US Commission on Chronic Illness had recommended

screening for diabetes, glaucoma and cancers of the mouth, skin, breast, cervix and

rectum, based on expert opinions such as “increasing numbers of physicians and
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other health personnel have come to the conclusion that screening tests can be an

effective device in secondary prevention of chronic illness” [77, p. 11], without any

particular evidence.

When in the 1960s two randomized trials of multiphasic health examinations

failed to show benefits in general health and in mortality [77, p. 15-16], the need to

properly evaluate the benefits and harms from screening started to become more ob-

vious. A randomized screening trial is a study which randomly assigns asymptomatic

persons either to be screened (and treated when diagnosed) or to receive usual care

(i.e. not screened and treated only when clinically diagnosed based on symptoms).

The expectation is that some of the screened persons would develop abnormalities

that can be picked up by screening at a less advanced stage so that the associated

early treatment is more successful (than delayed treatment).

To be beneficial, screening-associated early treatment must be proven to lead

to a lower mortality or morbidity compared with usual care; reduction in cancer

specific mortality is considered the definitive criterion for evaluating the effectiveness

of cancer screening. Randomized trials have been used to study the effectiveness of,

for instance, mammography screening for breast cancer, prostate-specific antigen

(PSA) screening for prostate cancer, fecal occult blood (FOB) test for colorectal

cancer, and low-dose computed tomography (CT) screening for lung cancer.

A commonly used measure of benefit is the proportional reduction in disease-

specific mortality. We illustrate this using a modified version of Web Figure 1 of Han-

ley [37]. Figure 2–1 is a schematic figure showing the numbers of cases of (prostate)
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cancers that came to attention and that proved fatal over the lifetime of a hypotheti-

cal closed population of a given size: c0 diagnosed cases and d0 deaths in the absence

of a screening program, and c1 cases and d1 deaths in the presence of screening. The

time spans, screening regimens, and participation rate are deliberately left vague, to

keep the example simple at this stage.

Assuming that all cancer would eventually be clinically diagnosed, overdiagnosis

due to screening is represented by (c1−c0)/c1. This thesis concentrates on measuring

the benefits of screening, and we do not address measuring the harms of screening,

including overdiagnosis. This does not mean that the harms of screening would not

be real or important, and in eventual public health decision making both harms and

benefits would need to be considered.

The number of cancers that would have proved fatal if left untreated, f , is

unobservable. This is because cancer often demonstrates a spectrum of behaviours

– “some tumours are inherently benign, genetically determined to never reach the

fully malignant state, and some tumours are intrinsically aggressive, and intervention

at even an early, pre-symptomatic stage might make no difference to the prognosis

of a patient” [70, p. 292], and consequently, physicians cannot distinguish between

cancers that would and would not have proved fatal if left untreated. As a result, most

of the c0 and c1 cancers would be treated when they came to clinical attention. (While

overdiagnosis does not necessarily cause harm in itself, the subsequent overtreatment

does.)
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Screening Absent Screening Present
Men in population

c0 = diagnosed cancers

c1 = diagnosed cancers

f = fatal cancers if untreated f = fatal cancers if untreated

d0 = fatal cancers despite therapy
d1 = fatal cancers despite therapy

Figure 2–1: Schematic figure illustrating our measure of interest, the proportional
reduction in (prostate) cancer mortality (d0 − d1)/d0. Modified from Web Figure 1
of Hanley [37].

Despite standard treatment, d0 and d1 cancers would eventually prove fatal.

These, and only these, are the focus of our attention. The difference d0 − d1, rep-

resenting the number of deaths averted by early-detection associated early therapy,

indicates how effective screening-associated early treatment is. Whereas the d0 and

d1 individuals who died of these cancers despite treatment can be identified, the

d0 − d1 individuals whose deaths were averted cannot. Presumably some of the d0

deaths in the absence of screening could have been averted had they been detected

and treated earlier. The percentage reduction in cancer mortality due to screening
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is thus

100× d0 − d1
d0

.

Not all d0 deaths can be averted, and d1 cancers will prove fatal despite early

detection and early treatment. Some reasons for the d1 failures might be: low par-

ticipation in the screening; detected cancers were too advanced to be successfully

treated (i.e. aggressive cancers that progressed beyond curability between subse-

quent rounds of screening, but could have been detected earlier by increasing the

frequency of screening); low sensitivity of the screening technique.

A major reason why there is so much controversy around cancer screening is

because the amount of overdiagnosis due to screening can be substantial and persons

who are overdiagnosed can only be harmed – they often receive invasive treatment

that they do not need at the first place. Take the PSA test for prostate cancer as

an example: it measures the blood level of PSA (a protein produced by the prostate

gland) and men with elevated levels are referred to biopsy. The biopsies inevitably

result in detection of some prostate cancers that would never have proven fatal (or

even symptomatic) in the absence of PSA screening. Nevertheless, most of them will

be treated, often with radical prostatectomy or radiotherapy, which can have serious

quality-of-life affecting complications.

Two common cancers with little overdiagnosis (and thus less controversial screen-

ing programs associated with them) are the cervical and colorectal cancers. Since the

introduction of the Pap smear test in the 1940s, both the number of cervical cancer

diagnoses and the death rate from cervical cancer in the US have fallen dramatically.

Similarly, the number of both new diagnoses of and deaths from colon cancer have
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fallen since 1985 when screening started. Although it is suspected that there could

be overdiagnosis and over treatment of precancers of the cervix and colorectal polyps

[97, p. 69-71], there is no obvious evidence of over diagnoses of these cancers, which

makes screening for them an easier sell.

In the next section, we use a recently updated report on a mammography trial

as an example to review and illustrate some of the principles of cancer screening.

2.2 Demystifying cancer screening: using the Canadian mammography
trial as an example

Mammography screening for breast cancer has been particularly controversial.

There have been eight large randomized trials conducted over the past 50 years since

the first one took place in 1963; there have been numerous systematic reviews and

meta-analyses of these trials ever since. Yet there remains strong disagreement about

the interpretation of these results even when it comes to quantifying the associated

benefits or the extent of the overdiagnosis.

Some claim that the benefits in the trials were large for women aged 50 years or

older, that is, the reduction in breast cancer mortality in those invited to screening

is about 25%, and in women who were actually screened the reduction is about 33%

[21]. Some have used the trials to project that a sustained program offering 20 years

of screening to women aged 50 to 69, the mortality reduction in breast cancer would

be at least 40% [38]. Others, however, argue that the reduction is much more modest

– only 10%, and since the rate of overdiagnosis is as high as 50%, they have suggested

discontinuing mammography screening [32].
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Each time when there was an updated report based on any of these eight trials,

a heated debate on the value of mammography broke out all over again. Not surpris-

ingly, the latest BMJ report in February 2014 from the now 25-year-old Canadian

National Breast Screening Study (CNBSS) [66] ignited a new round of controversy.

The design of the Canadian study is fairly straightforward – 89,835 women

aged 40-59 were randomly assigned to breast examinations by a health professional

followed by mammography (five annual screens) or breast examination only dur-

ing 1980-1985. After 25 years of follow-up, there were a total of 500 and 505

breast cancer deaths in the screening and non-screening arms, respectively. That

is, as correctly calculated by the authors, a (25-year breast cancer death) risk ratio

of (500/44925)/(505/44910) ≈ 500/505 = 0.99, or a mortality reduction of 1%.

They also calculated that the amount of overdiagnosis due to mammography is

106/484=22%, where 484 is the number of breast cancers diagnosed in the mammog-

raphy arm and 106 is the number of excess breast cancer cases in the mammography

arm.

The negligible, almost nil, reduction in mortality in year 25 is not exactly a

new finding, considering that there were never substantial benefits in earlier reports

on the same trial. Seven years after the randomization, the cumulative numbers of

breast cancer deaths in the 50-59 years old group were 38 and 39 [64], corresponding

to a risk ratio of 38/39=0.97, or a reduction of 3%; with a mean of 13 years of

follow-up, the numbers were 107 and 105 [65], that is, 2 more breast cancer deaths

in the mammography arm.
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Just one day after the BMJ report was published, the American College of Radi-

ology and Society of Breast Imaging issued a statement [2], calling it “an incredibly

misleading analysis based on the deeply flawed and widely discredited” study. As

to why the Canadian study, unlike the other mammography trials, showed little

benefit, they re-iterated two reasons: the quality of the mammograms was unaccept-

ably poor and randomization was compromised (in particular, allegedly an excess of

women with advanced breast cancers were assigned to the screening arm, which lead

to more deaths in that arm). The same complaints were raised many times over the

years, mainly by Kopans and Feig [e.g. 48], among others. The co-principal investi-

gator Anthony Miller, on the other hand, responded by claiming that the radiologists

are “obviously conflicted” [13], as they read mammograms for a living.

Media coverage did not help. Headlines such as “Vast Study Casts Doubts on

Value of Mammograms” in the New York Times [46], followed by reporting that “[o]ne

of the largest and most meticulous studies of mammography ever done, involving

90,000 women and lasting a quarter-century, has added powerful new doubts about

the value of the screening test for women of any age”, would only leave the public

even more confused. Aiming at the technical issues, many wrote electronic letters

to the BMJ editor in the Rapid Response section, which suggest that understanding

of screening studies remain a challenge in the medical community as well as among

the public. Whereas the to-screen-or-not-to-screen debate is beyond the scope of

this thesis, we aim to introduce some of the key concepts of cancer screening in an

accessible way, using selected letters from the Rapid Response as a platform.
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Lead time and overdiagnosis

A gynaecologist from Hong Kong writes [27]:

My sister, age 49, was diagnosed with breast cancer in the UK on the

basis of a mammogram. It was 5 cms. When I asked her had she felt it,

she said no, and that no-one had ever advised her to check her breasts.

My sister was very lucky to be node negative, but after chemo and a

local excision she did need a mastectomy. She received excellent care in

the NHS. However had she been doing monthly breast self-examination

I believe she would have picked up her “lump” when it was below 2 cms

– perhaps 6 months - 1 year before – and she would not have needed the

mastectomy.

While this sounds entirely plausible, there has been no evidence on benefits of regular

self-examination of the breasts [49]. Two other scenarios are also possible: (i) the

less-than-2-centimetre lump may not be palpable by self-examination, and (ii) the

5-centimetre lump would not have lead to a fatal cancer in the absence of early detec-

tion and therefore the mastectomy would be unnecessary. Since the counterfactual

outcome in the anecdote is unobservable, no one knows what would have happened

if the mastectomy was not performed.

To illustrate why detecting a smaller tumour earlier is not good enough to prove

the value of screening, a story about two identical twins named Hope and Prudence

told by Mukherjee [70, p. 293] might help. When offered screening, Hope chooses to

be screened and Prudence, suspicious of it, refuses to participate. Some years later,

identical forms of cancer develop in them at the same time. Hope is diagnosed in
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Hope:

(screened)

Prudence:

(unscreened)

onset screen dx death

survival

onset clinical dx death

survivallead time

Figure 2–2: Schematic figure showing the disease history of twin sisters Hope and
Prudence. Early detection prolongs survival from diagnosis even if death is not
delayed.

1995 through early detection, undergoes surgical treatment and chemotherapy, and

relapses and then dies in 2000. Prudence is diagnosed when she feels a lump in her

breast in 1999; with some marginal benefit from the treatment, she dies at the same

time as Hope in 2000. It seems that Hope survives 4 years longer than Prudence,

but in fact, both of them die from the same disease at that same time. Figure 2–2

is drawn to illustrate this; it is clear that comparing length of survival from the

date of the diagnosis is flawed because early detection pushes the clock of diagnosis

earlier in time but does not necessarily delay death. Similarly for the gynaecologist’s

sister, a smaller tumour may be detected years earlier by either self-examination or

a mammogram, but it does not guarantee that she would live longer. This is exactly

why randomized trials with mortality as the outcome are needed to establish the

benefits of early detection.

A researcher, University of Oxford, UK, says [52]:
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The study ignores pre-invasive cancers which have a high survival rate

and are often detectable by mammography. It is reasonable to assume

that if they had been included in the analysis then the mammography

arm of the trial would have demonstrated higher survival rates than those

reported. It is not safe to assume that all pre-invasive cancers are indolent

(i.e. that they would never go on to harm the patient), especially since

the standard model of malignant tumour growth has invasive cancers first

developing through a pre-invasive stage.

The study’s results contradict the authors’ conclusion that mammogra-

phy is not assisting in saving women’s lives. The section of the Results

titled “Breast cancer survival” indicates that “The 25 year survival was

70.6% for women with breast cancer detected in the mammography arm

and 62.8% for women with cancers diagnosed in the control arm” which

the authors demonstrate to be a statistically significant difference. This

demonstrates a real benefit to women surviving breast cancer thanks to

receiving mammographic screening. Had pre-invasive cancers been in-

cluded in this study the difference in 25 year survival is liable to have

been even larger. Concluding that mammographic screening provides

no benefit with respect to saving women’s lives based on the analysis

presented is unfounded and dangerous.

With a reasonable sensitivity, screening is supposed to detect the cancer earlier, but

since this in itself is not an intervention, early detection is not sufficient evidence

of any benefits. If survival is counted from diagnosis to death, even without any
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treatment, the survival will be longer in the screening arm than that in the non-

screening arm, just because screening pushes the diagnosis time earlier. Thus only

cancer-specific deaths in the two arms of a randomized study should be counted

and compared. Moreover, the denominator in the quoted 70.6% survival probability

among the diagnosed individuals in the screening arm includes the overdiagnosed

cases, for which the survival probability is, by definition, 100% (since these cancers

are non-fatal).

Length-biased sampling

Kopans [47], Professor of Radiology, Harvard Medical School, repeated his crit-

icism that the Canadian trial was compromised since the beginning: “second hand

mammography machines” were used; they “failed to fully position the breasts in the

machines”; “radiologists had no specific training in mammographic interpretation”,

and most importantly, the randomization was violated – “women with lumps and

even advanced cancers got assigned to the screening arm to be sure they would get

a mammogram”. Referring to evidence supporting the last allegation, he states that

It is indisputable that this happened since there was a statistically signif-

icant excess of women with advanced breast cancers who were assigned

to the screening arm compared to those assigned to the control arm

[90]. This guaranteed that there would be more early deaths among

the screened women than the control women and this is what occurred

in the NBSS. Shifting women from the control arm to the screening arm

would increase the cancers in the screening arm and reduce the cancers
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in the control arm which would also account for what they claim is “over-

diagnosis”.

Calling this ‘indisputable’ seems a strong statement, since at face value, it is not

entirely obvious why an excess of advanced cancers early in the screening arm would

give evidence supporting failed randomization. Indeed, Gøtzsche [33, p. 57] argues

that such an excess does not suggest a failed randomization, “because the screening

process increases the likelihood of detecting smaller cancers with positive nodes in

the screening arm”.

To understand the argument of Prof. Kopans, we indeed need to assume that

all of the detected cancers are genuine life-threatening ones, and note that screen-

detected cancers are subject to length-biased sampling, that is, a cross-sectional sam-

ple from all cancers over time in the preclinical stage oversamples the slow-growing

ones, simply because they have been in the preclinical stage longer. Thus, the screen-

detected cancers would be expected to be more benign than all cancers occurring in

the cohort of women. In particular, screening misses the so-called interval cancers,

which are fast growing and move from preclinical to symptomatic stage in between

the successive rounds of screening.

Thus, it indeed appears to be unexpected that in the short term the screening

arm would show an excess of advanced cancers compared to the control arm, which in

turn may be an indication of randomization problems. In the long term, an excess of

diagnosed cancers in the screening arm would generally be evidence of overdiagnosis,

since eventually the same genuine invasive cancers would manifest both in the absence
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and in the presence of screening. However, arguably overdiagnosis is less of an issue

when limiting the scope to advanced cancers.

Mortality vs. other outcomes

A Physician, Mount Sinai Roosevelt Division, New York, USA, says [91]:

Ten year disease-free survival for my patients with mammographically

detected cancers is 92 percent compared to 82 percent if the cancer was

detected on clinical examination. My results are not exceptional.

This observation in his clinic may not be exceptional, but comparing survival of

women detected by mammograms versus those detected by clinical examination is

exactly what one should not do in order to prevent the lead-time, length and over-

diagnosis biases. The screen-detected cancers are detected earlier (irrespective of

whether the subsequent early treatments are effective), exclude the fast growing in-

terval cancers, and include cancers that might not have proven fatal in the absence

of early detection.

A Surgeon, Athens University School of Medicine, Greece, also argues that

screening should not be evaluated by means of mortality alone [15]:

Most importantly, a woman who does not die from breast cancer does

not mean she does not strive with it; breast cancer remains a very hard

and consuming personal, psychological, familial and social adventure for

millions of women worldwide. Early detection of a non-palpable breast

cancer promptly leads to appropriate management in order to fight the

disease at an early stage, and offers optimal care and quality of life.
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Early detection unfortunately does not always lead to “appropriate management”.

When acknowledging that living with breast cancer is not an easy battle, it should

also be recognized that receiving unnecessary and often invasive treatment is just

as devastating. We usually do not see what would happen if an individual was not

treated when diagnosed with cancer, and we certainly cannot observe what would

happen to the same individual both in the presence and in the absence of screening.

Therefore, the only meaningful comparison and measurable quantity is the difference

in mortality between the screened and unscreened groups in a randomized screening

trial.

Inferential statistics

An Assistant Professor of Markets, Public Policy, and Law, Boston University

School of Management, USA, says [25]:

Why then do Miller et al. claim that annual mammography screening

does not reduce mortality from breast cancer? Because the 95% confi-

dence interval on the effect of screening includes the possibility that it

has no effect: the 95% confidence interval on the hazard ratio ranges from

0.88 to 1.12. (A hazard ratio of 1 means no difference in deaths between

the two groups.) Nonetheless, the point estimate is that annual screening

saves lives, even while the 95% confidence interval indicates substantial

uncertainty. [...] While Miller et al. could not reject the hypothesis that

annual mammography screening had no effect, they can also not reject

the hypothesis that screening saves 135 lives per 100,000 screened, which

would justify a screening program substantial costs.
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The point estimate of the mortality rate ratio translates to 5 lives saved per 44,910

women screened, or 11 lives saved per 100,000 screened. The confidence interval

[0.88, 1.12] is interpreted as ranging from 100,000/(44,910/60.6)=135 lives saved to

135 extra deaths caused per 100,000 screened. While what the commentator says

is true, the opposite is also true – the authors could not reject the hypothesis that

screening is causing more breast cancer deaths.

Confounding and randomization

Etzioni [26], Statistician, Fred Hutchinson Cancer Research Center, USA, com-

mented on the mortality analyses:

The first [analysis] looks at the breast cancer death rate restricted to the

cases detected during the first five years (the screening period). This is

the cumulative death rate in the population but only allows deaths from

the cases diagnosed in the first five years. The analysis finds similar death

rates on the two arms.

This seems strange because there were there were 666 cases on the mam-

mography arm and 524 cases on the control arm. Thus, if, as the investi-

gators conclude, mammography has no effect, we would actually expect a

higher observed cumulative death rate on the mammography arm, unless

all of the (142) excess cases are overdiagnosed which is unlikely. Thus,

this analysis may bias results against mammography benefit.

When looking at all diagnosed cancers, it is expected that more cases are found in

the screening arm, but this should not translate to more deaths in the screening

arm compared with the non-screening arm. No matter how effective or ineffective
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screening is, it should not produce more cancer deaths. Thus, an observation of excess

diagnoses without excess mortality does not really support the earlier assertion that

women with abnormalities found in the physical examination were disproportionately

placed in the screening arm of the trial. If the randomization in the trial was not

compromised, the 142 excess cases, by definition, are overdiagnosed due to screening.

An A&E Physician, Boston University School of Medicine, USA, says [20]:

I did not see any reference to breast size, shape or ‘lumpy, bumpy breast’

as possible confounding issues that nullified by these data.

This is a randomized trial, and if the randomization was done properly, all the

factors should be balanced between the two arms and therefore there should be no

confounding issues.

Finally, Baines [9], Professor emerita, University of Toronto, Canada, defends

the validity of the randomization, by saying

The Canadian study encompassed more than 50 center-years of operation

- and Dr. Tabar proposes that one coordinator in a short span of time was

able to corrupt the results from 90,000 women by improper randomization

of five, ten, even a hundred? of her so-called friends. Absurd. As for the

randomization sheets categorized for age by quinquennium, it is hardly

surprising that a number of women might first have been entered on sheets

designated for women of a different age group. The mistake discovered,

the woman would be re-entered on another page. Does Dr. Tabar lives

in a world where mistakes are never made - 90,000 correct entries with

nary an error?
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While almost 90,000 women were randomized, the cumulative numbers of breast

cancer deaths were only 500 and 505 in the non-screened and screened groups, re-

spectively, after 25 years of follow-up. In fact there would be a drastic change due

to “improper randomization of five, ten, even a hundred” breast cancer deaths – 50

more such deaths in the non-screening arm would result in a mortality reduction

of (555-500)/555=10%, and 100 more breast cancer deaths would lead to a (605-

500)/605=17% reduction. As also argued by Kopans and Feig [48, p. 758], it does

not take much to alter the result, if symptomatic women (presumably some of them

with otherwise fatal cancers) were moved from one arm to the other.

In summary, screening trials in cancer are “notoriously difficult to run, and

notoriously susceptible to errors” [70, p. 291]; we have here attempted to demystify

some basic concepts of cancer screening in an accessible way, using selected responses

to the Canadian Study report as examples. In the next section, we review the major

guidelines on mammography and meta-analyses that these guidelines were based on,

as well as present our careful re-examination of the previous trials.

2.3 Breast cancer mortality reductions due to screening

At the time of writing (February 2014), the U.S. Preventive Services Task Force

[95] recommends cytology screening for cervical cancer (every 3-5 years for women

age 21 to 65 years), fecal occult blood testing (FOBt) for colorectal cancer (beginning

at age 50 and continuing until age 75), annual screening for lung cancer with low-

dose computed tomography in heavy smokers aged 55 to 80 years, and recommends

against prostate-specific antigen (PSA)-based screening for prostate cancer. However

for breast cancer, despite 8 large trials involving 650,000 women having been carried
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out in North America and Europe over 5 decades, there is no agreement upon whether

mammography screening saves lives, and if so, how many.

The 2002 USPSTF issued a B recommendation for mammography screening ev-

ery 1 to 2 years for all women older than 40 years. (The grade B recommendation

refers to that “there is high certainty that the net benefit is moderate or there is

moderate certainty that the net benefit is moderate to substantial”.) This recom-

mendation was based on a meta-analysis by Humphrey et al. [42], which includes

all eight randomized screening trials that have been conducted: Health Insurance

Plan of Greater New York (a.k.a HIP) [83], Malmö [5], Swedish Two-County [88],

Stockholm [29], Gothenburg [12], Edinburgh [4], Canadian [65] and UK AGE trial

[69].

In 2009 the USPSTF, further informed by a systematic review [74] and the

Cancer Intervention and Surveillance Modeling Network (CISNET) modeling studies

[56], recommended biennial mammography screening for all women aged 50 to 74

years and recommended against routine screening of women aged 40 to 49 years.

Two years later, a very similar meta-analysis was done for the Canadian Task Force

[19], using virtually the same trial data.

Nearly all the meta-analyses mentioned the key features of each trial, such as the

screening regimen, management of the control group, compliance with assignment to

screening and non-screening groups, as well as the length of follow-up, but few have

addressed how these features might affect the mortality reductions. The mortality

rate in each arm is commonly calculated simply as the cumulative number of breast

cancer deaths divided by the total person-years of follow-up. This is based on the
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assumption that deaths in different follow-up years are exchangeable, which is clearly

violated according to the first principle in Miettinen and Karp [63, p. 82]:

The proportional reduction in mortality from the cancer is nothing like a

constant over time from the beginning of the screening (for the generally

short duration of it) to the end of the follow-up (for an arbitrary duration

of it). It thus is logically inadmissible to quantify the reduction by pooling

the experience across the entire duration of the follow-up. The proper

concern in a trial like this is to address the incidence density of death

from the cancer as a function of time since the initiation of the screening.

And that function is, of course, different for different durations of the

screening.

In Hanley et al. [38], we published a re-examination of five mammography trials

among the eight. It was necessary to exclude the Canadian study because the year-

specific mortality data are not available from the reports nor obtainable from the

authors. The UK AGE trial was also excluded because its participants were much

younger than 50 years old, while the Edinburgh study was excluded because of its

flawed randomization, evidenced by a substantial difference in the socioeconomic

levels between the two arms. The remaining 5 trials differ so greatly in the screening

regimens and other features that we did not find it justifiable to meta-analyze them.

Instead, we examined the year-by-year pattern of the mortality deficits in each of

them separately.

We extracted the year-specific numbers of breast cancer deaths in the screened

and unscreened arms from the published articles. (The detailed extraction techniques
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are formulated and described in Chapter 7.) From the cumulative numbers of deaths

reported in Table 7 in the HIP trial [83] and Table X in the Malmö trial [5], we

calculated the yearly numbers of deaths by successive subtractions. The reports of

the other three trials contained plots of cumulative numbers of deaths over time

(Figure 2 in 88; Figure 2 in 29; Figure 1 in 12). For each of these, we used a graph

digitizer to extract the cumulative values, and then converted them into year-specific

numbers of deaths, and checked the totals against the total numbers reported in the

text. In reports that did not provide sufficiently age-specific data, we used slightly

wider or narrower age-at-entry bands. Key features of each trial and the year-specific

mortality reductions are summarized in Figure 2–3, a simplified version of Figure 2

in Hanley et al. [38].

Whereas we attempted to identify the nadir achieved in the mortality reduction

following the initiation of screening for each trial in Hanley et al. [38], here we merely

show how small the year-specific counts of breast cancer deaths are in most of these

trials. The methods in Chapter 5 could be straightforwardly extended to combine

information across trials, if one wishes to.

2.4 Regarding OSM’s editorial

Our manuscript on mammography screening [38] was published by the Canadian

Journal of Public Health published in the November/December 2013 issue. In the

same issue, Professor Olli S. Miettinen [61] was invited to comment on our piece as an

Editorialist. OSM’s editorial contained a mix of complimentary and critical remarks.

He generously applauds us for respecting two principles of cancer screening, one being

that the proportion reduction in cancer mortality are not constant over time and the
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Figure 2–3: The number of rounds of screening, and the approximate timing of each
round, together with the yearly numbers of breast cancer deaths in the screening (S)
and control (C) arms, and the year-specific mortality reductions.
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other being that there is a time lag between the screening’s initiation/discontinuation

and the manifestation/decline in the magnitude of the mortality reductions. He also

appreciates our keen interest in pursuing the asymptotic level of the proportional

reduction in mortality from the cancer as the measure of interest.

However there are two items on which OSM seems to disagree with us. First,

he argues that our measure, “[t]he proportional reduction in mortality from the

cancer in a screening-eligible population”, is irrelevant and instead the relevant one

should be the “individual benefits from the availability of this service to the women

constituting the population at issue”. We do not think that there is any contradiction

between individual and population level benefits, and OSM himself in this Editorial

equates “population-level benefit” with “the sum of the individual benefits”. These

two are equivalent either when individuals with similar characteristics are considered

as exchangeable, or when there is no information on the individual characteristics to

distinguish one from another.

Secondly, he argues that our measure is “unrealistic to try to quantify” and

instead proposes a “justifiable” measure, in his own words:

The asymptotic level of the proportional reduction in mortality from

the cancer in screening experiments equals something that is critically

important to individual women in the population at issue. It equals the

proportional reduction in the cancer’s rate/probability of incurability, or

in its case-fatality rate, attendant to its detection under the screening,

when not considering whether the diagnosis is due to the screening or
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to symptoms emerging between two successively scheduled rounds of the

screening. [...]

In this individual-centered, clinical-type framework of thought, the population-

level benefit – the sum of the individual benefits (cf. above) – from the

screening’s availability in a given span of calendar time (e.g., the first year

of its availability) is, in plain numerical terms (when not accounting for

the valuations of the cures), the total number of otherwise incurable cases

that, in the population in that period, were cured by screening-afforded

early treatments. This is the period-specific number of detections of

the cancer consequent to the screening multiplied by three probabilities:

the probability of the case being one of a genuine, life-threatening cancer

(rather than overdiagnosed as such); the probability of a screen-diagnosed

genuine case of the cancer being incurable by treatment delayed to the

time when the cancer already would be clinically manifest; and the prob-

ability of undelayed treatment upon screen-diagnosis being curative of

such an other wise incurable case (i.e., the proportional reduction in in-

curability addressed above, though adjusted for it to be specific to screen-

diagnosed cases).

While OSM’s proposed measure (i.e., the probability of benefiting from screening-

induced early treatment conditional on having been diagnosed under screening) is

perfectly logical, he is addressing a somewhat different estimand from ours. He is

concerned with the probability that a women would benefit from early treatment,

given that she is already screen-diagnosed. Although directly contrasting benefits of
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earlier to later treatment, this measure is not quantifiable in a conventional random-

ized screening trial and requires an unusual (and perhaps unrealistic, or unethical)

design in which screen-diagnosed persons blinded of the result are randomized to

either early treatment or delayed treatment when they are later clinically diagnosed.

Our estimand is the probability that a women would benefit from early treat-

ment, given that her cancer is fatal under the usual care. This directly corresponds to

the question answered by commonly conducted randomized screening trials. While

this is a relative measure, with the denominator being all fatal cancers in the absence

of screening, an absolute measure similar to the one characterized by OSM above

could be constructed by multiplying the relative measure by the probability of dying

due to the cancer in the absence of screening. The absolute measure is also readily

estimable as the proportion of cancer deaths in the control arm of a randomized

screening trial.

Furthermore, while sometimes the individual-level decision indeed can be about

choosing between early versus delayed treatment (e.g. watchful waiting for a detected

prostate cancer), most cancers would be treated right away once detected. Thus, a

more common individual-level decision is whether to participate in the screening

program in the first place. While such a decision requires weighting both the harms

and benefits of screening, our proposed measures (the conditional and absolute ones)

directly address the benefit side of this decision.

Before ending, OSM contends that we “fail to grasp the true meaning of this

measure”, and like the Canadian Task Force, we “too do not proceed from tenable,

genuinely first principles”. In fact, in later chapters, we do derive our measure from
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the first principles, including OSM’s own ‘factor-conditional etiogenetic proportion’

[63, p. 48].
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CHAPTER 3
Main Source of Inspiration: Understanding Zelen’s Work on Screening

Marvin Zelen is a pioneer and leader in the development of statistical models for

early-detection programs. His earliest work on screening dates back to 1969 [102],

his 1993 paper [101] considers the optimum spacing of screening examinations, and

his 1997 paper with Hu [41] served as the basis for the statistical planning of the US

National Lung Screening Trial. According to Hu in August 2013, the US National

Cancer Institute (NCI) and China NCI were planning, based on the Hu-Zelen model,

to launch a randomized screening trial for lung cancer in China in the near future.

In this chapter, we discuss the Hu-Zelen model as a motivation to our work.

Although their model construction and its intended purpose are very different from

ours, similarly to us, Hu and Zelen [41] took an explicit round-by-round approach to

the modeling.

3.1 Background

The arm-specific numbers of cancers detected at and between screening exami-

nations in a randomized screening trial can be used to derive some diagnosis-related

measures of the potential benefit of a screening program. Two such quantities are the

sensitivity of the examinations, and the (unobservable) length of the sojourn time

during which the disease is screen-detectable but asymptomatic, with the premise

that if screening is sensitive in detecting the cancers and if the duration of the so-

journ time is long, then the earlier detection and earlier treatment of the cancer can
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be more successful than the later ones. The statistical estimation of these parame-

ters has been addressed by a number of authors, such as Zelen and Feinleib [102],

Albert et al. [3], Walter and Day [96], Day and Walter [22], as well as Shen and Zelen

[85, 87].

However, only those cancers that would be fatal in the absence of screening can

potentially benefit from being detected and treated early, and thus the diagnosis-

related measures are easily confounded by lead time and overdiagnosis, as discussed

in Chapter 2. Therefore, a reduction in the cancer-specific mortality in the screening

arm compared to the non-screening arm in a randomized screening trial is considered

as the definitive evidence of the benefit of screening [96]. Zelen has been a pioneer

in the statistical design (e.g. choosing the optimal length of follow-up, and optimal

number of and spacing between examinations) of such early-detection trials. With

the aim of achieving maximal power of the statistical test for comparing mortality

between the screening and non-screening arms, Hu and Zelen [41] developed a model

for calculating the cumulative probability of dying of the cancer over a specific follow-

up window in the two arms by modelling the entire history of the disease progression.

Built on this, Lee and Zelen [51] developed a more complex model, which takes

into account age effect and cancer stage distributions. Together with six other mod-

elling groups within the Cancer Intervention and Surveillance Modeling Network

(CISNET) of the US National Cancer Institute, a total of seven models were used

to project the impact of screening and treatment on cancer incidence and mortality

[16]. All of them involve a very large number of parameters and modelling assump-

tions, and require multiple data sources (such as trials, registries and surveys) for the
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parameter inputs; none of them can produce confidence intervals for the projected

mortality impact, and thus the range of the results from these models is taken as a

measure of uncertainty [56, 57].

In this chapter, I first show that the Hu-Zelen model can be (i) substantially

simplified, (ii) potentially extended to estimate mortality impact using data in ran-

domized screening trials, and (iii) used to project mortality impact of a screening

program with a new regimen. Then I discuss the limitations of this model for pro-

jecting mortality impact of a screening program and reasons why approaches based

on modelling the entire disease progression are not suitable for this purpose. In

particular, I argue that this model is oversimplified in parametrizing the screening

effect. In the appendix, I provide my programming of the Hu-Zelen model which has

been validated by the first author Ping Hu.

3.2 Specification of the Hu-Zelen model

Hu and Zelen [41] formulate a model for calculating the cumulative probability of

dying of the cancer before the end of follow-up time τ for an individual randomly as-

signed to either the control or the screening arm at time s0 = 0. Individuals assigned

to the control arm receive standard care with no screening, while those assigned to

the screening arm are invited to participate in one or more periodic screening exam-

inations. Let F0(τ) and F1(τ) be the cumulative probability of dying of the cancer

before the end of the follow-up time τ in the control arm and screening arm, respec-

tively. These two probabilities are used to calculate the expected mortality reduction

from the cancer due to a specific early detection regimen, in the context of statistical

planning of power and sample size of a randomized screening trial. The estimated
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risk difference F̂0(τ) − F̂1(τ) serves as a test statistic for the null hypothesis of no

mortality benefit.

The history of the cancer progression is modeled via three state transitions:

cancer-free state (Su)→ preclinical state (Sp)→ clinically diagnosed state (Sc). The

time interval during which the disease is potentially detectable but not yet diagnosed,

is the sojourn time in Sp. It is assumed that the probability density function of the

sojourn time g(t) takes an Exponential form, that is, g(t) = υ exp(−υt), υ ≥ 0.

Under the assumption of a stable disease model (the probability of transitions both

from Su to Sp and from Sp to Sc are independent of time), the authors showed that

the relation between (constant) prevalence ξ, incidence ω, and mean sojourn time

1/υ is ω = ξυ. The average sensitivity of each screening examination is assumed to

be ρ.

The same post-diagnosis mortality rate is used for persons clinically diagnosed

in the absence of screening and for the interval cancers in the presence of screening.

Worth pointing out is that, in order to correct for lead time, the survival time for

those diagnosed by one of the scheduled screenings is counted from the potential time

of clinical diagnosis. This potential time refers to the unobservable time at which

the person would have entered the clinically diagnosed disease state in the absence

of screening.

For an individual assigned to the control arm, the survival time is measured from

the time of clinical diagnosis. Let gp0(t) = λp0 exp(−λp0t), λ
p
0 ≥ 0 be the probability

density function of survival time for those who are in Sp at randomization, and

g0(t) = λ0 exp(−λ0t), λ0 ≥ 0 for those who are not yet in Sp at randomization.
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These two densities are also used for interval cancers for individuals in the screening

group who were and who were not in Sp at randomization, respectively.

For an individual assigned to the screening arm, the (now altered) survival time

is also measured from the potential time of clinical diagnosis (in order to avoid lead

time bias). Let gp1(t) = λp1 exp(−λp1t), λ
p
1 ≥ 0 be the probability density function of

survival time for those who are in Sp at randomization and detected by a scheduled

examination, and g1(t) = λ1 exp(−λ1t), λ1 ≥ 0 the counterpart for those who are

not yet in Sp at randomization but are diagnosed by a scheduled examination. Hu

and Zelen [41] show how the risks F0(τ) and F1(τ) are then obtained through (quite

complex) integration of the intensity functions defined in this section; in the following

section we present an algebraically simplified version. All the notations used in the

Hu-Zelen model are summarized in Table 3–1.

3.3 Simplifying the Hu-Zelen model

In this section, I show how one could algebraically simplify the derivation of the

probability of dying due to an interval cancer as specified in the Hu-Zelen model.

Under no screening

For an individual who is assigned to the control arm, as shown in Figure 3–1,

there are two mutually exclusive possible paths to the cancer-specific death at time

t: (i) she/he is in Sp at time s0, enters Sc at time u and survives for t− u units, and

(ii) she/he is in Su at s0, enters Sp at time x (x > s0), has a sojourn time of u − x

units in Sp and survives for t − u units. Therefore the probability density function
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Table 3–1: A summary table of notations used in the Hu-Zelen model.
Notation Meaning

Su Disease-free or undetectable state.
Sp Preclinical disease state.
Sc Clinically diagnosed disease state.
ρ Sensitivity of the screening test.
ω Transition rate from Su to Sp and from Sp to Sc (cancer inci-

dence)
ξ Prevalence of pre-clinical disease.
s0 Time of randomization.
τ End of the follow-up period.

s1, . . . , sm Ordered times of m scheduled screening examinations.
f0(t) Probability density function (PDF) of dying of the cancer at

time t in the control arm.
fp0 (t) Subset of f0(t): is in Sp at s0.
fu0 (t) Subset of f0(t): is in Su at s0.
f1(t) PDF of dying of the cancer at time t in the screening arm.
fT1 (t) Component of f1(t): screen-diagnosed and treated earlier.
f I1 (t) Component of f1(t): an interval cancer.
fN1 (t) Under the null version of fT1 (t) when there is no benefit from

early treatment.
F0(τ) Cumulative probability of dying of the cancer before τ in the

control arm.
F1(τ) Cumulative probability of dying of the cancer before τ in the

screening arm.
g(t) PDF of the sojourn time in Sp.
gp0(t) PDF of survival time in the control arm, in Sp at s0.
g0(t) PDF of survival time in the control arm, not in Sp at s0.
gp1(t) PDF of survival time in the screening arm, in Sp at s0.
g1(t) PDF of survival time in the screening arm, not in Sp at s0.
υ Rate parameter of the sojourn time distribution g(t).
λp0 Rate parameter of the survival time distribution gp0(t).
λ0 Rate parameter of the survival time distribution g0(t).
λp1 Rate parameter of the survival time distribution gp1(t).
λ1 Rate parameter of the survival time distribution g1(t).
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of dying of the cancer at time t in the control arm is f0(t) = fp0 (t) + fu0 (t), where

fp0 (t) =

∫ t

0

ξg(u)gp0(t− u) du

= ωλp0 exp(−λp0t)
1− exp{−(ω/ξ − λp0)t}

ω/ξ − λp0
,

and

fu0 (t) =

∫ t

0

{∫ u

0

ωg(u− x) dx

}
g0(t− u) du

= ωλ0 exp(−λ0t)
{

exp(λ0t)− 1

λ0
+

exp(−ω/ξ − λ0)t− 1

ω/ξ − λ0

}
.

The closed form expressions are simplifications obtained by substituting in the pre-

viously specified parametric models; we suppress the intermediate steps. The risk in

the control arm is then given by F0(t) =
∫ t
0
f0(s) ds.

Under screening

During the interval [0, τ ], a total of m screening examinations are carried out

at the ordered time points s1 < s2 < · · · < sm in the screening arm, with the jth

interval denoted by [sj−1, sj] and its length by ∆j = sj − sj−1 for j = 1, 2, . . . ,m.

For any individual assigned to the screening arm, there are further two mutually

exclusive paths to the cancer-specific death at time t: (a) she/he is detected and

diagnosed by the rth planned examination at time tr, r > 0, where t > tr, with

the corresponding probability density function for survival time denoted by fT1 (τ),

and (b) she/he is not detected by one of the scheduled screenings (i.e. an interval

cancer), with the corresponding density denoted by f I1 (t). The overall density in the

screening arm is then f1(t) = fT1 (τ) + f I1 (τ).
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(i)

Follow−up time

s0 u t

Sp Sc

(ii)

Follow−up time

s0 x u t

Su Sp Sc

Figure 3–1: Schematic figure showing the two mutually exclusive paths to cancer-
specific death in the control arm: at randomization the individual is preclinical in
(i) and is disease-free in (ii).

An individual of type (i) in the preclinical state at randomization and following

path (a) in the screening arm must have failed to be detected at r − 1 previous

examinations (each with probability 1−ρ due to imperfect sensitivity of the screening

test), with the corresponding density denoted by fT11r (t). An individual of type (ii)

disease-free at randomization, following path (a), and moving into the preclinical

state in the interval [si−1, si), i ∈ 1, . . . , r, must have failed to be detected at r − i

previous examinations, with the corresponding density denoted by fT21r (t). Thus the

density corresponding to path (a) can be written as fT1r(t) = fT11r (t) + fT21r (t), where

fT11r (t) = (1− ρ)r−1ρξ

∫ t

sr

g(u)g1(t− u) du

=
(1− ρ)r−1ρξωλp1 exp(−λp1t)

λ1ξ − ω
{exp(λ1t− ωt/ξ)− exp(λ1sr − ωsr/ξ)} ,
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and

fT21r (t) =
r∑
i=1

(1− ρ)r−iρ

∫ t

sr

{∫ si

sr

ωg(τ − x)

}
g1(t− u) du, (t >= sr)

=
r∑
i=1

(1− ρ)r−iρξωλ1 exp(−λ1t)
λ1ξ − ω

{exp(ωsi/ξ)− exp(ωti−1/ξ)}

× {exp(λ1t− ωt/ξ)− exp(λ1sr − ωsr/ξ)}.

Since any individual can be detected in only one screening examination, fT1 (t) =∑m
r=1 f

T
1r(t).

For an individual following path (b), Hu and Zelen [41] spent an entire page

of algebra deriving the density f I1 (t) for time of death due to an interval cancer

through state transitions. However, we argue that this can be inferred from the

quantities that are already specified. Under the null, if there is no difference in

the post-diagnosis survival time between the two arms, that is, g0(t) = g1(t) and

gp0(t) = gp1(t), then the densities of dying of the cancer in the two arms would be

identical: f0(t) = f1(t) = fN1 (t) + f I1 (t), where fN1 (t) represents the density of dying

of the cancer after being screen-detected but not treated early (or equivalently, not

benefiting from the early treatment). In turn, fN1 (t) is obtained from fT1 (t) as defined

above by replacing g1(t) with g0(t) and gp1(t) with gp0(t).
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Therefore f I1 (t) = f0(t)− fN1 (t) = f0(t)−
∑m

r=1 f
N
1r(t), where

fN1r(t) = (1− ρ)r−1ρξ

∫ t

sr

g(u)gp0(t− u) du

+
r∑
i=1

(1− ρ)r−iρ

∫ t

sr

{∫ si

sr

ωg(τ − x)

}
g0(t− u) du, (t >= sr)

=
(1− ρ)r−1ρξωλp0 exp(−λp0t)

λp1ξ − ω
{exp(λ0t− ωt/ξ)− exp(λ0sr − ωsr/ξ)}

+
r∑
i=1

(1− ρ)r−iρξωλ0 exp(−λ0t)
λ0ξ − ω

{exp(ωsi/ξ)− exp(ωti−1/ξ)}

× {exp(λ0t− ωt/ξ)− exp(λp0sr − ωsr/ξ)}.

Finally, having obtained f1(t) = fT1 (t) + f0(t)− fN1 (t), the risk in the screening arm

is given by F1(t) =
∫ t
0
f1(s) ds.

3.4 Using the Hu-Zelen model to estimate mortality impact

The Hu-Zelen model has been used for statistical planning of randomized screen-

ing trials with fixed parameter inputs, requiring knowledge of the mortality rates for

persons diagnosed in the absence and in the presence of screening, in addition to the

parameters characterizing cancer incidence, prevalence, sojourn time and screening

sensitivity. However, since this is a probability model, in principle it could be used

as a likelihood for the purpose of estimating (at least some) of these parameters.

Suppose for simplicity that the model can be parametrized in terms of baseline rate

λ0 = λp0 and mortality rate ratio θ = λ1/λ0, where λ1 = λp1. In this section, we show

that the Hu-Zelen model can be used for maximum likelihood-based estimation of θ

characterizing the effect of screening-induced early treatments, if the other parameter

inputs can be fixed based in external information.
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Let N0 and N1 denote the numbers of individuals randomized to the control

and screening arms, respectively, indexed by i = 1, 2, . . . , N0, N0 + 1, . . . , N0 + N1.

Further, let ti denote the observed time of death due to the cancer or censoring (due

to the end of the follow-up or death due to another cause), and let ei denote the

observed event type at Ti, taking the value 1 for a cancer-specific death and 0 for

censoring.

Then the log-likelihood from the two arms can be written as

logL(λ0, θ) = logL0(λ0) + logL1(λ0, θ),

where the log-likelihood contributions from participants in the control arm is

logL0(λ0) =

N0∑
i=1

ei log f0(ti) +

N0∑
i=1

(1− ei) log{1− F0(ti)},

and from those in the screening arm is

logL1(λ0, θ) =

N0+N1∑
i=N0+1

ei log f1(ti) +

N0+N1∑
i=N0+1

(1− ei) log{1− F1(ti)}.

Here f0(t), f1(t), F0(t) and F1(t) are specified as in the previous section. However,

the parameters ρ, ω and ξ or υ would have to be fixed to a priori specified values,

since they are not estimable from the mortality outcome data alone; this limits the

usefulness of the Hu-Zelen model in estimation of the mortality impact of screening,

and as we argue in the following sections, the modeling assumptions involved might

in any case result in overly simplistic characterization of the screening impact.
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3.5 Using the Hu-Zelen model to project mortality impact

In this section, we show how to use the Hu and Zelen model to project the mor-

tality reduction patterns if women begin a 20-year breast cancer screening program

when they reach age 50. Since the Health Insurance Plan (HIP) study [83] is the

only trial which has the required data and parameter inputs publicly available, we

use it for the following depiction. In this study, women aged 40-64 years were ran-

domized to attend 4 annual mammography screenings or continue with their usual

care without screening.

Shen and Zelen [86] estimated the overall screening sensitivity and mean sojourn

time to be ρ = 70% and 1/υ = 2.5 years. We take the incidence rate in the absence

of screening to be ω = 0.0187, the incidence in the control group reported in the HIP

trial. Under the stable-disease assumption, the prevalence at age 50 is calculated to

be ξ = 0.0187 × 2.5 = 0.47%. Hu and Zelen [41] assumed that the median survival

times after clinical diagnosis under no screening and screening for those not in Sp at

randomization to be log(2)/λ0 = 10 and log(2)/λ1 = 17 years, respectively. For those

in Sp at randomization, the median survival times are assumed to be log(2)/λp0 = 11

and log(2)/λp1 = 20 years under no screening and screening, respectively.

Figure 3–2 shows the resulting 30-year projection for a program of 20 annual

screenings. The early portion of the mortally reduction curve is not realistic, as there

is a large reduction immediately after the initiation of screening; not surprisingly the

curve stays constant in the middle part where there was sustained screening and

gradually tails off after screening was discontinued.
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Figure 3–2: Projected yearly numbers of breast cancer deaths, in each of the ages
50 to 80, if 100,000 women did versus did not participate in a 20-year program of
annual mammography screening starting when they reach age 50, together with the
corresponding percentage reductions.

Figure 3–3 shows the projection for a biennial program; it is a little shallower

than the annual one, but the reductions persist for almost the same duration. The

comparison between Figures 3–2 and 3–3 matches with the findings of the CISNET

models [56], which reported a median of 16.5% and 20.4% reduction in breast cancer

deaths with biennial and annual regimen, respectively, for women invited to mam-

mography screening from age 50 until 69.

3.6 Discussion

Given the unobservable nature of the cancer progression, projecting the mortal-

ity impact of a screening program by modelling the entire history of the disease has
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Figure 3–3: Same as in Figure 3–2, but with biennial screening.

a number of disadvantages: (i) a very large number of parameters are involved and

they cannot be estimated simultaneously (in fact, only the joint estimation of the

sensitivity and sojourn time has been achieved), (ii) it requires a large number of

modelling assumptions; (iii) it cannot produce confidence intervals for the projected

mortality impact, and (iv) parameter inputs have to be obtained from multiple data

sources (such as trials, registries and surveys) but inputs from one source of a specific

population in a specific study setting may not be applicable to other contexts.

In addition to the above limitations, there are other reasons why the Hu-Zelen

model might not be appropriate for projecting mortality impact of a screening pro-

gram. The first has to do with the Exponential form assumed for the sojourn time
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distribution. As discussed in Liu et al. [53], a fundamental feature of cancer screen-

ing is its delayed effect in mortality reduction in asymptomatic individuals. That

is, cancer deaths averted by screening combined with therapy would only manifest

several years after the onset of screening. The first screening examination combined

with therapy detects and eradicates some cancers that otherwise would have proven

fatal several years later. The reductions produced by subsequent examinations occur

even later. The Exponential model is used for the sojourn time distribution for com-

putational convenience; however, it does not take into account the time lag between

the screenings and their induced mortality reductions. That is why the early portion

of the projected reduction curve failed to show the delayed effect, as illustrated in

Figures 3–2 and 3–3. A possible solution would be to use a distribution which has a

mode, such as the Weibull distribution, but this would add more parameters to the

already complex model.

Furthermore, it is assumed in the Hu-Zelen model that the sojourn time is

independent of the survival time after clinical diagnosis. This assumption is not a

realistic one either; instead we would expect a strong correlation between the two: a

relatively fast-growing cancer would be aggressive both pre- and post-detection. One

way to introduce dependence between the post-diagnosis survival time and sojourn

time would be to parametrize the mortality rate λ0e
αZ+β(u−x), where (u − x) is the

length of the sojourn time and Z indicates whether or not the individual is assigned

to the screening arm. This would again add more parameters to the model. Finally,

it should be noted that modelling in terms of mortality rates and their ratios does
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not characterize cures, but rather delays in the inevitable time of death due to the

cancer.

In summary, by studying the Hu-Zelen model, we demonstrate why the pre-

vailing approach to project the impact of screening by modelling the entire cancer

progression, such as those used in the CISNET models, has limitations. This mo-

tivates us to pursue a completely different approach, that is, focusing on mortality

alone and avoid handling sojourn time, the mechanism of screen detection, tumour

characteristics at diagnosis and so on. In Chapter 5, we present a novel probability

model which specifically takes into account the delay in mortality reductions, and di-

rectly addresses what we consider the most relevant question, namely, the probability

of being helped by screening-induced early treatment, had the cancer proved fatal

in the absence of screening. The mortality impact is estimated using data from ran-

domized screening trials and thus the probabilistic projection is evidence-based. In

this minimalist model, we avoid specifying parameters such as sensitivity, prevalence,

incidence and sojourn time all together, as well as modelling assumptions associated

with each one of them.
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CHAPTER 4
Projecting the Yearly Mortality Reductions due to a Cancer Screening

Program

Preamble to Manuscript 1. In this manuscript we argue that the hypothesis-

testing framework used in trials has limited trialists’ attention to summary statistics

that do not adequately describe what a sustained screening program might accom-

plish.

Instead of a single-number rate ratio, we proposed a time-specific rate ratio curve

as the measure to address the benefits of a screening program. This bathtub-shaped

curve shows when the reductions begin, how big they are, and how long they last.

We illustrate how one can compute such curves using an existing model.

In the second manuscript, we develop a novel probability model to directly

address the mortality impact of a screening program. But before we do so, it is

important to motivate why a new approach is needed.
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Abstract

Whether or not to implement a 20-year screening program for a cancer requires

weighing the harms and costs against the health benefits (such as the number of

cancer deaths averted every year). The evidence of the benefits is often based on

a single-number summary, such as the mortality reduction over the entire follow-up

time in a single trial, or an average of such one-number measures from a meta-analysis

of several trials. We strongly recommend against using the traditional one-number

summaries from trials to deduce the yearly mortality reductions expected from a

sustained screening program. Instead, we propose using a rate ratio curve, and its

complement (a mortality reduction curve), to address the mortality impact (timing,

magnitude, and duration) of a screening program. This curve is easy to interpret, as

it shows when mortality reductions begin, how big they are, and how long they last.

We illustrate when and how one could compute such rate ratio curves from screening

trials, and use them to compare reduction patterns expected with different screening

regimens. We call on trialists to report necessary data to arrive at such projections.
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4.1 Introduction

Making a decision on whether or not to implement a 20-year screening program

for a cancer requires weighing the harms and costs against the health benefits (such

as the number of cancer deaths averted every year). The evidence of the benefits is

often based on a single-number summary, such as the mortality reduction over the

entire follow-up time in a single trial, or an average of such one-number measures from

several trials. We recommend against using such one-number summaries to deduce

the yearly mortality reductions expected from a sustained screening program.

As we explain more fully below, we base this recommendation on several rea-

sons, all stemming from the characteristic time-pattern of the mortality reductions

produced by any particular screening program, and the affected time-window in ques-

tion. First, the reductions do not begin in year one, and if/when they do reach a

‘constant’ level, they do not remain at this level indefinitely. Thus the full pattern

(i.e. the timing, magnitude and duration of the reductions) cannot be adequately

quantified by one number. In addition, the pattern is specific to the screening regi-

men (e.g. the number of screens and spacing between them) employed. For example,

20 annual screens might produce yearly reductions that start at year 5, and extend

over possibly 25 years; 10 annual rounds would produce similar yearly reductions

starting at about the same time, but extending over a shorter span, possibly 15

years. Compared to 10 annual screenings, the yearly reductions produced by 10

biennial screenings are expected to be smaller but over a longer period of time.
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In this paper, we address the task of projecting the mortality impact of a screen-

ing program. In Section 2, we propose using a rate ratio curve, instead of a single-

number summary, to fully describe the expected timing, magnitude and duration

of this impact. In Section 3, we identify trials that have had sufficient rounds of

screening allowing us to estimate the asymptote of the curve for a program with

similar spacing of screens. We also give examples to illustrate how much underesti-

mation is involved in the traditional measure. In Section 4, we show how one could

use an existing model (previously used for other purposes), and available trial data

to project the program impact, as well as compare reduction patterns produced by

regimens with different spacings than those used in trials. Finally, we call on trialists

to report necessary data to compute this rate ratio curve.

4.2 The mortality reduction curve, and its shape

4.2.1 The time lag and the affected age window

Consider a cohort of persons who, beginning at age 50, are invited to be screened

annually for a cancer until they reach age 69. The mortality impact of the program

is the difference in the yearly number of cancer deaths in the absence of screening

(when no one is invited to be screened) versus in the presence of screening (when

everyone is). We graph this impact in the affected age window in Figure 4–1(a).

The first notable feature is the time lag between when a screening program starts

and when the mortality reduction first manifests. Unlike most medical interventions

that produce a virtually immediate effect (within hours, days or weeks), cancer

screening generates mortality reductions that only become evident several years after

the onset of screening [67, 62, 37, 10, 83]. The first screen (say at age 50) detects,
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(a) Yearly numbers of cancer deaths in a cohort of 50−year old individuals,

      without and with a 20−year screening program

(b) The corresponding cancer mortality rate ratio curve
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Figure 4–1: Impact of a hypothetical 20-year screening program measured (a) in
absolute numbers of cancer-specific deaths averted and (b) as rate ratios and as
percentage reductions.

and the resulting earlier therapy eradicates, some cancers that otherwise would have

proved fatal several years later (from say 55 to 63). Presumably, the average delay

would be longer for cancers of the breast and prostate, and shorter for more aggressive

cancers, such as that of the lung. The width of the reduction ‘wave’ (8 years in our

example) reflects the variation in cancer stages at detection and in the rates at which

cancers would have progressed otherwise.
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Mortality reductions produced by subsequent annual screens (at ages 51, 52,

. . . , 69) occur even later (from say 56 to 64, 57 to 65, . . . , 74 to 82). After the effect

of the last screen disappears, cancer mortality rates return gradually (from say 78

to 85) to those in the absence of screening. Thus, the 20 screens affect possibly 35

age-bins in the age-span 50 to 85.

The total number of deaths averted in that span is shown as the white area in

Figure 4–1(a). The total number of years gained is the sum of the products of the age-

specific number of deaths averted and the age-specific remaining life expectancies.

For costing purposes, this total can be averaged over the number averted, invited,

or screened.

4.2.2 The mortality rate ratio curve

Another way to display the same mortality reductions in Figure 4–1(a) is through

a rate ratio curve, as in Figure 4–1(b). The yearly ratio is calculated as the yearly

number (or rate) of cancer deaths in the presence of screening divided by the yearly

number (or rate) of cancer deaths in the absence of screening. Each yearly ratio can

be thought of as the fraction of fatal cancers that could not be helped by screening.

Their complements, usually expressed as percentages, represent the yearly mortality

reductions.

If the yearly number of fatal cancers remains constant throughout the screening

program, the rate ratio curve should exhibit a bathtub shape: it would be close to

constant for a large portion of the age-window where the effect of sustained screening

is manifest. Little mortality impact is expected in the early portion, i.e. before the

deaths averted by the first screen would have otherwise occurred, and again in the
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late portion, i.e. long after the deaths averted by the last screen would have otherwise

occurred. By describing the timing, magnitude and duration of the yearly reductions

over the full time window that would be affected by a screening program, the curve

shows when reductions begin, how big they are, and how long they last.

The rate-ratio curve in Figure 4–1(b) is not new: Morrison [67] introduced a

schematic version, entitled “changes in the disease-specific mortality rate”, to graphi-

cally illustrate and emphasize the time lag between the first screen and the beginning

and end of the mortality reductions. Early trialists [83] were also keenly aware of

the waning effect after the termination of screening. A more comprehensive version,

showing what affects the shape, is presented in a theoretical piece by Miettinen et al.

[62], and then in an application to mammography with the asymptote as the ‘es-

timand’. Hanley [35] showed how a rate ratio curve could arise as the convolution

of the effects of 10 annual rounds of screening, and also studied the asymptote in

colon cancer screening; Baker et al. [10] simulated rate ratio curves under screening

of large, moderate and little effect. These four versions are shown in Figure 4–2.

Much of the statistical work that has addressed this non-proportional hazards

time pattern has focused on statistical tests applied to data from screening trials, and

thus on maximizing statistical power [103, 82] dealing with the non-proportionality

[81], and selecting the optimal time at which the analysis of trial data should be

carried out [41]. The data analysis in each actual trial tested a regimen-specific null

hypothesis over some (un-predetermined) follow-up period: “does the amount and

spacing of screening used in this trial have a non-zero impact on cancer mortality?”
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Figure 4–2: Hypothetical rate-ratio curves, as depicted in textbooks and other pub-
lications. (a), (b) and (d) invoke the bathtub shape, while (c) derives it from the
convolution of the separate effects of 10 annual rounds of screening.

There has been much less focus on deducing the impact of a sustained screening

program.

4.3 Distinction between nadir in a trial and asymptote in a program

4.3.1 Trial nadir and program asymptote

Our focus is on identifying the asymptote of the rate ratio curve, since it repre-

sents the sustained reduction that could be expected from a screening program. In
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the following, we describe how one can - but only in some instances - estimate the

program asymptote from trial data.

Figure 4–3 shows the distinctive patterns produced by a trial of 3 annual screen-

ings versus by a program of 20 annual screenings. If each round of screening reduces

mortality over 5 future years, then three rounds would produce 3 waves of such re-

ductions. The affected time window spans over a total of 7 years, with a maximum

reduction of 35% in year 6. In contrast, a program of 20 screenings would produce

20 such waves, affecting many more years, with a sustained reduction of 46% for

16 years, much deeper and longer than the width and the maximum depth of the

reductions seen in a trial. As is seen by comparing panels (a) and (b), the nadir seen

in a trial usually underestimates the asymptote in a program. However, even if one

wished to just measure the nadir carefully by, for example, smoothing [38] to avoid

overestimation resulting from the yearly statistical fluctuations, they would find that

few trials have provided yearly data that might allow them to do so. Instead, the uni-

versal practice is to report an averaged reduction, computed over the entire follow-up

time of the trial. Since this average includes the almost-zero reductions outside the

affected time window, it is even smaller than the nadir, and thus an even greater

underestimate of the program asymptote of interest.
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Figure 4–3: Schematic figure showing the mortality patterns of a trial and of a
program (see full caption on the next page).
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Figure 4–3 caption: The 35% maximal mortality reduction produced by a (hypo-

thetical) trial of 3 annual screenings (a) does not necessarily reach the 46% asymptote

produced by a program of 20 annual screenings (b), particularly if the impact of each

round is spread over more than 3 years. Shown in (a) is a hypothetical trial of 3

annual rounds of cancer screening (S1, S2, S3) compared with no screening. The

depth of the white rectangle in each year represents the percentage mortality re-

duction, relative to an unscreened group, for the year shown on the horizontal axis.

Annual mortality reductions produced by screening only begin to be expressed, in

year three (when the first effect of S1 is discernible); they are greater in years 4 and

5, reaching a maximum of 35% in year 6 (when the combined effect of S1, S2 and S3,

denoted by ‘1’ , ‘2’ and ‘3 respectively, is maximal); in year 7 the combined effects

begin to wear off, and the mortality in the screening arm begins to revert to that

in the non-screening arm; in year 9, the last effect of S3 is discernible. Thus the

maximum reduction is 35% and it would have been greater than if screening had not

been discontinued at year three. By contrast the average effect of screening over the

13 years of observation (the metric used by task forces) would be 12%. Shown in (b)

is a hypothetical screening program with annual screening beginning at age 50 and

continuing until age 69, compared with no screening. Again, the depth of the white

rectangle represents the percentage mortality reduction for the age shown on the

horizontal axis. The mortality reduction reaches 46% at age 56 and is maintained at

that level for many age-bins – until three years after the last screen when it starts

to increase again.
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The report of the National Lung Screening Trial (NLST) [73] presented in Table

4–1, illustrates the difference between evidence based on a few screenings which

produce some reductions in lung cancer mortality over a short time-window, and

the level of data needed to project what would occur if 50-year-old people were

offered regular screenings until they reached age 69. The deficit of 88 deaths in part

(a) of the table is clearly statistically significant, and expectedly shows that 3 CT

screenings would reduce lung cancer mortality by some non-zero amount. But the

pattern of the yearly deficits in part (b) is incomplete and puzzling. If the 42% deficit

in year 6 were to be followed by two similarly large deficits in years 7 and 8, then it

would suggest that a screening program could achieve an asymptote twice the size

of the reported 20% reduction. If instead the deficit in year 6 were to be followed

by diminishingly small deficits of the sizes seen in years 1-5, it would suggest that

the deficit in year 6 was merely a statistical aberration, and that the asymptote in a

program would be much smaller than the reported 20%.

The additional numbers of cancer deaths in years 7 and 8 were unknown at

the time of the report, because the causes of the deaths that occurred in these latter

years had not all been adjudicated by the time the overall mortality reduction became

statistically significant. This is a striking example of the distinction between getting

a statistical significant result with just 3 screens, and providing evidence on what a

screening program (of possibly many more screens) would achieve.

The importance of using time-specific rates to pursue the asymptote of the curve

was also highlighted in a recent review of screening trials in colon and prostate cancer.

Whereas the overall reduction in the largest colon trial been reported to be 20%, the
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re-analysis, which took account of the timing of, and interruptions in, screening,

found that an uninterrupted program would yield reductions with an asymptote of

40% [35]. In screening trials for prostate cancer, where the time lag between screening

and when the mortality deficits manifest are even longer, the deficits produced by the

first screen would not be expected for at least six years; however the majority of the

follow-up has only extended to about year 11 in the European Randomized Study

of Screening for Prostate Cancer (ERSPC) [80]. A re-analysis [36] showed that the

reductions only began in year 7, and reached an asymptote of approximately 50%

by year 12. One commentator [50] put it well: “perhaps a better summary of the

European trial result is not the 20% overall reduction in prostate cancer mortality,

but the combination of no reduction in the first seven or so years and a reduction of

about 50% after 10 years”.

Several task forces have examined screening programs for breast, lung, colon

and prostate cancers. Although their stated purpose was to estimate what a sus-

tained program would do, all of the meta-analyses they used merely averaged the

overall reductions seen in different trials. Thus they all greatly underestimated the

asymptotes that would characterize the programs they considered [37].

A few authors have explicitly dealt with the delay, either by using the hazard

ratio from a certain time point onwards [14], or (in those trials with a sufficiently

long duration of screening), by ‘letting the data speak for themselves’ as to when the

asymptote begins [62, 80].
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4.3.2 An alternative metric

An alternative approach, that indirectly addresses the asymptote and directly

acknowledges the time-pattern of the reductions produced by a limited number of

rounds of screening, is to examine the mortality impact only in cancers diagnosed

during the screening period. This avoids the dilution, which Baker et al. [10] refers to

as “post screening noise”, described above: cancers that arise long after the screening

is discontinued could not have been affected by the screening carried out in the trial.

In one version [89] of this alternative approach, where the cumulative incidence of

cancers deaths – in those diagnosed in this screening period – in the two study arms

are compared, it is assumed that there is no over-diagnosis in the screening arm.

The other version [99] avoids having to make this assumption by using the number

of cancers that were diagnosed in the non-screening arm during the screening period.

The efficacy of the 3 rounds of CT screening is then determined by calculating the

‘deficit’ of (442-354 =) 88 cancer deaths, and expressing this 88 as a percentage,

not of 442, but of the number that could possibly have been helped by screening (the

88 who were, and the xxx whose cancers, despite being diagnosed in the screening

period in the screening arm, proved fatal nevertheless). Unfortunately, as of the time

of writing, this number xxx is not known. Were the data to derive it reported, one

could use it as a rough proxy for the asymptote of interest.

Since the approaches described above do not allow one to make projections for

a program that uses a different spacing of screening examinations that was used in a
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Table 4–1: Numbers of lung cancer deaths in the NLST report.
(a) What was reported in NEJM (August 4, 2011)
Follow-up Year: 1 2 3 4 5 6 7 8 ALL

Screens ↑ ↑ ↑
X-ray Arm: 442

CT Arm: 354
Reduction: 20%

(b) Year-specific data extracted from graph in that report
X-ray Arm: 37 68 82 95 84 73 4 ?

CT Arm: 31 57 67 84 72 42 3 ?
Reduction: 16% 16% 18% 12% 14% 42% ? ?

trial, we now describe some (necessarily-model-based) ones that do. This round-by-

round approach also allows one to deal with trials whose nadir may not have reached

the asymptote.

4.4 Projecting the reduction patterns that would be produced by differ-
ent regimens than those used in trials

4.4.1 Approaches

Since a trial usually does not contain sufficient rounds of screening, the nadir

observed in it would underestimate the asymptote expected in a sustained program

with the same spacing of screenings. Thus, modelling assumptions are required to

extrapolate from a trial of say 3 annual screens to a program with say 20 annual

screens. The ‘round by round approach’ we have described in Figure 3 can also

be immediately applied to programs with different durations and spacings (e.g. 20

annual screens versus 10 biennial screens).

66



Several projections of the mortality reductions due to cancer screening have been

based on extensive modelling of the natural histories of cancers and how their progress

is altered by earlier detection and therapy. Many of these efforts [56, 57, 39] have

also quantified the associated costs and use very sophisticates simulation modelling

to examine the impact of prevention, screening, and treatment on cancer incidence

and mortality at the population level. These approached usually require a very large

number of parameter inputs, obtained from diverse data sources (such as trials,

registries and surveys).

We first illustrate a round-by-round approach, using the model proposed by

Hu and Zelen [41]. Previously, it has mostly been used for planning early-detection

trials, including the recent NLST, where the yearly numbers were aggregated for the

power calculation for the interim and ultimate statistical tests performed during and

at the end of the trial. We use it here to generate and display the rate ratio curve

proposed in Section 4–2, to show the projected timing, magnitude and duration of

the yearly reductions in a program (the yearly numbers that the software aggregates

for power calculations do not appear to have been previously used for this purpose).

The Hu-Zelen model the mortality in each year under the screening and no-screening

scenarios via a total of seven parameters (see Fig 4–4) quantifying the sensitivity of

the screening test, the natural (and altered) course of cancer from initiation to normal

clinical diagnosis and post clinical diagnosis under the no-screening and screening

scenarios.
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4.4.2 Illustration

Since sufficient information to fit new parameter values has not yet been ex-

tracted from the completed NLST, we will use some modifications of the input val-

ues [73] used to plan the trial. Rather than use the FORTRAN software the trial

statisticians used to implement the Hu-Zelen integrals, we re-programmed them in

R. The only modifications we made were to two of the input parameters, to better

represent how the cancer deaths are averted. In the planning, the authors assumed

the ‘average’ CT sensitivity would be 85%, and that those whose cancers were de-

tected by screening would have their (counterfactual) post-clinical-diagnosis survival

altered from an exponential distribution with a median 1.53 or 1.74 years to one

where the median was 2.42 or 2.21 years: (the planning calculations assumed that

all would eventually die of their cancer; moreover, there was no possibility of a ‘cure’,

unless by a ‘cure’ one means that one dies of another cause). Instead, in light of the

very rapid progression of many lung cancers, and the possibility of over-diagnosis,

we assumed that the ‘real’ sensitivity was much less, and that the possibility of cure

(rather than a very short extension of a few months of life) was confined to subgroup

of screen-detected cancers; the remainder, even if detected by screening, would con-

tinue to have virtually the same mortality rates as their counterparts who were not

screened. Thus, we set the ‘sensitivity’ at 25% rather than 85%, and the median

survival of 30 years (‘cure’) for those whose otherwise fatal cancers were found at a

curable stage.

Figure 4–4 (top) shows the resulting 35-year projection for a program of 20

annual screenings. With the exception of the slightly unrealistic (but numerically
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inconsequential) pattern at the front end (see below), the rate ratio curve, and its

complement the reduction curve, resemble the anticipated bathtub-shape presented

in Figure 4–1. The curve stays close constant for the middle part where there was

sustained screening, and it gradually tails off after screening was stopped. The

‘excess’ deaths after years 25 are a consequence of the assumed exponential survival

model in which cancer deaths are merely delayed, not averted - in keeping with the

corresponding pattern shown in version (b) of the Figure in Morrison’s textbook.

Figure 4–4 (bottom) shows the projection for a biennial program; it is a little

shallower than the annual one, but the reductions persist for almost the same du-

ration. The oscillations in the ‘round by round’ waves are more prominent than in

(a), and reflect the local effects of variations in the progression rates of different can-

cers together with the intra-individual variability in their stages at each examination

time. The considerably smaller morality reductions than in (a) emphasize the fact

that two year screening intervals allow many more lung cancers to progress to the

incurable stage in the interim.
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Figure 4–4: Illustration of the mortality projections due to annual and biennial
screenings using the Hu-Zelen model (see full caption on the next page).
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Figure 4–4 caption: A 35-year projection of lung cancer mortality reductions

for a program of (top) 20 annual and (bottom) 10 biennial screenings, based on

the same Hu-Zelen model used to plan the NLST trial but with the 7 indicated

input parameters (see text regarding the sensitivity and survival inputs), together

with the associated (almost-bathtub shaped) rate ratio curves. The comparison

is between screening with low-dose CT screening and Chest X-Ray (shown to be

virtually ineffective in the PLCO trial). The ‘excess’ deaths after years 25 are a

consequence of the exponential survival assumption in the Hu-Zelen model, in which

cancer deaths are merely postponed, not averted – similar to the pattern shown in

Figure 2-5(a) in Morrison’s textbook. Newer program projections will be made once

we have extracted the parameter values from the NLST data.
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Possible reasons why the early portion of the projected curve does not show

the anticipated time lag more clearly may include (i) the numbers of cancer-specific

deaths are expected to be very small in the first few years, which lead to large

uncertainty in the early portion of the rate ratio curve; (ii) the exponential form,

assumed for the sojourn time distribution, does not take into account the time lag

between screenings and their induced mortality reductions, (iii) the assumption of

independence between an individual’s sojourn time and their post-clinical diagnosis

survival time: we would expect a strong correlation, that is, a relatively fast-growing

cancer would be aggressive both pre- and post-detection; and (iv) the mortality rates

do not explicitly accommodate cures from cancer nor deaths from other causes.

In order to deal with these front-end and back-end issues, considerably more

refinements would need to be incorporated into the model, such as stage-specific

sensitivities, transition rates, and survival distributions, as well as age-specific com-

peting risks. While Zelen and colleagues, and other CISNET investigators, have

indeed incorporated such refinements, they now face the reality of having to deal

with the over-diagnosis that accompanies the newer screening tools, and the added

model complexity and uncertainty. Instead, we are currently exploring a minimalist

model that focuses only on the mortality reductions.

4.5 Summary

Unlike therapeutic trials in patients, cancer screening trials in asymptomatic

persons generate mortality reductions that can only manifest several years after the

onset of screening. The often reported single-number cumulative mortality reduc-

tion, in either a trial or a meta-analysis of trials, is of limited use in projecting the
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timing, duration and magnitude of the mortality reductions that would be expected

from a sustained screening program, of longer duration and possibly with a different

screening regimen.

Instead, we propose using a rate ratio curve, and its complement, the mortality

reduction curve, to address the mortality impact (timing, magnitude, and duration)

of a screening program. This curve is easy to interpret, as it shows when reductions

begin, how big they are, and how long they last. We illustrate, using an existing

model, how one could compute such rate ratio curves, and quantitatively compare

the impact of different screening regimens over the appropriate time-window.

Our message is two-fold: we (1) recommend against using one-number sum-

maries to deduce the yearly mortality reductions expected from a sustained screen-

ing program, and (2) call on trialists to report necessary time-specific mortality data

to allow the appropriate computation of rate ratio curves that allow the mortality

impacts of different screening programs to be compared over the appropriate time

horizon.
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CHAPTER 5
A Conditional Approach to Measure Mortality Reductions due to

Cancer Screening

Preamble to Manuscript 2. Miettinen and Karp [63, p. 36] make a dis-

tinction between etiogenetic causality and interventive causality, knowing about the

former being characterized by its retrospective nature:

Ad-hoc knowing about etiogenetic causality – etiognosis, that is (cf.

above) – is tantamount to having a causal explanation of an existent

outcome (level of a morbidity, or presence of an illness); it thus inher-

ently is retrospective from the vantage of an existent outcome.

This very much agrees with the work of a detective, as noted by Mukherjee [70, p.9],

who quotes Sherlock Holmes, in Sir Arthur Conan Doyle’s A Study in Scarlet :

In solving a problem of this sort, the grand thing is to be able to reason

backwards. That is a very useful accomplishment, and a very easy one,

but people do not practice it much.

Keeping this in mind, in this manuscript we develop a novel conditional probability

model for measuring the mortality impact of cancer screening, directly addressing

the probability of averting cancer death through the introduction of screening, given

that the cancer would have proven fatal in the absence of it. We formulate the cor-

responding causal estimand in terms of potential outcome random variables, specify

the identifying assumptions required to estimate it based on observed mortality data,
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and propose an estimation method based on conditional likelihood. The model is

aimed at extracting the time-specific mortality impact of a single round of screen-

ing; these functions can then be compounded to construct the mortality impact of a

particular screening regimen. We apply the method in two case studies, where the

model is fitted to existing trial data, and used for projecting the mortality impact of

a sustained screening program.
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Abstract

Evidence of benefits produced by cancer screening is commonly reported as

a mortality reduction calculated over the entire follow-up period of a randomized

screening trial. However, such a single-number statistic is of limited use in projecting

the mortality impact expected from a sustained screening program. We develop

a novel probability model to project the mortality impact, by parametrizing the

conditional probability of being helped by a single round of screening, given that

the cancer would have proven fatal otherwise. This represents a major shift in

focus in quantifying the impacts of screening, enabling extracting more relevant

statistical evidence from existing trial data. We illustrate our approach using data

from screening trials in lung and colorectal cancers.
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5.1 Introduction

The decision on whether to implement a long-term cancer screening program

in a population requires weighing the harms and costs against the health benefits,

such as the number of cancer deaths averted every year. The evidence of the benefits

is often based on a single-number summary, such as the cancer-specific mortality

reduction over the entire follow-up period in a randomized screening trial, or an

average of such one-number measures from a meta-analysis of trials. However, such

a single-number statistic is of limited use in projecting the mortality reductions that

would be produced by a screening program, of longer duration and possibly with a

different screening regimen [53]. In particular, this is because the mortality reduction

is not constant over time after the initiation of the screening, as has been recognized

and discussed for instance by Morrison [68, p. 36], Miettinen et al. [62], Hanley

[35, 36, 37], Miettinen and Karp [63, p. 81], and most recently by us in Hanley et al.

[38].

Our objective is to project the mortality impact produced by a sustained screen-

ing program based on trial data, a task that requires modelling of the round-specific

impacts. Microsimulations previously used for this purpose [e.g. 11, 100, 56] are

based on modelling of the entire disease history (e.g. from disease free to pre-clinical

disease state to clinically diagnosed). Such models will typically involve a large num-

ber of parameter inputs that are not obtainable from a single data source, as well as

many generally unverifiable assumptions. In contrast, the conditional approach we

propose eliminates parameters characterizing prevalence, incidence, sensitivity, state

transitions, or sojourn time, and produces evidence-based, probabilistic projections.
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We specify our estimand of interest as the conditional probability of being helped

by screening (through earlier treatment) given that the cancer would have proven fa-

tal in the absence of screening. This estimand is equivalent to the ‘factor-conditional

etiogenetic proportion’ of cancer deaths due to lack of screening associated early

treatments [63, p. 82]. We show that this conditional probability has a direct in-

terpretation as the proportional reduction in cancer mortality, and that it can be

decomposed into a function of round-specific reductions. We suggest a parametric

form for the round-specific reduction, based on which we then formulate a likelihood

function.

The remainder of the paper is organized as follows. The estimand and the

assumptions necessary to identify it are specified in Section 2. In Section 3, we

formulate a parametric model to characterize the round-specific impact and the re-

sulting likelihood expressions for individual-level and aggregated data. In Section

4, we fit our model to data from screening trials in lung and colorectal cancer and

illustrate the resulting projections. The paper concludes with a discussion in Section

5.

5.2 Specifying the estimand

5.2.1 Notation

In a randomized screening trial, subjects asymptomatic of cancer are randomly

assigned to either a screening or non-screening arm at time s0 = 0, and all are

followed up for death due to the cancer or another cause, or until the end of follow-

up at time τ , whichever comes first. During the interval [0, τ ] a total of m screening

examinations are carried out at the ordered time points s1 < s2 < · · · < sm in
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the screening arm, with the jth interval denoted by [sj−1, sj) and its length by

∆j = sj − sj−1 for j = 1, 2, . . . ,m.

We define a screening indicator Zi taking the value 1 if individual i is assigned

to the screening arm, with Zi = 0 otherwise. Let Ti denote the observed time of the

event (i.e. death due to the cancer, death due to another cause, or Type I censoring

due to the end of the follow-up period at τ). We take this to be Ti = ZiT1i+(1−Zi)T0i,

where T1i and T0i denote the potential/counterfactual event times under screening

and in the absence of it, respectively. (This corresponds to assuming either ‘stable

unit treatment value’, [e.g. 7], or ‘consistency’, [e.g. 17].) Similarly, let Ei denote

the observed event type, taking the value of 1 for cancer-specific death, 2 for death

due to another cause and 0 for censoring. This is given by Ei = ZiE1i + (1−Zi)E0i,

where E1i and E0i are indicator variables for the potential/counterfactual event types

under screening and in the absence of it. The unobservable gained survival time for

individual i is Gi ≡ T1i − T0i.

5.2.2 Object of inference

We take the estimand to be the probability that a cancer-specific death in the

absence of screening was indeed ‘caused’ by the absence of screening associated early

treatments (cf. the ‘factor-conditional etiogenetic proportion’ of Miettinen & Karp

[63, p. 48]). This probability in turn is equivalent to the probability of being helped

by screening, had it been available. This is specified as the conditional probability

H(t) ≡ P (T1i > t | T0i = t, E0i = 1) (5.1)
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of surviving beyond time t under screening, given a cancer death at time t in the

absence of it. Since an individual’s cancer can be detected, and subsequently success-

fully treated, as a result of only one screening examination, we introduce a random

variable Si ∈ {s1, s2, . . . , sm,∞} to represent the time of being detected, and sub-

sequently successfully treated, with Si = ∞ taken to mean that the cancer was not

detected in any of the scheduled screenings. Furthermore, since only the screening

examinations before the time of death T0i = t can potentially be helpful, we take

m(t) ≡ max{j ∈ {1, 2, . . . ,m} : sj < t} to denote the last screening examination

before t. Now we can express (5.1) as

H(t) =

m(t)∑
j=1

P (Si = sj | T0i = t, E0i = 1)

=

m(t)∑
j=1

P (Si = sj | T0i = t, E0i = 1, Si ≥ sj)P (Si ≥ sj | T0i = t, E0i = 1) (5.2)

The first term inside the sum (5.2) is the probability of being helped as a result of

the jth screening given that the previous screenings at times s1, s2, . . . , sj−1 failed to

detect the cancer. Since only new or previously undetected cancers can be detected

in the jth screening, we take the probability

Qj(t) ≡ P (Si = sj | T0i = t, E0i = 1, Si ≥ sj) (5.3)

as our measure to quantify the mortality impact of a single round of screening;

modelling of the round-specific impact is needed to project the mortality impact of

a sustained screening program. The probability (5.2) is fully specified in terms of

81



(5.3), j = 1, . . . ,m, as

H(t) =

m(t)∑
j=1

Qj(t)

j−1∏
k=1

{1−Qk(t)} = 1−
m(t)∏
j=1

{1−Qj(t)}, (5.4)

which follows from the failure probability function for a discrete failure time ran-

dom variable [e.g. 44, p. 9]. The representation (5.4) in turn enables likelihood

construction through parametrization of the functions Qj(t) (Section 5.3).

5.2.3 Identifying assumptions

Since (5.1) is expressed in terms of unobservable quantities, further assumptions

are needed to identify it based on observed data. One possible approach would be

to assume an accelerated failure time model, such as T1i = T0ie
g(T0i) for the potential

outcomes [e.g. 40]. In this case

P (T1i > t | T0i = t, E0i = 1) = P (T0i(e
g(t) − 1) > 0 | T0i = t, E0i = 1)

= P (g(t) > 0 | T0i = t, E0i = 1),

which equals one whenever the acceleration/deceleration function g is positive, and

zero otherwise. This suggests that direct modelling of the gained survival time Gi

is unhelpful in addressing the probability of being helped by screening. Instead, we

pursue modelling in terms of cause-specific sub-density functions fk(t) ≡ P (Tki ∈

dt, Eki = 1)/dt [cf. 44, p. 252], k = 0, 1, for individual i dying of the cancer at time t

in the absence and presence of screening, respectively. (We use dt to denote both an

infinitesimally small interval around t and the infinitesimal length of this interval.)

In order to estimate (5.1), four identifiability assumptions we make in this

paper are (i) monotonicity T0i ≤ T1i; (ii) strongly ignorable assignment, that is,

82



{(T1i, E1i), (T0i, E0i)} ⊥⊥ Zi and 0 < P (Zi = 1) < 1 [cf. 79, p. 43]; (iii) curative early

treatments, in the sense that

P (T1i > t | T0i = t, E0i = 1) = P (T1i > t,E1i 6= 1 | T0i = t, E0i = 1); (5.5)

and (iv) screening specificity, that is, E0i = 2⇒ T1i = T0i, E1i = 2.

Assumption (i) states the potential time of death of any cause for an individual

in the screening arm is at least as long as that in the non-screening arm [cf. 7], that

is, screening cannot shorten anyone’s life. Assumption (ii) is satisfied automatically

due to randomized allocation in the trial. Assumption (iii) states that the screening-

associated early treatments cure the cancer, in the sense of delaying the cause-specific

death beyond a death due to a competing cause (or censoring). Assumption (iv)

states that the screening technique is specific in the sense that it does not lead to

early detection and treatment of conditions other than the site-specific cancer of

interest.

Nine different types of event histories, possible under the assumptions (i)-(ii),

are illustrated in Figure 5–1. Subject 1 would die of another cause which could not

have been prevented by screening. The death of subject 2 due to another cause was

delayed due to screening. This is possible, although unlikely, if the screening can

also lead to detection of other conditions than the site-specific cancer of interest.

The same applies to histories for subjects 3 and 4. Subject would 5 be alive at the

end of the follow-up time, and the time of death due to the cancer for subject 7

would be the same with and without screening; thus during the follow-up neither

of them could have benefited from screening. Subjects 6, 8 and 9 would die of the
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cancer in the absence of screening, but in the presence of screening they would die

of another cause, or die later due to the cancer, or be censored at the end of the

follow-up, respectively; thus, they could benefit from early-detection of the cancer

and consequent therapy. Introducing assumption (iii) rules out the event histories

of type 5. As we will demonstrate in Section 5.2.4, this is required for identification

of (5.1), since delayed cancer deaths in the screening arm cannot be distinguished

from the non-delayed ones based on the observed data. Similarly, we need to use

assumption (iv) to rule out histories of type 3, since these would show as excess

mortality in the screening arm.

0 τ

9.  E0i = 1, E1i = 0, Gi = τ − T0i

8.  E0i = 1, E1i = 1, Gi = T1i − T0i

7.  E0i = 1, E1i = 1, Gi = 0

6.  E0i = 1, E1i = 2, Gi = T1i − T0i

5.  E0i = 0, E1i = 0, Gi = 0

4.  E0i = 2, E1i = 0, Gi = τ − T0i

3.  E0i = 2, E1i = 1, Gi = T1i − T0i

2.  E0i = 2, E1i = 2, Gi = T1i − T0i

1.  E0i = 2, E1i = 2, Gi = 0

T0i T1i

T0i T1i

T0i = T1i

T0i T1i

T0i = T1i

T0i T1i

T0i T1i

T0i T1i

T0i = T1i

cancer death (Ei = 1)

other death (Ei = 2)
right censoring (Ei = 0)

Follow−up time

Figure 5–1: Illustration of 9 different possible event histories, one row per individual.
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Further, we note that under continuous time no two cause-specific counting

processes can jump simultaneously [1, p. 55], unless they are in fact the same process

(which would occur if there is no screening effect). In the present setting this means

that T0i = T1i ⇒ E0i = E1i, ruling out event histories of the type E0i 6= E1i, Gi = 0

not present in Figure 5–1.

5.2.4 Equivalence between the probability of being helped and mortality
reduction

We show that under the assumptions stated in Section 5.2.3, probability (5.1) of

being helped by screening is equivalent to time-specific reduction in cancer mortality,

a quantity that can be estimated based on the trial data. We may express (5.1) as

P (T1i > t | T0i = t, E0i = 1)

= 1− P (T1i ≤ t | T0i = t, E0i = 1)

= 1−
2∑

k=0

P (T1i ∈ dt, E1i = k | T0i = t, E0i = 1)

= 1− P (T1i ∈ dt, E1i = 1 | T0i = t, E0i = 1)

= 1− P (T0i ∈ dt, E0i = 1 | T1i = t, E1i = 1)P (T1i ∈ dt, E1i = 1)

P (T0i ∈ dt, E0i = 1)

= 1− f1(t)

f0(t)
.

The second equality is due to the monotonicity assumption (i). The third equality

follows from the continuous time model for the counting processes. The fifth equality

is due to P (T0i ∈ dt, E0i = 1 | T1i = t, E1i = 1) = 1, which follows from assumptions

(i), (iii) and (iv).
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While the estimand is specified in terms of potential outcome variables, the

ignorability assumption (ii) enables its estimation using the observed outcomes in

the two trial arms, because

1− f1(t)

f0(t)
= 1− P (Ti ∈ dt, Ei = 1 | Zi = 1)

P (Ti ∈ dt, Ei = 1 | Zi = 0)
= 1− f(t | Zi = 1)

f(t | Zi = 0)
,

where f(t | Zi) ≡ P (Ti ∈ dt, Ei = 1 | Zi)/dt.

5.2.5 Relationship to cumulative mortality reduction

Our estimand, the probability of being helped, which equals the time-specific

mortality reduction, has a natural connection to the cumulative mortality reduction,

a measure commonly used to quantify the impact of screening in randomized trials

(see Section 5.4). With the same assumptions as stated in Section 5.2.3, we can

express the probability of surviving beyond the potential time of death in the absence

of screening, had the cancer proven fatal without screening before time t, as

P (T1i > T0i | T0i ≤ t, E0i = 1)

= 1− P (T1i ≤ T0i | T0i ≤ t, E0i = 1)

= 1−

∫
v∈[0,t] P (T0i ∈ dv, E0i = 1 | T1i = v, E1i = 1)P (T1i ∈ dv, E1i = 1)∫

v∈[0,t] P (T0i ∈ dv, E0i = 1)

= 1−
∫ t
0
f1(v) dv∫ t

0
f0(v) dv

≡ 1− F1(t)

F0(t)
.

In the context of planning a trial, Hu and Zelen [41, p. 823] use the risk difference

F0(τ) − F1(τ) at the end of the follow-up period as the measure of the impact of

the planned screening regimen used in the trial. As demonstrated here, under the

assumptions of Section 5.2.3, the proportional risk difference, 1 − F1(τ)/F0(τ), is
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equivalent to the probability of being helped by screening given a cancer death during

the follow-up window [0, τ ] in the absence of screening.

5.3 Methods

In this section, we present a parametric model characterizing the effect of a

single round of screening. The mortality reduction at time t can then be obtained

as a compound of the impacts of each screen that persons have received up to t, as

shown in Section 5.2.2.

5.3.1 Model formulation

As emphasized by several authors referred to in the Introduction, a quintessential

feature of cancer screening is the non-constancy of its impact over time. According

to Miettinen [61], it is a fundamental truism that the mortality reduction “cannot

be constant over successive intervals of time after the screening’s initiation; that

it is initially nil, then increases and later declines, and ultimately totally vanishes”.

Unlike most medical interventions that produce a virtually immediate effect, a cancer

that would prove fatal within months from now is not likely to be cured by screening

today, while a cancer that is cured today due to early detection would otherwise have

proven fatal several years from now.

‘Memoryless’ property

To start with, we assume that the probabilities of being helped by each round

of screening as functions of time are shifted versions of each other, that is,

Q1(t) = Q2(t+ ∆1) = · · · = Qm

(
t+

m−1∑
k=1

∆k

)
. (5.6)
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For simplicity, take the screenings to be equally spaced so that ∆1 = ∆2 = . . . =

∆m−1 = ∆, and take the first two screens as an example. Now

Q1(t) = Q2(t+ ∆)

⇔ P (Si = s1 | T0i = t, E0i = 1, Si ≥ s1)

= P (Si = s1 + ∆ | T0i = t+ ∆, E0i = 1, Si ≥ s1 + ∆)

⇔ 1− P (Si > s1 | T0i = t, E0i = 1, Si ≥ s1)

= 1− P (Si > s1 + ∆ | T0i = t+ ∆, E0i = 1, Si ≥ s1 + ∆)

⇔ P (Si ≥ s1 + ∆ | T0i = t, E0i = 1, Si ≥ s1)

= P (Si ≥ s1 + ∆ + ∆ | T0i = t+ ∆, E0i = 1, Si ≥ s1 + ∆).

Thus, modelling assumption (5.6) can be interpreted as a ‘memoryless’ property for

the random variable Si. This is plausible, since the length T0i − Si of the interval

from time of screen detection to the potential time of death without screening is kept

constant. Further, the above probabilities are conditional on not being detected in

the previous screening examinations, and if the sensitivity of the screening test and

participation rates are high, the cancers to be detected at any sj are mainly ‘new’

ones, having progressed to the detectable state in the interval [sj−1, sj). While this

applies to the repeat screenings, the first, or ‘prevalence’ screening might involve a

different stage distribution of cancers; we address this question briefly in Section 5.5.

Examples of possible parametrizations

The effect of one round of screening could be characterized in terms of maximal

reduction (γ), the time lag between the time of screening and the maximal reduction
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(location parameter µ), and the spread of the reductions over time (scale parame-

ter σ). Using these three parameters, a possible formulation for the time-specific

reduction due to one screen is

Qj(t; γ, µ, σ) ≡ γ exp

−
(
t− (µ+

∑j
l=1 ∆l)

σ

)2
 , (5.7)

where 0 ≤ t < ∞, 0 ≤ γ ≤ 1, µ > 0, σ > 0. Function (5.7) characterizes how deep,

how far into the future, and how wide the mortality reductions produced by a single

screen are.

A possible limitation of formulation (5.7) is that it does not enforce the restric-

tion limt→s+j
Qj(t) = 0 (if the disease has already progressed so far that death would

have resulted immediately after the detection, any subsequent therapy comes too

late to help the patient). An alternative non-symmetric formulation that satisfies

this restriction could be

Qj(t; γ, α, β) ≡ γ
f(t−

∑j
l=1 ∆l;α, β)

f((α− 1)β;α, β)

= γ

{
t−
∑j

l=1 ∆l

(α− 1)β

}α−1

exp

{
(α− 1)− t−

∑j
l=1 ∆l

β

}
, (5.8)

where 0 ≤ t <∞, 0 ≤ γ ≤ 1, α > 1, β > 0. Here f(t;α, β) is the probability density

function of a gamma distribution with the mode t = (α− 1)β. By scaling down the

density function by its maximum value, we are restricting the time-specific mortality

reductions to be between zero and one. Possible shapes with various parameter

inputs for the symmetric and non-symmetric formulations can be found in Figure

5–2.
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Figure 5–2: Impact of a single round of screening at time s1 = 0, with different
patterns determined by different parameter inputs. Solid and dashed lines correspond
to Equations (5.7) and (5.8), respectively. Panels E and F correspond to the fitted
reduction patterns in the examples of Sections 5.4.1 and 5.4.2, respectively.

Taking θ to be the collection of the three parameters, appropriately transformed,

the compound reduction H(t; θ) resulting from m(t) screens before time t can now

be obtained by substituting Qj(t; θ) into equation (5.4).

90



5.3.2 Likelihood formulation

Individual-level data

Since we are interested in modelling the mortality reduction rather than abso-

lute mortality, we adopt a conditional approach. The conditional likelihood contri-

bution of individual i is given by the distribution of the screening allocation indi-

cator Zi given that there was a cancer death at t, that is, Zi | (Ti = t, Ei = 1) ∼

Bernoulli{π(t)}, resulting in likelihood contributions of the form π(t)Zi(1−π(t))1−Zi

for each cancer death. Here, with equal allocation P (Zi = 1) = P (Zi = 0) = 0.5

between the two arms,

π(t) ≡ P (Zi = 1 | Ti = t, Ei = 1)

=
P (Ti ∈ dt, Ei = 1 | Zi = 1)P (Zi = 1)

P (Ti ∈ dt, Ei = 1 | Zi = 0)P (Zi = 0) + P (Ti ∈ dt, Ei = 1 | Zi = 1)P (Zi = 1)

=
f(t | Zi = 1)/f(t | Zi = 0)

1 + f(t | Zi = 1)/f(t | Zi = 0)

=
1−H(t; θ)

1 + 1−H(t; θ)
. (5.9)

Aggregated data

If the individual-level mortality data are not reported or accessible, our model

can be fitted to aggregated (e.g. yearly) numbers of deaths in each arm, extractable

from the cumulative mortality curves in the published trial reports [54]. Let D0j =∑
i 1{Ei=1,tj−1<Ti<tj ,Zi=0} and D1j =

∑
i 1{Ei=1,tj−1<Ti<tj ,Zi=1} denote the numbers

of cancer-specific deaths during the interval [tj−1, tj), j = 1, 2, . . . , J , in the non-

screening and screening arm, respectively. Thus the distribution of D1j conditional

on the total deaths during interval j is D1j | (D0j + D1j = dj) ∼ Binomial(dj, πj),
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where

πj =
N1[F (tj | Zi = 1)− F (tj−1 | Zi = 1)]

N0[F (tj | Zi = 0)− F (tj−1 | Zi = 0)] +N1[F (tj | Zi = 1)− F (tj−1 | Zi = 1)]

=
[F (tj | Zi = 1)− F (tj−1 | Zi = 1)]/[F (tj | Zi = 0)− F (tj−1 | Zi = 0)]

1 + [F (tj | Zi = 1)− F (tj−1 | Zi = 1)]/[F (tj | Zi = 0)− F (tj−1 | Zi = 0)]

≈
1−

∫ tj
tj−1

H(t; θ) 1
tj−tj−1

dt

1 + 1−
∫ tj
tj−1

H(t; θ) 1
tj−tj−1

dt
, (5.10)

where N1 = N0 are the numbers of individuals randomized to screening and control

arms, respectively. Notably, limtj→tj−1
πj = π(tj−1), reducing to the individual-level

formulation in (5.9). The resulting log-likelihood function is the sum of contributions

from the entire duration of the follow-up time, given by l(θ) ≡
∑J

j=1{D1j log(πj) +

D0j log(1− πj)}.

5.3.3 Estimation

The likelihood functions for individual-level or aggregated data in Sections 5.3.2

and 5.3.2 can be maximized with respect to parameters specifying the mortality

reduction function H(t; θ) using standard numerical optimization methods. Since

all the parameters in (5.7) or (5.8) are positive, re-parametrizations should be used

when applying a normal approximation to the likelihood in order to obtain standard

errors for the parameter estimates. However, rather than the individual parameters,

our main interest is in obtaining measures of uncertainty for the mortality projec-

tions. Since the projections are based on a probability model fitted using maximum

likelihood, time-specific confidence bands may be constructed straightforwardly by

sampling parameter estimate values from the approximate large-sample sampling
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distribution N(θ̂, i(θ̂)−1), where i(θ̂) is the observed information matrix at the max-

imum likelihood point, and calculating the projection curve at each value. The 2.5%

and 97.5% sample quantiles at each time point can be easily obtained based on 10,000

random draws.

5.3.4 Generalizations

In this subsection, we extend our model to accommodate unequal allocation of

person-time between the screening and non-screening arms, less than full compliance,

and multiple screening arms within a trial.

If the randomization ratio between the screening arm and the non-screening arm

is N1/N0 ≡ φ : 1 instead of 1:1, such as in the Swedish two-county trial [88], as well

as two other mammography screening trials in Stockholm [29] and Gothenburg [12],

then equation (5.10) becomes

πj =
φ{1−

∫ tj
tj−1

H(t; θ) 1
tj−tj−1

dt}

1 + φ
{

1−
∫ tj
tj−1

H(t; θ) 1
tj−tj−1

dt
} .

Sometimes multiple screening arms are employed within the same trial, such

as the Minnesota colorectal cancer study [84] in which participants were randomly

assigned to be screened annually, biennially, or not at all. To accommodate this,

let Dkj denote the number of cancer-specific deaths in arm k, where k = 0, . . . , K,

during the jth interval. Given the total number of deaths dj =
∑K

k=0Dkj, the split

into the K study arms is distributed as

D0j, . . . , DKj |

(
K∑
k=0

Dkj = dj

)
∼ Multinomial(dj, π0j, . . . , πKj),

93



resulting in a log-likelihood function l(θ) ≡
∑J

j=1

∑K
k=0Dkj log(πkj), where π0j =

1−
∑K

k=1 πkj.

While our estimand (5.1) should be interpreted as an intention-to-treat type

effect, with the potential outcome (T1i, E1i) corresponding to being randomized to the

screening arm of the trial, as opposed to actually undergoing screening as scheduled,

in the projection task it might be appropriate to upscale or downscale the mortality

impact of the screening program by the expected participation rate. In addition, a

relevant quantity for decision making at the individual level would be the mortality

impact conditional on compliance. Assuming that the compliance in the screening

round j of the trial, denoted as Cij = 1, is completely at random in the sense that

P (Cij = 1 | T0i = t, E0i = 1, Si ≥ sj) = P (Cij = 1) ≡ cTj, the complier probability

of being helped in this round is simply

P (Si = sj | T0i = t, E0i = 1, Si ≥ sj, Cij = 1) ≡ Q∗j(t) =
1

cTj
Qj(t), (5.11)

since P (Si = sj, Cij = 0 | T0i = t, E0i = 1, Si ≥ sj) = 0. Differential compliance

between the successive rounds of screening in the trial may now be accounted for

by using the relationhip (5.11) in fitting the likelihoods (5.9) or (5.10), by replacing

Qj(t) in equation (5.4) by cTjQ
∗
j(t), with the parameter estimates then representing

complier effects under completely random non-compliance. Now if the expected

compliance in the screening program round j is cPj, the mortality impact of this

round can be projected simply as cPjQ
∗
j(t), with the compound impact given by

formula (5.4). We demonstrate this approach in the example of Section 5.4.2. A full
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treatment of possibly non-random noncompliance in our modelling framework is a

topic for a further paper.

5.4 Examples

5.4.1 The US National Lung Screening Trial

We illustrate our methods using data from the US National Lung Screening Trial

[72], which compared lung cancer mortality among 53,454 heavy smokers randomized

to either low-dose CT scans or chest X-rays. The screening regimen in the trial com-

prised three annual rounds, the first one soon after randomization, with a reported

20% cumulative mortality reduction in the CT arm after 7 years of follow-up. We,

on the other hand, are interested in the mortality reductions that would be produced

by a sustained screening program targeted to such high-risk individuals.

A very parsimonious model still producing a reasonable reduction pattern for

a single round of screening can be obtained by fixing β = 2 in (5.8), giving a two-

parameter model based on the χ2-kernel. The fitted reduction curve due to one round

of screening is shown in Figure 5–2E. Since the individual-level data from the trial

were provided to us by the National Cancer Institute, we could fit this model to both

the exact times of death (Equation 5.9) and the yearly and half-yearly aggregated

numbers (Equation 5.10). The fitted curves due to three screenings are presented in

Figure 5–3A, which suggests that the aggregated numbers are near-sufficient statistics

for the mortality reduction: the curves fitted to aggregated data are almost identical

to the individual-level fit. The maximum mortality reduction produced by the three

rounds of screening is around 20%, which fades after the screening was discontinued.

However, the projected reduction pattern in Figure 5–3B based on 10 rounds of

95



R
e
d
u
c
ti
o
n

100 %

80 %

60 %

40 %

20 %

0 %

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A D1

D0

31

38

57

70

67

83

84

91

73

88

85

117

70

65

S1 S2 S3

Using yearly data

Using half−yearly data

Using individual−level data

Follow−up year

R
e
d
u
c
ti
o
n

B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

100 %

80 %

60 %

40 %

20 %

0 %

S S S S S S S S S S
S S S S S S S S S S

70% compliance

90% compliance

Figure 5–3: Panel A: Empirical and fitted mortality reductions based on individual-
level, as well as aggregated yearly and half-yearly, data from the National Lung
Screening Trial trial. The size of each dot is proportional to the information con-
tribution of the empirical year-specific mortality ratio. Panel B: Projection of time-
specific lung cancer mortality reductions that would be generated by 10 years of
annual CT (versus chest X-ray) screening.

annual screening and 90% compliance demonstrates that the mortality reductions

would plateau at a nadir of around 30%, should the screening be continued long

enough.
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5.4.2 The Minnesota Colorectal Cancer Screening Study

Shaukat et al. [84] reported that the mortality from colorectal cancer in the

screening arm with 11 annual and 6 biennial fecal occult-blood (FOB) tests is 32%

and 22% lower than that in the non-screening arm, respectively. The study involved

46,551 participants equally allocated to the three arms and followed up for 30 years.

These mortality reductions were achieved despite a 4-year funding-related hiatus in

screening, and averaging over the entire 30-year follow-up. Presumably, the reduc-

tions would have been larger without such an interruption.

To study this, we extracted the yearly numbers of deaths from the published

figure of cumulative colorectal cancer mortality, and present the observed and fit-

ted mortality reductions in Figure 5–4A. The fitted model was specified using the

parametrization (5.7), and the pattern of reduction due to one round of screening is

shown in Figure 5–2F. While not obvious in the cumulative mortality curves [Figure

1 of 84], our fitted ones exhibit a W shape, showing the lagged responses to the two

phases of screening: after a delay of some years, a nadir of around 50% reduction

for annual and 30% for biennial schedule were reached before reverting to what they

would be in the absence of screening; this pattern is repeated when screening was

resumed.

Figure 5–4B shows the projected reductions due to 16 years of continuous (an-

nual and biennial) screening. The time patterns generated by these two regimens

are similar in that benefits start to emerge 6 years after the initiation of screening,

continue to manifest through years 7-12, reach the nadir in year 13 and continue

onwards. However, the projected sustained reduction is close to 60% for annual

97



0 5 10 15 20 25 30 35

R
e
d
u
c
ti
o
n

100 %

80 %

60 %

40 %

20 %

0 %

S S S S S S S S S S S
S S S S S S Biennial (78% compliance)

Annual (75% compliance)

A D2

D1

D0

3

4

4

3

6

7

9

8

5

4

15

7

6

11

1

2

7

9

6

8

13

9

8

8

8

10

13

6

9

13

10

6

17

10

14

14

5

9

11

7

8

10

11

7

9

7

6

10

10

9

12

5

5

14

4

12

9

8

4

10

8

12

17

6

6

13

9

5

8

8

6

8

4

5

13

10

10

11

8

9

10

2

3

6

6

10

7

6

5

6

0 5 10 15 20 25 30 35

Follow−up year

R
e
d
u
c
ti
o
n

100 %

80 %

60 %

40 %

20 %

0 %B

S S S S S S S S S S S S S S S S
S S S S S S S S

Biennial (78% compliance)

95% confidence bands (biennial)

Annual (75% compliance)

Figure 5–4: Panel A: Empirical and fitted mortality reductions based on the yearly
numbers of colorectal cancer deaths in the two screening arms of the Minnesota
Colorectal Cancer Screening Study, with the 4-year hiatus. The size of each dot is
proportional to the information contribution of the empirical year-specific mortality
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screening. The grey area represents time-specific 95% confidence bands under the
biennial screening regimen.
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screening and 40% for biennial in the time-window affected, assuming the same com-

pliance rates, 75% and 78% (annual and biennial, respectively, [55]), as in the trial.

The 95% time-specific confidence bands in Figure 5–4B are obtained, as outlined in

Section 5.3.3, for the biennial regimen based on 10,000 random draws.

5.5 Discussion

Although we did not make distinctions between the impact pattern of the first

round of screening and that of the subsequent ones, more parameters could easily

be added for modelling the effect of the first, or prevalence, screen, provided that

there are sufficient data to enable estimation of the added parameters. For instance,

one option would be to model the maximal reduction γ as a (decreasing) function

of time, for instance logit{γ(t)} = γ1 + γ2/t. Another option, motivated by the

FOB testing for colorectal cancer, would be to employ six parameters to characterize

two modes, corresponding to immediate and remote mortality impact of removing

colorectal cancers and polyps, respectively. However, our experience is that the

parametric models should be fairly simple to ensure identifiability of the estimation

problem; this is not the case if similar reduction patterns can be produced by multiple

parameter combinations.

Instead of explicitly modelling sensitivity of the screening examinations or the

effectiveness of the subsequent treatment, we concentrate on modelling the proba-

bility of being helped by screening associated early treatments; this is because the

former two are included in the latter. For instance, a given probability of being

helped resulting from a high sensitivity of detecting the cancer combined with in-

effective treatment is not distinguishable from one resulting from a low sensitivity
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combined with an effective treatment. In particular, estimating sensitivity of the

screening would be problematic, since the true positives are those screen-detected

cancers which would eventually have proven to be fatal in the absence of screening,

making the true disease status inherently unobservable. Our conditional approach

circumvents the overdiagnosis problem by focusing on cancer deaths instead of cancer

diagnoses.

To summarize, our conditional approach addresses the mortality impact directly,

by parametrizing the time-specific conditional probability of being helped by screen-

ing given that the cancer would have proven fatal otherwise, which under the assump-

tions stated in Section 5.2.3 is equivalent to the time-specific mortality reduction,

a quantity estimable from trial data. By fitting our model to data from lung and

colorectal cancer screening trials, we illustrated how the parameter estimates can

be used to project and compare reduction curves that could be produced by long-

term screening programs. Our methods can provide policy makers and funders more

relevant evidence on how effective cancer screening programs are and could be.
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CHAPTER 6
More on the National Lung Screening Trial

Preamble to Manuscript 3. In this manuscript we discuss in depth the US

National Lung Screening Trial, and reanalyze the data, with the particular focus

on the effect of the length of the follow-up period, and time-specific, rather than

cumulative, mortality reductions. We also compare inferences from aggregate mor-

tality data to inferences from individual-level mortality data and observe that the

individual-level data do not add much information.
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6.1 Background

The National Lung Screening Trial (NLST) in the United States, launched in

2002, set out to test whether the earlier treatments prompted by three annual screen-

ings with low-dose helical CT (the study arm), compared to three annual screens of

standard chest X-ray (the control arm), could reduce mortality from lung cancer in

heavy smokers aged 55-74 years. This is the largest and most expensive randomized

trial that the National Cancer Institute (NCI) has ever conducted; more than 53,000

persons across 33 US centres were enrolled into the study and followed up for an

average of 6.5 years, with a cost of over 250 million dollars.

In August 2011, nine years after the NLST had been launched, the NCI published

the initial findings in the New England Journal of Medicine (NEJM). The main result

was that there was an approximately 20% reduction in lung cancer mortality in the

CT arm compared to the X-ray arm over about 6.5 years of follow-up [72].

The aim of the NLST was to establish whether three CT screenings would be

statistically significantly different from three X-ray screenings. The size of the trial

and the length of the follow-up were decided based on the Hu-Zelen model [41], to

result in 90% power to detect a 21% reduction in lung cancer mortality [73]. However,

such a criterion applied as a stopping rule could prevent quantifying the full effect of

early detection and early treatment. While many are pleased with the statistically

significant result, we suspected that more information could be revealed by examining

the time-specific data, rather than focusing on this one-number reduction cumulated

over the available follow-up period.
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At the time of the NEJM report, readily available were only the total numbers

of lung cancer deaths in the two arms up to January 15th, 2009 (i.e. the official

cutoff for mortality analysis) and the two cumulative mortality curves (their Figure

1B). Like what we did with the mammography screening trials [38], by digitizing the

cumulative curves, we extracted the yearly numbers of lung cancer deaths from the

figure in the NEJM report. These have been published in Table 1 of Liu et al. [53].

The time pattern of these mortality data was puzzling and incomplete. We

could not confidently interpret the mysterious 42% mortality reduction in year 6

– for the first 5 years the annual reductions were all around 15%; the numbers of

deaths in year 7 were too small (single-digit) to be of use, because the majority of

the deaths in year 7 had not been adjudicated. If the 42% deficit in year 6 were to be

followed by two similarly large deficits in years 7 and 8, then it would suggest that

a screening program could achieve an asymptote twice the size of the 20% reduction

reported. If, instead the deficit in year 6 were to be followed by two small deficits

of the sizes seen in the first 5 years, it would suggest that the deficit in year 6 was

merely a statistical aberration, and that the asymptote would be much smaller than

20%. These two hypothetical scenarios are presented in Figures 6–2 and 6–3, which

should be contrasted to Figure 6–1.

6.2 New data available

It is striking how little progress has been made in the past century towards

data-sharing. Sir Francis Galton wrote in 1901 [30],

I hope moreover that some means may be found, through its efforts, of

forming a manuscript library of original data. Experience has shown the
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NLST

Age at entry : 55−74

CT : X−ray allocation = 1 : 1

Compliance = 94%
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Figure 6–1: NLST yearly numbers of lung cancer deaths, extracted from published
NEJM report.

advantage of occasionally rediscussing statistical conclusions, by starting

from the same documents as their author. I have begun to think that no

one ought to publish biometric results, without lodging a well arranged

and well bound manuscript copy of all his data, in some place, where it

should be accessible under reasonable restrictions, to those who desire to

verify his work.

In screening trials, the cumulative measures often hide the reduction patterns

over time, and because of this, we have been on a ‘campaign’ calling on trialists to

report (at least) the yearly numbers of cancer-specific deaths (as opposed to just a

cumulative mortality reduction over some arbitrary follow-up window), if disclosing

the individual-level data is not possible [53]. From our experience, the aggregated

numbers are in fact ‘near-sufficient’ statistics. Moreover, even if yearly counts are not
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NLST

Age at entry : 55−74

CT : X−ray allocation = 1 : 1

Compliance = 94%
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Figure 6–2: NLST yearly numbers of lung cancer deaths, with relatively large hypo-
thetical reductions in years 7-10.

obtainable, we proposed to combine information from multiple trials by adding up

the trial-specific log-likelihoods to obtain an overall log-likelihood for more accurate

parameter estimates, which avoids sharing neither the individual-level data or the

aggregated data. This idea was presented by Hanley at the Statistical Society of

Canada Annual Meeting in 2012.

Having said this, the NCI generously reached out and made their individual-

level data available to qualified investigators in early 2013. We immediately took

advantage of the offer. Information on all of the 53,452 randomized persons (26,722

in the CT arm and 26,730 in the X-ray arm) was recorded in the patient file. Using

the following variates: number of days from randomization to the end of follow-up

(fup days), number of days from randomization to death (death days) and cause
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NLST

Age at entry : 55−74

CT : X−ray allocation = 1 : 1

Compliance = 94%
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Figure 6–3: NLST yearly numbers of lung cancer deaths, with relatively small hy-
pothetical reductions in years 7-10.

of death (finaldeathLC==1 for death from lung cancer), we can make a population-

time plot to illustrate the study base and some key features of the trial. Figure

6–4 shows that (i) the randomization ratio was 1:1, and the amount of population

time was similar between the two arms, (ii) the median length of follow-up was

about 6.5 years and most people were alive by the end of the follow-up; and (iii)

although these smokers (compared to the general population) may have an elevated

risk of dying from lung cancer, in absolute terms, lung cancer mortality was still

quite low in both arms – there were a total of 1,019 deaths from lung cancer over the

entire follow-up, 467 in the CT arms and 552 in the CXR arm. Thus, the empirical

6.5-year risk ratio of (467/26722)/(552/26730) = 0.846 and the mortality rate ratio

of (467/171,412)/(552/170,355) = 0.841 are very close. The cumulative mortality

reduction from lung cancer over 6.5 years is 1− 0.846 = 15.4%.
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Figure 6–4: NLST number at risk for the two arms, along with lung cancer deaths,
using the individual-level data provided by the NCI.

Checking the yearly numbers that we extracted in Table 6–1(a) against those

calculated from individual-level data in Table 6–1(b) was one of our first tasks, by

including lung cancer deaths before the cutoff date only. They were almost identical,

only differing by a few deaths. Next we included lung cancer deaths also after the
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Table 6–1: Yearly numbers of lung cancer deaths in the NLST. Part (a) was based on
our extraction from the NEJM report, (b) and (c) are based on the individual-level
NLST data; in (b) only deaths that occurred before the cut-off (i.e. January 15th,
2009) were included, and in (c) all deaths occurred before and after the cutoff date
were included.

(a) Year-specific data extracted from figure in NEJM report
Follow-up Year: 1 2 3 4 5 6 7 Total

Screens ↑ ↑ ↑
X-ray Arm: 37 68 82 95 84 73 4 442

CT Arm: 31 57 67 84 72 42 3 354
Reduction: 16% 16% 18% 12% 14% 42% 25% 20%

(b) Year-specific data including deaths before the cutoff only
X-ray Arm: 38 70 83 91 88 74 4 448

CT Arm: 31 57 67 84 72 45 3 359
Reduction: 18% 19% 19% 8% 18% 39% 25% 20%

(c) Year-specific data including deaths before and after the cutoff
X-ray Arm: 38 70 83 91 89 116 65 552

CT Arm: 31 57 67 84 73 85 70 467
Reduction: 18% 19% 19% 8% 18% 27% -8% 15%

cutoff in Table 6–1(c), which confirms our earlier suspicion that the counts were

incomplete starting in year 6. Now with the additional mortality data in year 7, the

reduction in year 6 turns out to be less dramatic – 27% instead of 42%. Although

not all deaths in year 7 had been adjudicated, if a similar fraction of deaths were

adjudicated between the two arms, then it would suggest that the signal had been

fading away by year 7.

The description of all the variables can be found in participant.dictionary.

d091412.rtf, while the ones we use in this chapter are included in Table 6–2.
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NLST

Age at entry : 55−74

CT : X−ray allocation = 1 : 1

Compliance = 94%
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Figure 6–5: NLST yearly numbers of lung cancer deaths, corresponding to table
6–1(c).

Table 6–2: These are the only variables needed for our model fitting, with descriptions
provided by the NCI participant dictionary.
pid: patient ID, one per patient
rndgroup: a binary variable indicating to which arm the participant

was randomized, 1=CT and 2=X-ray.
age: age at randomization, in years.
death days: days from randomization to death.
finaldeathLC: the authoritative variable indicating whether lung cancer was

the cause of death.
deathcutoff: a binary variable indicating whether deaths occurred before

the cutoff for the official final analysis of lung cancer mortality.
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6.3 Methods

The trial involved only 3 annual CT screenings, taking place at randomization,

the beginning of year one and the beginning of year two. By year seven, the impact

on mortality had started to fade. If a screening program were to be implemented

in a population in Canada or the US, it would aim to screen regularly for a longer

period, say 10 years. In this section, we (i) describe a two-parameter formulation

to characterize the impact of one round of screening, (ii) show how much more

information is gained by using individual-level data instead of the aggregated (e.g.

yearly) ones, (iii) use the parameter estimates to project how large the expected

impact would be with 10 rounds of annual CT screening, and (iv) illustrate how to

access screening benefits for subgroups.

We observed that using the three-parameter formulation of Chapter 5 in the

lung cancer context made the estimates for the location and scale parameters highly

correlated, indicating that a two-parameter model would be sufficient. Compared

with the colorectal cancer application in Chapter 5, we presume that this is because

lung cancer progresses and kills faster, reducing the need for a separate location

parameter characterizing the delay. Thus, to avoid identifiability concerns, we con-

sidered parsimonious two-parameter models to parametrize the impact of a given

round of screening j. One such possibility would be the shape of a half-ellipse, that

is, the function

Qj(t;α, β) ≡ α

√
1− (t−

∑j
l=1 ∆l − β)2

β2
,

where α represents the maximum reduction due to the jth round, and β the time to

reach the maximum reduction since that round. However, these kinds of non-smooth
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curves (Qj = 0 when t > 2b) lead to non-smooth log-likelihoods, and consequently,

maximization via a Newton-Raphson type of algorithm is not possible.

A smoother 2-parameter formulation based on the χ2-kernel could be

Qj(t; γ, ν) ≡ γ

{
t−
∑j

l=1 ∆l

ν − 2

}ν/2−1

exp

{
ν − t−

∑j
l=1 ∆l − 2

2

}
,

0 ≤ t <∞, where γ is the maximum reduction due to the jth round and ν > 2 the

average time to reach the maximum reduction since that round. This is equivalent

to a formulation using the three-parameter gamma kernel (Equation 5.8) by fixing

the scale parameter to be 2.

As shown by Figure 5–3A in the previous chapter, knowing the exact times of

death does not add more information than knowing just the counts of deaths every

year or every 6 months. No matter whether we use the aggregated data (yearly

or half-yearly counts of lung cancer deaths) or the individual-level data, the fitted

reduction curves are almost exactly the same. The estimated γ (%) and ν (years)

and their standard errors are presented in Table 6–3.

Table 6–3: The two parameter estimates and their standard errors from our fitted
model based on a χ2 kernel. The results are very similar no matter which format of
data were used: yearly, every 6 months, or individual-level.

Format of data γ̂ (SE) % ν̂ (SE) years
Yearly 8.6 (4.4) 3.38 (1.81)
Half-yearly 9.0 (5.8) 3.12 (2.15)
Individual-level 8.5 (4.5) 3.38 (1.88)

Figure 5–3B gives us a view of what would happen with 10 years of annual

screenings. The compliance in the trial was over 90%, thus if a similarly high level

of compliance were maintained in the program, then the maximum reduction would
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be around 30%, which doubles the 15% reduction achieved with three rounds of

screening in the trial.

One could easily study whether a younger or older age group would benefit

more from early detection, by choosing data on those aged, say, 65 years or younger

at randomization. The fitted curve and the corresponding projection based on 10

rounds of annual screening are shown in Figure 6–6. Our choice of the age group is

rather arbitrary, but this serves as an illustration for other subgroup analyses, such

as splitting by gender, ethnicity group, medical history and so on.

Follow−up year

R
e

d
u

c
ti
o

n

100 %

80 %

60 %

40 %

20 %

0 %

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

S S S

S S S S S S S S S S

Fitted (3 rounds)
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Figure 6–6: Fitted reduction curve (dotted, black) based on the NLST data for
persons aged below 65 at onset of screening and projected curve based on 10 rounds
of annual screenings.
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6.4 Discussion

We had not used the individual-level NLST data when we initially submitted the

manuscript of Chapter 5 to a statistical journal, and an associate editor argued that

“Good science surely would mean retrieving the individual patient records rather

than trying to draw conclusions from summary reports”. Leaving aside that we are

(in the business of) reporting statistical evidence, rather than ‘drawing conclusions’

(which is not even possible in the presence of incomplete information), now that we

have obtained the individual-level data, we could demonstrate that it does not add

more information by using individual-level data instead of just the aggregated (e.g.

yearly or half-yearly) ones, which was not surprising to us.

The most common types of lung cancers are non-small cell lung cancer (less

aggressive) and small cell lung cancer (more aggressive). With information on

histopathology available, one may be interested in knowing which type would benefit

more from an early detection program and by how much. We chose not to do so,

because histology is an outcome variable rather than a baseline characteristic, and

it is not revealed until after at least one round of screening. It is not clear how the

information concerning cell type can help the implementation of a screening program.

The empirical 6.5-year risk of dying from lung cancer for a heavy smoker screened

with standard chest X-rays is 552/26,730 = 2.07% (i.e. 21 in 1000), and is 467/26,722

= 1.75% (i.e. 18 in 1000) with 3 annual CT screenings. The corresponding risk

difference between the two is 0.32% (3 in 1000), and therefore approximately 1/0.32%

= 313 people would need to undergo 3 rounds of CT screening to avert one lung cancer

death over 6.5 years compared with standard X-rays. (As the previous analysis
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indicated, all the mortality benefits had already manifested within the follow-up

period of the trial, so this calculation would not be affected by extending the follow-

up period.) Say that on average the cost for a low-dose CT screening is $300. Then

a total of $300 × 313 × 3 = $281, 700 would be needed to avert one lung cancer

death, without having included any costs associated with the diagnosis following a

positive screening and treatments after the diagnosis. Assume further that those

who would benefit from CT screening gained on average 10 years of survival. This

back-of-the-envelope calculation results in a cost of 3 annual rounds of CT screening

alone of $281,700/10 = $28,170 per life year gained, without having included costs

for associated diagnosis and treatments. A similar calculation was carried out by

Miettinen [59] in 2000, before the NLST was initiated; his assumed inputs resulted

in a cost of $10,000 per life-year saved, which was noted to be “well within the range

of practice-acceptability”. If, however, the survival gain in our calculation was only

5 years on average, the cost per life-year gained would be $56,340, which may exceed

acceptable cost-effectiveness. Continued CT screening after 3 years would likely

further increase the relative cost since the costs directly add up for each additional

round of screening but mortality reductions plateau (as shown in Figure 5–3B).
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CHAPTER 7
Recovering the Raw Data Behind a Non-parametric Survival Curve

Preamble to Manuscript 4. We wish that everyone would be as generous

as Francis Galton was 113 years ago. In the inaugural editorial in Biometrika, he

suggested a ‘manuscript library’ for exchange of raw data; unfortunately few today

do.

When the raw data are not available from authors, several methods/tools have

been proposed for extracting data from survival curves using digitizing software.

Instead of using a digitizer to read in the coordinates from a raster image, we propose

directly reading in the lines of the PostScript file of a vector image.

We have provided R code for importing PostScript files. To demonstrate the

practicality, we include several worked examples in the manuscript and many more

on the accompanying website. Our methods are more relevant today, as virtually all

articles are available online and many graphs are vector images thus can be converted

to a PostScript file. Compared with previous approaches, one advantage of ours is

that there is no need to repeat the digitization process, that is, the extraction is

completely replicable, and the information more precise.

We hope that readers will find the software examples and our website useful.

And, for the skeptics, we provide some numerical examples, and a formal error

analysis.
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Abstract

Background: Researchers often wish to carry out additional calculations or analyses

using the survival data from one or more studies of other authors. When it is not

possible to obtain the raw data directly, reconstruction techniques provide a valuable

alternative. Several authors have proposed methods/tools for extracting data from

such curves using digitizing software. Instead of using a digitizer to read in the

coordinates from a raster image, we propose directly reading in the lines of the

PostScript file of a vector image.

Methods: Using examples, and a formal error analysis, we illustrate the extent to

which, with what accuracy and precision, and in what circumstances, this informa-

tion can be recovered from the various electronic formats in which such curves are

published. We focus on the additional precision, and elimination of observer vari-

ation, achieved by using vector-based formats rendered by PostScript, rather than

the lower-resolution image-based formats that have been analyzed up to now. We

provide some R code to process these.

Results: If the raster based images are available, one can reliably recover much

of the original information that seems to be “hidden” beneath published survival

curves. If the original images can be obtained as a PostScript file, the data recovered

from a PostScript file can then be either input into these tools, or processed directly.

We found that the PostScript used by Stata discloses considerably more of the data

hidden behind survival curves than that generated by other statistical packages.
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Conclusions: When it is not possible to obtain the raw data from the authors,

reconstruction techniques are a valuable alternative. Compared with previous ap-

proaches, one advantage of ours is that there is no observer variation thus no need

to repeat the digitization process, that is, the extraction is completely replicable.

119



7.1 Background

Researchers often wish to carry out additional calculations or analyses using

the survival data from studies of other authors. Since it is not always possible to

obtain the raw data directly from the authors, one is forced to make do with the

information that can be recovered from the articles. The researchers differ in their

reasons for obtaining such data, and in the number of studies involved. Thus, to

motivate this paper, we first briefly recount three of our own experiences. They

focus on randomized trials of cancer screening, where the mortality deficits produced

by cancer screening are delayed. Thus, a sequence of time-specific hazard ratios

(i.e., a rate ratio ‘curve’) that accommodates this delay is more appropriate than the

single-number hazard ratio typically reported by trialists. However, our methodology

is applicable to any situation where published data are in the form of cumulative

incidence curves, or survival curves, of a step function form.

Hanley [35] re-examined the effect of annual/biennial fecal occult blood screening

on the incidence of colorectal cancer in a trial that offered screening for the first 6

years, and, after an unplanned hiatus resulting from a lack of funding, for years 10 to

16. For each arm, he calculated incidence rates in each of the 18 years (the original

article reported a single overall incidence). To do so, he reconstructed the yearly

numbers of cases from (i) the overall numbers of cases in each arm reported in a

table, (ii) the curves of cumulative incidence versus year for each of the three arms,

and (iii) the arm-specific numbers at risk at years 0, 2, . . . , 18 given at the bottom of

the figure.
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In order to obtain the year-specific mortality rates in five trials, Hanley et al.

[38] extracted the yearly numbers of breast cancer deaths in the screening and control

arms from the published articles. For two trials, we calculated the yearly numbers of

deaths directly from the cumulative numbers of deaths reported in tables. For the

other three, we had to back-calculate year-specific numbers of deaths from plots of

cumulative numbers of deaths over time.

Hanley [36] re-analyzed the data from the European Randomized Study of

Screening for Prostate Cancer (ERSPC), a 7-country and 17-year randomized trial

[80]. The re-analysis required the numbers of prostate cancer deaths, and man-

years, for each follow-up year in each arm. In the first submitted version, Hanley

reconstructed them using the two Nelson-Aalen plots in a figure of the article [80],

the numbers of men randomized, and the numbers of men at risk at 5, 7 and 10

years shown at the bottom of the figure. He also contacted the principal investi-

gator, who apologized that it was not possible to provide the exact numbers, but

did state that the reconstructed ones were “very close.” The first version of the

submitted manuscript did not mention this personal communication, and so, quite

appropriately, in his review, the Editor wrote:

But we would need more detail on the methodology of how the estimates

for each year were derived. We also need to understand the extent to

which the results depend on reading numbers off a fairly small figure

taking up about 1/6 of one page in a journal. Is the author confident

that the resulting errors are acceptably small?
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How confident can one be? Some guidance on data-reconstruction can be found

in the meta-analysis literature, since the summaries are not always reported in the

way meta-analysts would wish, and since simplifying assumptions, such as a constant

hazard ratio, may be inappropriate [34, 75, 43]. Duchateau et al. [23] expressed

caution, pointing out that the number of events should not be estimated from the

Kaplan-Meier curves for meta-analytic purposes unless virtually no patients are lost

to follow-up or censored and there are still many patients at risk in the two groups

at the time at which the number of events is to be determined. Other authors have

shown that in some circumstances, and by making some assumptions, it is possible to

extract additional information. Among the earliest to do so were Parmar et al. [76],

who described how to estimate the log of the hazard ratio, and its variance, from

the survival curves themselves, rather than from numbers and summaries reported

in the text. Although focusing on assessing the accuracies of different techniques

for combining published survival curves, Williamson et al. [98] are one of the first

to mention using digitized images, obtained by “scanning the survival curves and

imported them into the CorelDRAW! 3.0 graphics package.” They, and several

others since then, have focused on the many practical challenges: Williamson et al.

[98] illustrated how information on the numbers at risk may be used to improve

the estimation; Tudur et al. [94] reviewed the practicality and value of previously

proposed methods; Tierney et al. [93] provided a spreadsheet to estimate hazard

ratios and associated statistics from published summary statistics or data extracted

from Kaplan-Meier curves. The grImport package is intended to add extracted

images to R plots, but in the “Scraping data from images” section, Murrell [71]
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extracts data from a survival curve and shows that the resulting curve matches the

original.

Most recently, Guyot et al. [34] provide a method (and R code) to “derive from

the published Kaplan Meier survival curves a close approximation to the original

individual patient time-to-event data from which they were generated.” They did

so “using an algorithm that maps from digitized curves back to KM data by finding

numerical solutions to the inverted KM equations, using where available information

on number of events and numbers at risk.” They assessed the reproducibility and ac-

curacy of several statistics based on reconstructed KM data by comparing published

statistics with statistics based on repeated reconstructions by multiple observers.

Increasingly, the figures in electronic publications are vector -based and rendered

by PostScript, rather than image-based. Thus, in this note, we take advantage of

this much higher resolution to eliminate the variation introduced by human digitizers,

and achieve greater precision and accuracy. The much greater precision can also be

used to gain greater detail as to numbers at risk at various time points, and the

approach can handle survival curves containing hundreds of steps.

Using worked examples and a formal error analysis, we illustrate the extent

to which, and with what accuracy and precision, and in what circumstances, the

original information can be recovered from the vector-based and image-based formats

in which such curves are published. We describe an R function we use to extract

the relevant PostScript data used to draw lines, and to convert the PostScript co-

ordinates to co-ordinates in the time-survival {t, S(t)} space. If users wish, these

can then be used as input to the R software provided by Guyot et al. [34], or the
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spreadsheet provided by Tierney et al. [93], or further processed directly by the user.

Our own applications have been in estimating yearly event rates using aggregated

person time and event counts, rather than in reconstructing individual-level data,

but what we describe can be applied to both.

In some instances, it is possible to obtain even more than was visible to the

human eye, or a digitizer, and we describe a Stata-specific data-disclosure practice

that helped in that respect. Before doing so, we first briefly review the general

principles that one can use to derive as much information as possible from a non-

parametric survival curve.

7.2 Methods

7.2.1 Principles

To start with, we will assume that the Kaplan-Meier or Nelson-Aalen curve

values can be measured with sufficient accuracy and precision (we will relax this

requirement in later sections). In such cases, first principles – and some deductions

– generally allow one to recover not only (i) the distinct ‘event’ time t that defines

each risk set [we denote the ordered distinct event times by t1, t2, . . . , tk], but also

for each risk set (ii) the number at risk n, and (iii) the number of events d. Then, by

successive subtractions, one can calculate (iv) the number of observations censored

between successive risk sets c. Unless the exact times of censored observations are

indicated on the graph, the recovered data can be compressed into the sequence

{n0, c0, t1, n1, d1, c1, t2, n2, d2, . . . }.
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If the exact censoring times are indicated on the graph, then in principle, the entire

dataset can be reconstructed; otherwise the best that one can do is to use interpola-

tion, together with the description of the recruitment period and closing dates of the

study, to impute the locations of the censored observations within the various time

intervals. Most authors have spaced them uniformly within these intervals.

To review the principles and illustrate the reasoning, we begin with an small

example, using a widely used illustrative dataset. Figure 7–1 (a) shows the Kaplan-

Meier estimate of the survivor function for patients with Acute Myelogenous Leukemia

(AML) in the ‘maintained’ group, available in the survival package [92] in R. The

question at the time was whether the standard course of chemotherapy should be

maintained for additional cycles for these patients. To start with, we ask the reader to

ignore the additional information we show on each panel, and to limit their attention

to the curve, with its steps and censoring marks.
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Figure 7–1: Kaplan-Meier estimate of the survivor function, showing the heights and
ratios of heights (a) Kaplan-Meier estimate of the survivor function for patients with
AML in the maintained group, showing the heights S(tj); (b) Same K-M curve show-
ing the jumps J(tj); (c) Same K-M curve showing the ratios of heights S(tj)/S(tj−1).
The curve shown in each panel was fitted and drawn using the survival package in
R.
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Let S(tj) denote the survival probability, or the ‘height’ of the survival curve,

at time tj, and define the ‘jump’ J(tj) as S(tj−1) − S(tj). We usually would know

it, but suppose we do not even know n0, the number of subjects at time t0 = 0.

Without any other information except the step-function values and the times of the

steps, how much of the raw information can one recover from such a graph, if the

S’s are known with sufficient accuracy? (By sufficient accuracy, we mean that the

true value can be reliably deduced to be nj, and not nj − 1 or nj + 1.)

A quick inspection of Figure 7–1 (a) shows that there are 7 jumps and 3 censoring

marks, so n0 is at least 10. Even without censoring marks, the differences in the size

of the jumps indicate some censoring – if there were none, all jumps would be either

of equal size (1/n0), or multiples of this, i.e., m/n0 if m > 1 events in a risk set. As

shown in Figure 7–1 (b), J(t3) > J(t2), while J(t5) > J(t4), and J(t7) > J(t6); in

addition, since the last observation is censored, we can infer that there must be at

least 4 censored values in total.

One way to understand why (single-event) jumps located further to the right

can only be larger than those that precede them is via Efron’s re-distribution-to-the-

right algorithm [24]: initially a probability mass of 1/n0 is placed at each observation

time. Proceeding from left to right, as a censored time is encountered, its mass is

redistributed in equal portions to all observations on its right. This procedure of

sweeping out the censored observations is repeated until all of their associated masses

have been redistributed.

In Figure 7–1 (b), the first two jumps J(t1) and J(t2) are of equal size of 0.09091,

or 1/11, suggesting that there may have been initially 11 persons at risk (Of course,
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without having further information, it could also have been 22 or 33, but subsequent

values of the curve will effectively rule these out). The fact that the 3rd jump is bigger

establishes that there must be a censored observation at or after t2 and before t3. But

since (unlike the other censored observations that fall strictly between events times)

it is not denoted by a tick mark on the graph, the censoring must, by convention,

have occurred immediately after the event(s) at t2, but due to the discreteness of the

data, have been recorded as a “t2+”. Thus, while censoring marks may give more

precise locations of the censored observations, statistical packages do not necessarily

display all of them, and so one should not rely on identifying all of them just from

the tick marks.

Following Efron’s algorithm, J(t3), of size 0.10227 can be seen to be the sum

of the original mass of 1/11 (0.09091) and (1/8)th of the same-size mass associated

with the censored “t2+’ observation that was redistributed among the 8 who were

at risk just after t2, i.e., J(t3) = J(t2) + 1/8 × J(t2). However, the arithmetic and

the multiple possible ‘legacies’ and configurations become complicated, if there are

multiple events at the same observed time, or if more than one observation in an

interval is censored. Thus, as the expressions for absolute sizes of the jumps start

to become complicated, how else might we determine the numbers at risk – and the

numbers of events – at the time of each successive jump?

We found it easiest to first assume that each dj = 1, then derive the correspond-

ing nj, then use any anomalies in the pattern of successive nj’s to revise dj to a

larger integer, and scale the corresponding nj down accordingly. One way to go from

dj to nj is to exploit the ‘product of conditional survival probabilities’ structure of

127



the K-M estimator: reverse the sequence of products that are used as the estimator,

and divide the Ŝ(tj) by Ŝ(tj−1). The resulting ratio is 1 − d(tj)/n(tj), where d(tj)

denotes the number of events at time tj and n(tj) is the number at risk at time tj.

If we can establish what d(tj) is, then we get the simple expression for nj :

n(tj) =
d(tj)

1 − Ŝ(tj)/Ŝ(tj−1)
, j = 1, 2, . . . . (7.1)

Indeed, as shown in Figure 7–1 (c), we can infer by using this expression that the

numbers at risk at {t1, . . . , t7} are {n1, . . . , n7} = {11, 10, 8, 7, 5, 4, 2}.

The initial numbers – which are usually reported in publications – and the

sequence of ‘fitted’ or ‘inferred’ numbers at risk, can be used to establish with virtual

certainty the number of events at each distinct event-time – the dj’s. if there indeed

is a single event at each distinct event-time, then the inferred numbers at risk will –

apart from the (usually small) measurement errors – form a monotonically decreasing

sequence. Systematic departures from monotonicity are immediately evident: if there

were in fact 2 events at a distinct event-time, the ‘fitted’ number at risk, nj, will

be 1/2 of what it should be, and will stand out distinctly from its singleton-based

neighbours; if there were 3 events, the ‘fitted’ number at risk will be 1/3 of its

neighbours, and so on. We will illustrate this later when discussing the example in

Figure 7–2 (right). From the {s1, . . . , s7} thus established, and the {n1, . . . , n7} we

can then by subtraction deduce that in our example {c1, . . . , c7} = {0, 1, 0, 1, 0, 1, 1}.

If the time-spacings between the adjacent t’s are relatively short, or if the num-

bers at risk at specific time-points (e.g,. yearly or monthly) are indicated on the

graph, then by further interpolation of the sequence of numbers at risk, the total
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amounts of person time for each time-interval of interest can be established with

minimal error. Survival plots typically have a width : height aspect ratio larger than

1. Thus, the relative errors will tend to be smaller on the ‘time’ than on the ‘person’

dimension of the person-time denominator inputs to the calculated event rates.

The above formula referred to the Kaplan-Meier curve. If instead of the survival

curve, the graph shows the Nelson-Aalen estimator of the cumulative hazard rate

function, given by H(tj) =
∑

ti≤tj [d(ti)/n(ti)], then the expression for n(tj) is

n(tj) =
d(tj)

Ĥ(tj)− Ĥ(tj−1)
, j = 1, 2, . . . . (7.2)

It is not always obvious from the label the vertical axis whether an increasing

“Nelson-Aalen” curve refers to this sequence of H’s, i.e., integrated hazards, or to

the cumulative incidence, or risk, i.e., CIj = Rj = 1− exp[−Hj]. If indeed it is the

latter, i.e., the complement of S, then the formula for nj becomes

n(tj) =
d(tj)

log[Ŝ(tj−1)/Ŝ(tj)]
. (7.3)

Until now, we have assumed that the vertical and horizontal co-ordinates of the

vertices can be measured with ‘sufficient’ accuracy. We now turn to what can be

achieved using the actual K-M and N-A curves that can be extracted from bitmap

images and vector-based graphics in publications.

7.2.2 Practicalities

Just a decade or two ago, it was still common, but time-consuming, to use

of the ‘pencil and ruler’ approach to “read off survival probabilities” [76] from a
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(possibly enlarged) hardcopy graph. This practice could involve substantial mea-

surement error, especially when the print was small or the resolution was poor. To-

day, since most graphs can be either accessed electronically or converted into such a

format, the labour intensive work can be reduced, with improved precision and accu-

racy. In our website www.biostat.mcgill.ca/hanley/software/DataRecovery we

have collected together a number of graphs found in electronically published articles.

Those images are typically of two types, what the Adobe Acrobat documentation

refers to as ‘raster images’ and ‘vector objects’.

Raster images

A raster image, or bitmap, consists of pixels (the smallest addressable screen

elements in a display device) arranged in a two-dimensional grid. Each pixel, repre-

sented by a dot or square, has its own coordinates and color. When one zooms in

more and more, the image becomes grainier and the individual dots that make up

the lines and symbols on the graph become more evident.

In a black-and-white or grayscale image, white is typically represented by the

value 1, black by a 0, and grey by an intermediate value; color images use a more

elaborate coding scheme involving multiple channels, such as RGB or CMYK. Just

as in digital photography, the larger the numbers of pixels the more faithful the

representation of the original values. For an example from prostate cancer screening

(a topic to be discussed further below), see Figures 2 and 3 in the article by Andriole

et al. [6]. For convenience, we have included this article and its images on our website.

Raster images can be stored in a number of file formats; the most common are

.jpeg, .png, .tiff and .gif. They can be generated in a number of ways, such as (i)
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scanning the hardcopy and storing it as a raster image, (ii) (if it is in a page of

an electronic document) zooming in on the area containing the graph and taking a

screenshot, or (iii) (if it is already embedded in a PDF file) using the ‘export images’

feature in Adobe Acrobat.

The desired points on the graph can be extracted from the image file in one of

two ways. The more technical way is to use a programming language such as Basic,

C++, or SAS to read the color values into a 2-D array, identify from the colors of the

dots the pixel locations of key landmarks (such as the axes intersect, and the furthest

apart vertical and horizontal tick marks), and finally determine which sequences of

pixel locations contain the dots that make up the curves of interest. Whereas the

ReadImages package [58] makes it easy to read the array into R, the programming to

process the array is still a considerable challenge, particularly for the portions where

curves overlap.

The easier way is to use a graph digitizer, a computer program which (i) im-

ports and displays the selected image on the screen and (ii) allows the user to identify

horizontal and vertical landmarks by way of the cursor, and to click on as many lo-

cations on the graph as are desired, then converts and stores the corresponding (x, y)

values. A number of graph digitizers (such as GraphClick, Engauge Digitizer and

Plot Digitizer) are available for free on the Web. Guyot et al. [34] report that the

software DigitizeIt (http://www.digitizeit.de/) performed well. Because digiti-

zations of raster images have been covered in detail by Guyot et al. [34], we will not

give examples, but merely contrast their accuracy with those of vector images in the

theoretical error analysis below.
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Vector images

A vector based figure or graph consists of geometrical primitives or elements

such as points and lines; it can be identified by the fact that it can be enlarged

indefinitely without loss of quality (see examples on our website). Two endpoints of

a line are represented by two (x, y) pairs, and a dot by a line of zero length. The

‘Post’ in PostScript – the most common language for producing them – refers to the

principle of device-independence: the elements are rendered in real time from the

stored co-ordinates of the elements, regardless of the local hardware on which the

software is used. This portability principle underlies the Portable Document Format

(PDF), developed by Adobe; PDF files are based on the PostScript language.

The contents of a PDF document are typically stored as a binary file, but both

the Adobe Acrobat Pro application, and the Preview application provided in Mac

OS, can export a PDF document (or the page of it that contains the graph of interest)

as a PostScript file, which contains the commands. Such files tend to be large and

contain much technical information, but it is easy (although tedious) to identify the

commands that produce the axes, tick marks and the sequence of line segments or

dots that make up the K-M and N-A curves.

In PostScript, locations on a page are measured in printer points (72 points per

inch) from the upper left corner of the page. Thus, a 2 inch (144 point) x-axis,

extending from t = 0 and t = 5, and physically from 1 to 3 inches from the left

side of the page, and located 5 inches (360 points) below the top of the page would

be specified by the line segment (72, 360) ↔ (216, 360). Suppose that the ends of

the 1.5 inch (108 points) high y-axis correspond to S = 0 and S = 1, respectively.
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Then from these PostScript co-ordinates, we can determine that the line segment

(144, 300) ↔ (146.88, 300) is a horizontal portion of the step function taking the

value S = (360 − 300)/108 = 0.555 in the interval t = (144 − 72)/(144/5) = 2.5

to t = (146.88 − 72)/(144/5) = 2.6, and that the segment (146.88, 300) ↔ (146.88,

303) is a vertical jump at t = 2.6, of length ∆S = 3/108 = 0.028 from S = 0.555 to

S = 0.583.

Surprisingly, some publications include a mix of formats. Indeed, in the publica-

tion used as the source of Figure 1 of [34], the axes in the original NEJM figure had

been rendered as vectors in PostScript, but the two curves are superimposed as an

image. The composite was analyzed as an image by Guyot et al. [34]. By contrast,

the other figure in that NEJM publication was rendered entirely in PostScript, albeit

with some very complex paths to form the line segments (see website).

7.3 Results

7.3.1 Example presented in full here

Figure 7–2 refers to a study by Pearson and colleagues [31]. 14,264 patients with

nonvalvular atrial fibrillation but high risk for stroke were randomly assigned to re-

ceive either warfarin or rivaroxaban. The investigators sought to determine whether

rivaroxaban was non-inferior to warfarin for the primary end point of stroke or sys-

temic embolism. The published cumulative event rates are shown in the left panel of

Figure 7–2. We processed this image by applying our R function to the PostScript

file (see website). The right panel in Figure 7–2 shows the highly accurate estimates

of the {nj} provided by PostScript data alone. The numbers were derived by ap-

plying equation (7.1) to the S(tj) estimates derived from the PostScript commands.
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The numbers at risk at days 0, 120, 840, were reported at the bottom of the figure

in the article. Clearly, even if they had not not provided, they could have been very

accurately estimated just from the successive S(tj) estimates alone (the slight lack

of monotonicity in series (a) in Figure 7–2 reflects rounding errors in the PostScript

co-ordinates.) Moreover, the successive S(tj) estimates provide accuracy estimated

of the numbers at risk at not just at this limited number of time points, but at all

time points at which there was at least 1 event. This also shows how a dj = 1 can

be reliably distinguished from a dj = 2 or dj = 3, simply by inspection.

In many other graphs like this one, that contain upwards of a hundred steps

forming a smooth pattern, we have also been able to obtain quite accurate estimates

of the numbers at risk, and thus the numbers of events in time intervals, by smoothing

the digitized curves. We consider a few, and refer the reader to our website for more

details, and for the R code for this and other examples.

7.3.2 Further examples, elaborated on website

(1) Colistin for the Treatment of Ventilator-Associated Pneumonia [45]. This

report is interesting for two reasons: the fact that despite including this descriptor

in the title, it is not a case-control study; and the contradictory information in the

Kaplan-Meier curve. The correspondence pointed out that the K-M curves seemed

to be based only on those who died, but the authors deflected the criticism by noting,

correctly, that “when two or more events can coexist at a specific time, so the drop

can be twice as large or more.” We leave it to the interested reader to use the JPG

files one can export from the pdf file to determine if – as seems to the naked eye –

6 of the jumps in the combination arm in Figure 7–2 are of size 1/8th each, and 1
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Figure 7–2: (left) Cumulative events rates in atrial fibrillation patients who received
warfarin or rivaroxaban. (right) The vertical location of each dot represents the es-
timated number at risk in the warfarin arm in the risk set in question (horizontal
location). The numbers were derived by applying equation (7.1) to the S(tj) esti-
mates derived from the PostScript commands used to render the vector image. The
diamonds represent numbers at risk at days 0, 120, . . . , 840, reported at the bottom
of the figure in the article. Clearly, even if they had not been provided, they could
have been very accurately estimated just from the successive S(tj) estimates alone.
The slight lack of monotonicity in series (a) reflects rounding errors in the PostScript
co-ordinates. Each nj in series (b) is based on the (clearly false) assumption that
the corresponding dj = 1; at these distinct failure times, clearly, dj = 2, so each nj
is twice that shown. Likewise the nj’s in series (c) are based on assuming dj = 1,
when, again clearly, dj = 3, and the nj should be three times that shown.

is of size 2/8, at variance with the 11 deaths reported in Table 1, and only possible

if all of the 43 - 8 observations were censored before the very first death at day 7 or

8. In this small example, the answers from a digitizer would probably be sufficiently

accurate to determine that indeed, the curves seem to be based only on those who

died.
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(2) Marriage risk of cancer research fellows [28]. The Lancet recently attempted

to match the whimsical nature of the articles in the Christmas Edition of the BMJ, by

publishing a ‘marriage-free survival’ curve in an article. The article began “Research

fellows aiming to obtain a PhD or MD/PhD degree face many hazards at work,

including exposure to toxic substances and harassment by reviewers of their papers”

and lamented the fact that “However, few data exist on the sociocultural risk factors

encountered at work – eg, their risk of marriage.” The data and the curve provide a

useful teaching example, small enough to be worked by hand, and to have students

figure out when and how many ‘individuals with a bachelor status were censored at

the time of analysis.” As can be seen in the correspondence on the Website, the

authors gladly shared the 13 observations with JH, so that teachers can be spared

having to reverse-engineer them in order to check that their students did so correctly.

(3) Rosuvastatin to Prevent Vascular Events in Men and Women with Elevated

C-Reactive Protein (JUPITER) [78]. The report of this study has prompted some

concerns about how the number needed to treat was calculated, using 5-year risks

that were based on survival curves that ended at year 4.5, but that, because of

small numbers of events, were quite erratic in years 4 and 5. The projections also

raised the issue of whether (as in our screening example) reductions in event rates

are immediate, or delayed, and how long they persist after statins are discontinued.

The authors did not answer our request that they share just the half-yearly numbers

of deaths: we wished to use them, along with the half-yearly numbers of at risk

that were included in the Figures, to calculate time-specific hazards and hazard

ratios. Fortunately, even though even though the placebo and Rosuvastatin curves
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were displayed in a rectangle less than 60 printer’s points, or 5/6ths of an inch, tall

and just over 1 inch wide, it was possible to use the PostScript commands to quite

accurately determine where along the 4.5 year time axis the unique death times were

located, and how many there were at each time point.

In order to motivate the formal error analysis, presented in the ‘Precision’ sec-

tion, we consider the time-specific numbers of persons at risk in the Rosuvastatin

arm: the Figure reported 8.9, 8.4, 3.9, 1.4 and 0.5 thousand persons at risk at the

beginning of year 1, 2, 3, 4 and 5. We can use these to test how well they (and the

numbers at the times of the events) could been estimated by applying equation (7.1)

to the points on the curve; the curve had a vertical range of just 30 printer’s points,

with the co-ordinates in the PostScript file recorded in increments of 0.001 of a point.

Since the cumulative incidence curve has a vertical range of 0 to 0.04, it has an effec-

tive resolution of 0.04/30, 000. However, since equation (7.1) uses successive ratios of

the complement of the cumulative incidence curve, the individually estimated num-

bers at risk have less precision, particularly at the beginning of the curve, where they

are larger, and the jumps smaller. Using the R code supplied on the website, one

can see that over year 1, the successive ratios lead to estimated numbers at risk with

a sawtooth appearance, alternating between approximately 10.3 and approximately

6.9 thousand. However, this noise is easily removed by smoothing, and the mid-year

estimate of approximately 8.6 thousand is quite accurate. Moreover, despite the

noise at the individual event-times, the times at which there were 2 or more events

stand out clearly.
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In the Figure in the report of the ERSPC trial [80], the cumulative incidence

curve has a vertical range of 0.01 in the probability scale, and 80 on the printer’s

points scale. Upwards of 100,000 men were at risk in each arm in the early follow-up

years. Thus, the resolution of 0.001 printer’s points used to render the Figure limits

the absolute resolution of the estimates of the numbers at risk, but still ensures

small relative errors in these. We return now to how we were able to extract even

more precise information from that Figure, and to the circumstances that led us to

discover the value of vector-based data-extraction.

7.3.3 An unexpected data-disclosure bonus

Originally, to extract the ERSPC [80] data, JH used Acrobat Reader to zoom

in on the Figure so that it filled the screen. He pasted a screenshot of this into

the GraphClick software to digitize the two curves. From these, and interpolated

numbers at risk for years 1-4, 6, 8, 9 and imputed numbers at risk for years 11 and

12, he was able to compute estimated yearly numbers of deaths and man-years at

risk.

In his subsequent pursuit for greater precision, and to answer the Editor, he

noticed (and readers of this note will notice) that when the Figure in the ERSPC

report is enlarged in Acrobat Reader, the re-drawing takes a surprisingly long time.

Even though the total sample size was 162,000 men, there were only 540 deaths,

and so, allowing for some multiplicities, there should be even fewer than that many

steps in the two step functions. Curiosity prompted him to convert the PDF file to

PostScript, and examine how the steps were drawn. To his surprise (and the disbelief

of the study epidemiologist who has told him that the curves had been computed
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and drawn using Stata but that it was impossible from what was in the Figure to

go back from them to what he had requested), the PostScript file contained the

exact coordinates of each of 89,308 and 72,837 line segments or dots, one per man!

This explained why the curves took so long to be re-rendered by Adobe Reader,

and the page to be printed. The horizontal and vertical coordinates of each of these

segments/dots thus provided the exact numbers of men being followed at each point

in follow-up time, and thus at the exact times of the vertical steps in the curves

(corresponding to prostate cancer deaths). The number of prostate cancer deaths

at each time point was obtained by multiplying the size of the step by the number

being followed at that time. The numbers were then aggregated by year and study

arm to produce the counts listed in Figure 1b in the published re-analysis [36].

To illustrate just how much data are disclosed by the way Stata makes the

curves, we present side by side in Figure 7–3 the original NEJM figure on the left,

together with on the right the ‘numbers of men at risk’ curves that we were able to

recreate using the data contained in the PostScript file ‘behind’ the Figure on the

left. The unusual shape of each ‘numbers at risk’ curve – which we derived from

the PostScript data behind the published Figure – is explained by the recruitment

method. In the methods section of the NEJM article, we read that, in the Finnish

portion of the study,

men were recruited at the ages of 55, 59, 63, and 67 years. (...) the

size of the screening group was fixed at 32,000 subjects. Because the

whole birth cohort underwent randomization, this led to a ratio, for the
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screening group to the control group, of approximately 1:1.5. (...) Follow-

up for mortality analyses began at randomization [January 1 in each of

1996, 1997, 1998 and 1999] and ended at death, emigration, or a uniform

censoring date (December 31, 2006).

2 4 6 8 10 12

0

20000

40000

60000

80000

Years since Randomization

No. at Risk

Control

Screening

Figure 7–3: (left) Screenshot of the Nelson-Aalen curves in the original NEJM report
of the ERSPC and (right) numbers at risk at each time point after randomization,
derived from the PostScript file. The large numbers censored exactly at the end of
follow-up years 8, 9, 10 and 11 are because the men in the Finnish portion of the
trial were randomized on January 1st, 1996, 1997, 1998 and 1999, and were still
alive on December 31, 2006. The shallower slope of the curve in years 1-8 is due
to deaths, while the steeper slope of the curve in years 9-13 reflects the staggered
entries, beginning in different years in the 7 different countries.

The 160,00 data points in the Kaplan-Meier curves in the ERPSC report were

produced by an early version of Stata. To test whether the latest version continues

to draw each censored observation as an invisible dot on the curve, we used Stata

version 12 to construct a Kaplan-Meier curve based on the same AML data we used

in Figure 1, and to save it as a PDF file. We then used Adobe Acrobat to export it

to a PostScript file, and extracted the line segments (the .pdf, .ps and .R files are
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provided on the Website). They reveal that the Stata curve was drawn using 20 line

segments – 1 for each of the 7 vertical steps, 1 for each of the 6 horizontal lines for

the intervals that do not contain a censored observation, 2 each for the 2 horizontal

lines, 2 for the 2 intervals that contain 1 censored observation each, and 3 for the 3

censored observations that do not coincide with a vertical step.

7.3.4 Distortions produced by further processing

Interestingly, in the ERSPC Figure, while the numbers and sizes of the jumps do

make sense, the numbers at risk, derived by simply counting how many observations

(each one plotted as a dot) exceed the time point in question, do not agree perfectly

with those would have obtained from the successive survival ratios described in the

“Principles” section above. We traced this discrepancy to the fact that, even when

just one death is involved, the jumps implied by the PostScript data are not entirely

monotonic, suggesting either some rounding at the time they were generated in

Stata, or some post-Stata processing by other graphics software. Given the very

large numbers at risk, and thus the very close agreement between the two, the fact

that they are Nelson-Aalen rather than Kaplan-Meier curves does not explain the

discrepancies. In fact, as can be seen by studying the examples on our website, this

post-processing seems to be common, and sometimes results in quite elaborate ways

to draw what appear to the eye as simple step functions. In the exemestane for

breast cancer study (see website), it took almost 2500 line segments to produce two

step functions based on a total of 43 events!
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7.3.5 Precision

How precise are the data extracted from raster and vector images? One can

assess this question at a number of levels, beginning with the precision of the Ŝ (or

1 − Ŝ) measurements themselves. Consider a typical 300 dots per inch (dpi) raster

image in which the full (0, 1) S-axis is 1.6 inches, or 480 pixels, high. This gives a

resolution of ∆S ≈ 0.002. [A ‘downwards’ curve that ends at say S = 0.9, but on a

plot that uses the full (0,1) scale, squanders considerable precision: it makes more

sense to plot the ‘upwards’ function, 1−S, up as far as 0.1, making the 1−S values

accurate to within ±0.0005.]

Consider instead a vector image containing the same curve, on the same 1.6

inch (= 72 × 1.6 = 115.2 points) vertical scale. Because the co-ordinates given in

the PostScript file exported by Adobe Acrobat are recorded to 3 decimal places, the

resolution is ∆S = 1/(115.2×1000) ≈ 0.00001, or 200 times that of the raster image.

While both of these resolutions give adequately precise measures of Ŝ, and allow

one to determine how many events are involved in each jump, they may not give

such precise measures of the number at risk at each jump, since it is measured as

the reciprocal of 1 − Ŝ(tj)/Ŝ(tj−1). As an empirical assessment of the precision of

the derived measurements, Figure 7–2 shows the estimated numbers from a raster

image and a vector image, along with – as a validity check – the reported numbers

at risk at the end of each time interval. They match very well with those given in

the articles.

The accuracy can also be quantified using a theoretical error analysis. Consider

two adjacent values on the same cumulative incidence curve, where the vertical axis
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goes from 0% to 5%, reported (after some rounding) to be y0 and y5 points respec-

tively above some landmark; suppose that without rounding they would be Y0 and Y5

points above. Denote the vertical locations (similarly rounded) of the two adjacent

points on the graph as y′ and y′′, with y′′ > y′, corresponding to unrounded values

of Y ′ and Y ′′. Then the estimates of the number at risk is

n̂(tj) =
20(y5 − y0)− (y′ − y0)

y′′ − y′
.

In the Appendix, we provide the variance of this derived quantity, assuming that

the errors (e’s) contained in the four y’s are equal and independent of each other.

In practice the PostScript points are rounded to 3 decimal places; thus the true

location Y associated with a reported location of y = 563.384 points lies between

563.3835 and 563.3845 points. If errors are uniform over this 0.001 range such that

σe ≈ 0.001/
√

12 = 0.0003 points, then the coefficient of variation (CV) is

CV [n̂(tj)] = 100%× 2.8× 0.0003 = 0.084%.

Similarly, if points are rounded to 2 decimal places, then the corresponding CV is

0.84%. [35]

7.3.6 Software and further examples

The most time-consuming task in extracting the relevant co-ordinates from a

PostScript file is visually searching through the file to find the commands that draw

lines or dots, and skip the large number of irrelevant commands. We did find that

the R package grImport imports PostScript images. Its main focus is adding the

extracted images to R graphical plots, but the author’s webpage gives a reference
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[71] where he describes extracting data from a survival curve and shows that the

resulting curve matches the original. The package requires Ghostscript and does not

handle the PostScript output produced by more recent versions of Adobe Acrobat.

Thus, we wrote our own R function. It does not use intermediate software, but

extracts the same graphics ‘paths’ as grImport does. The examples in our website

show how to use the extracted co-ordinates to easily identify the key tick marks

and other landmarks. These are needed to transform the extracted data from mere

co-ordinates on a page that is say 8.5×72 = 612 points wide by 11×72 = 792 points

high into the relevant co-ordinates with respect to the S(t) and t axes of interest for

further analysis. The R function, and several examples in which we apply it, can be

found at www.biostat.mcgill.ca/hanley/software/DataRecovery.

7.4 Discussion

The availability of raster based images, and the practical tools provided by

authors such as Tierney et al. [93], and Guyot et al. [34] are particularly valuable in

recovering the raw data. As they, and now we in our examples here and the ones on

our website, have shown, one can reliability recover much of the original information

that seems to be “hidden” [23] beneath published survival curves.

A digitizer provides more accurate and precise measures of the jumps or ratios.

However the screen itself has limited resolution, and much greater resolution is pos-

sible if the original images can be obtained as a PostScript file. The data recovered

from a PostScript file can then either be input into these tools, or processed directly.
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As we document in our website, some PostScript files contain more information

that one would need to draw simple step functions. Thus, in some instances, end-

users (‘data-scrapers’) may have to do some further processing, or select just parts

of the overly-elaborate paths used to create lines. We have found that some of the

graphics files that authors submit with their manuscripts must have been touched

or redrawn by the publishers.

We found many grainy images in some of the best journals, and wonder if authors

do not fully appreciate the principle of portability and device-independence of vector

based graphics. We urge authors to submit PDF rather than raster images.

The Postscript used by Stata discloses considerably more of the data hidden

behind survival curves than that generated by other statistical packages.

7.5 Conclusions

When it is not possible to obtain the raw data from the authors, reconstruction

techniques are a valuable alternative. Compared with previous approaches, which

use manual digitization of raster images, our method takes advantage of the much

greater precision of vector-based images rendered via PostScript. Our extraction is

replicable, and eliminates the observer variation that accompanies the digitization

process.
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7.6 Appendix: Error Analysis

If we take two adjacent points on the same cumulative incidence curve and the y

axis goes from 0% to 5%, then the estimate of the ratio is [20(c−d)−(a−d)]/[20(c−

d)− (b− d)] and thus

n̂(tj) =
20(c− d)− (b− d)

a− b
=
µ1 + e1
µ2 + e2

,

where a and b are the heights of two points on the curve, and c and d are the

values corresponding to 5% and 0%, µ1 and µ2 are the error-free numerator and

denominator, i.e. before any loss of data, and e1 and e2 are the errors associated

with them, i.e. the observed data with rounding.

Assuming all four error variances are equal to σ2
e and independent of each other,

then

V ar[n̂(tj)] =
µ2
1

µ2
2

[V1
µ2
1

+
V2
µ2
2

− 2
C1,2

µ1µ2

]
,

where V1 = V ar[20(c−d)−(b−d)] = V ar[20c−19d−b] = (202+192+12)σ2
e = 762σ2

e ,

V2 = V ar[a−b] = (12+12)σ2
e = 2σ2

e , and covariance C1,2 = C[20c−19d−b, a−b] = σ2
e .

Further assuming µ1 ≈ 20 × 100 = 2000 points, µ2 ≈ 0.5 points, and n̂(tj) =

4000, we have

V ar[n̂(tj)] = σ2
e ×

20002

0.52

[ 762

20002
+

2

0.52
− 2

1

2000× 0.5

]
≈ 20002

0.52
× 2

0.52
× σ2

e ,

and coefficient of variation

CV [n̂(tj)] = 100%×
[2000

0.5
× 21/2

0.5
× σe

]
/4000 = 100%× 2.8σe.
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Therefore, if the PostScript points are rounded to 3 decimal places, then 563.384

points probably lies somewhere (uniformly) between 563.3835 and 563.3845, so error

range = 0.001 leads to σe ≈ 0/.001/
√

12 = 0.0003 and CV [n̂(tj)] = 100% × 2.8 ×

0.0003 = 0.084%.

Similarly, if the PostScript points are rounded to 2 decimal places, then 563.38

points probably lies somewhere (uniformly) between 563.375 and 563.385, so error

range = 0.01 leads to σe ≈ 0/.01/
√

12 = 0.003 and CV [n̂(tj)] = 100%×2.8×0.003 =

0.84%.
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CHAPTER 8
Summary and Discussion

This thesis presents theoretical and methodological developments for measuring

the mortality reductions due to cancer screening. The aim is to give policy makers

and funders more accurate evidence on how effective screening programs are and

could be.

Our objective is to provide a way to project the time-specific reductions in

mortality that would be produced by a sustained screening program, using data

from randomized trials. Our contribution is having formulated the estimand (as the

probability of being helped by screening given that the cancer would prove fatal

otherwise), stated the identifiability conditions for this, and proposed a corresponding

estimation method.

Unlike the prevailing approach that models the entire cancer progression, we

focus on mortality only and thus avoid specifying parameters such as prevalence,

incidence, test sensitivity and specificity, and sojourn time all together, as well as the

modelling assumptions associated with each one of them. Also unlike the prevailing

approach, we estimate the mortality impact using data from randomized screening

trials, and thus our probabilistic projection is evidence-based.

We believe this is a major shift. Using only a few parameters, data from a

single trial (or a set of trials containing variations in regimens) can be used to pursue

a universal estimand that has meaning far beyond any specific regimen in any one
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trial. It greatly extends the usefulness of the data generated by trials, and allows for

extrapolation to other screening scenarios.

Before ending, I address some of the questions and concerns often raised by

reviewers of our work.

1. Why does it not suffice to compare the cumulative incidences or cause-

specific hazards between both arms in a trial, instead of focusing on the

proposed parameter which demands more identification assumptions?

Indeed estimating the mortality reductions in a trial does not require such a mod-

elling effort, but our objective was more ambitious than this. A modelling approach

decomposing the overall mortality reduction into the impacts of the individual rounds

of screening is necessary for the purpose of projecting the impact of a screening pro-

gram with more rounds of screening. The cumulative measure is not useful for our

projection purpose, since it does not enable one to disentangle the impact of a single

round of screening, which is central to our modelling approach. To quote again the

first principle of Miettinen and Karp [63, p. 82]:

The proportional reduction in mortality from the cancer is nothing like a

constant over time from the beginning of the screening (for the generally

short duration of it) to the end of the follow-up (for an arbitrary duration

of it). It thus is logically inadmissible to quantify the reduction by pooling

the experience across the entire duration of the follow-up. The proper

concern in a trial like this [NLST] is to address the incidence density

of death from the cancer as a function of time since the initiation of the
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screening. And that function is, of course, different for different durations

of the screening.

2. It would be interesting if you could compare with a nonparametric

estimate, or an estimate obtained from a (possible piecewise) proportional

hazards model.

As we note above, fitting non-parametric hazard ratio curves to the observed numbers

of deaths was not of interest to us, since our modelling approach was based on

extracting the mortality impact of a single round of screening. These in turn were

used in the projection task by compounding the decomposed round-specific impacts

according to the screening schedule of interest.

3. More discussion is needed on the plausibility of your assumptions and,

ideally, also some investigation of the sensitivity of the results to violation

of these assumptions.

We list four identifying assumptions, which are required to identify the estimand,

the probability of being helped in terms of potential outcome variables. If violated,

our estimand is simply not identifiable based on the observed data. Speaking of

their plausibility, monotonicity and strongly ignorable treatment assignment are well

justified, the former stating that screening does not shorten survival, and the latter

being satisfied through the randomized assignment in a trial. Also, cancer screening

is usually too specific to detect conditions other than the site-specific cancer. The

curability assumption is the only potentially contentious one, but agrees with the

second principle of Miettinen and Karp [63, p. 81–82]:
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Reduction in mortality from a cancer subsequent to screening can occur

only if the cancer’s treatments under the screening - those early treat-

ments - are more commonly curative than those in the absence of screen-

ing. In fact, attainment of enhanced curability - by earlier treatments -

is the very idea in screening for a cancer. Thus the parameter of Nature

that should be viewed as the proper object of any study on the intended

consequence of screening for a cancer is one that meaningfully quantifies

the gain in the cancer’s curability rate when screening-associated early

treatments replace the treatments on already symptomatic cases in the

absence of screening. This is a proportion of the cases of the cancer that

are fatal in the absence of screening, the proportion of these otherwise

fatal cases that are curable by screening-associated early treatments.

4. You parametrize your model with the parameters γ, µ, and σ. Do

you consider these parameters as meaningful in their own right? If so, it

would be helpful with an interpretation of their estimates in the real data

example.

These model parameters correspond to a single round of screening; although in-

terpretable, they are not of primary interest, and thus we do not report the cor-

responding estimates. Instead, the end-product of the modelling effort, through

compounding the round-specific impacts parametrized in terms of the above param-

eters, is a bathtub-shaped reduction curve, describing when the reductions begin,

how large they are and how long they last. Our proposed model parametrizations

should only be considered as suggestions or examples; since the actual inference is
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likelihood-based, the model formulation is not restricted by what we propose in this

thesis. In general, the appropriate complexity of the model parametrization depends

on how much data are available.

5. If you do not consider the parameters the parameters γ, µ, and σ as

meaningful in their own right, then why not use a more standard logistic

parametrization of Qj(t), e.g. Qj(t) = α + β(t− sj)?

Although we do not interpret the corresponding estimates, our parametrizations

were chosen to produce a biologically plausible reduction curve that would obey the

‘curability-detectability tradeoff’ of diagnosing cancers. We have explained why the

reduction pattern produced by the two parametrizations suggested in Chapter 5 is

reasonable in the screening context, in particular, why the impact of a given round

of screening is first delayed, achieves a maximum reduction, and then fades away

after screening is discontinued. Constant or linear effects over time, for example, are

clearly inappropriate.

6. When there is noncompliance, please clarify what causal estimand

is the interest and show the derivation of cQ(t) in Section 5.3.4 as the

estimator.

When there is noncompliance, we take the potential outcome to correspond to being

‘under screening’ in the sense of being randomized into the screening arm of the trial,

cf. the third principle of Miettinen and Karp [63, p. 82]:

A quantitatively meaningful etiogenetic study on death from a cancer,

with lack of screening for it the etiogenetic factor, can be based on a

case and base series from the relevant segment of follow-up in a screening
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trial with sufficiently long-term screening (and close adherence to the

schedule). In the case series, the relevant history is about whether the

person was under screening at the time of the cancer’s detection (by

virtue of being in the screening arm of the trial, irrespective of whether

the diagnosis was derived on the prompting of a positive result of the

initial test at issue or due to symptoms emerging between the scheduled

tests).

We do not intend to relate the potential outcome to actually being screened;

unless otherwise specified, our causal estimand should be understood as an intention-

to-treat type of effect. However, we present the cQ(t) formulation for the purpose of

the projections, where it makes sense to upscale or downscale the mortality impact

of the screening program by the expected participation rate. In addition, a relevant

quantity for individual level decision making is the mortality reduction conditional

on participation. In particular, we note that multiplying by the constant c only

accounts for non-compliance that is completely at random, but we do allow for

different non-compliance rates between the different screening rounds.

A full treatment of potentially non-random non-compliance is an important

problem, and can be addressed in the proposed framework when data on individual-

level screening histories are available, but this would be a topic for further work.

Other directions for future research include applying the outlined methods to ob-

servational data routinely collected under existing screening programs. The main

difference compared to applications using trial data would be the need to control for

confounding, since without randomization, those who decide to undergo screening
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may be a highly selected group. This in turn would proceed by modelling the proba-

bilities of individual-level screening histories conditional on relevant covariates, and

using these as propensity score [79] analogues in removing the confounding due to

the observed individual-level characteristics.
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Appendix A: R code for the Hu-Zelen model (Chapter 3)

# Updated 2012-08-30

# LIST OF INPUT VALUES:

# number invited to each arm N=25,000;

# incidence rate w=0.006;

# prevalence at randomization P_0(t_0)=0.003;

# sensitivity beta=0.7

# median survivals for those not in S_p at t_0 are 10 and 17 years

# in the control and screening arms respectively;

# median survivals for those in S_p at t_0 are 11 and 20 years

# in the control and screening arms respectively;

# screening exams are in year 0, 1, 2, 3;

N=25000; w=6/1000; p=3/1000; beta=0.7;

lambdac0=log(2)/10; lambdac=log(2)/11;

lambdas0=log(2)/17; lambdas=log(2)/20;

t0=0; ts=c(0.001,1,2,3,100); K=length(ts)-1;

T=15;

###############control arm###############

Dc1=function(x){

p*w*lambdac0*exp(-lambdac0*x)/(w-lambdac0*p)*

(1-exp(lambdac0*x-w*x/p))

}

Dc2=function(x){

w*exp(-lambdac*x)*(exp(lambdac*x)-1-(lambdac*p/(w-lambdac*p))*

(1-exp(lambdac*x-w*x/p)))

}

theta9=rep(0,T)

for (i in 1:T){

theta9[i]=integrate(Dc1, lower=0,upper=i)$value+

integrate(Dc2, lower=0,upper=i)$value

}

theta9[T]

I



#cumulative no. deaths

Dc=theta9*N;Dc

#yearly no. deaths:

d.c=c(Dc[1],Dc[2:T]-Dc[1:T-1]);d.c

###############screening arm (screen-detected)###############

#formula 3.4 part1 in Hu and Zelen (1997)

Dr1=function(x,r){

((1-beta)^(r-1))*beta*w*lambdas0*

(p/(lambdas0*p-w))*exp(-lambdas0*x)*

(exp(lambdas0*x-w*x/p)-exp(lambdas0*ts[r]-w*ts[r]/p))

}

theta7=rep(0,T)

for (i in 1:T){

for (r in 1:K){

theta7[i]=theta7[i]+ifelse(ts[r]>i,0,

integrate(Dr1,lower=ts[r],upper=i,r=r)$value)

}

}

#formula 3.4 part2

Dr2=function(x,r){

sum=0

for (j in 1:r) {

sum <- sum + ((1-beta)^(r-j))*beta*lambdas*w*

(p/(lambdas*p-w))*exp(-lambdas*x)*

(exp(w*ts[j]/p)-exp(w*(ifelse((j-1)==0,0,ts[j-1]))/p))*

(exp(lambdas*x-w*x/p)-exp(lambdas*ts[r]-w*ts[r]/p))

}

return(sum)

}

theta8=rep(0,T)

for (r in 1:K){

for (i in 1:T){

theta8[i]= theta8[i]+ifelse(ts[r]>i,0,

II



integrate(Dr2, lower=ts[r],upper=i,r=r)$value)

}

}

#formula 3.4: cumulative number of screen-detected deaths

Dr=(theta7+theta8)*N;Dr

#yearly no. screen-detected deaths:

d.r=c(Dr[1],Dr[2:T]-Dr[1:T-1]);d.r

###############screening arm (interval cancers)###############

#using our proposed shortcut

Dr1_star=function(x,r){

((1-beta)^(r-1))*beta*w*lambdac0*

(p/(lambdac0*p-w))*exp(-lambdac0*x)*

(exp(lambdac0*x-w*x/p)-exp(lambdac0*ts[r]-w*ts[r]/p))

}

theta7_star=rep(0, T)

for (i in 1: T){

for (r in 1:K){

theta7_star[i]=theta7_star[i]+ifelse(ts[r]>i,0,

integrate(Dr1_star,lower=ts[r],upper=i,r=r)$value)

}

}

Dr2_star=function(x,r){

sum=0

for (j in 1:r) {

sum <- sum + ((1-beta)^(r-j))*beta*lambdac*w*

(p/(lambdac*p-w))*exp(-lambdac*x)*

(exp(w*ts[j]/p)-exp(w*(ifelse((j-1)==0,0,ts[j-1]))/p))*

(exp(lambdac*x-w*x/p)-exp(lambdac*ts[r]-w*ts[r]/p))

}

return(sum)

}

theta8_star=rep(0, T)

III



for (r in 1:K){

for (i in 1: T){

theta8_star[i]= theta8_star[i]+ifelse(ts[r]>i,0,

integrate(Dr2_star, lower=ts[r],upper=i,r=r)$value)

}

}

#cumulative no. deaths from the screening arm

theta1=theta7+theta8+(theta9-theta7_star-theta8_star)

Ds=(theta1)*N;Ds

#yearly no. deaths from screening arm:

d.s=c(Ds[1],Ds[2:T]-Ds[1:T-1]); d.s

#Output (cumulative no. of deaths):

round(cbind(Dc,Ds))

Appendix B: Validating the R code (Chapter 3)

To validate my R code, I contacted the first author Ping Hu and checked my
programming in R against hers in FORTRAN by comparing the output using the
same input values. Below I present the 3 sets of inputs we used. Our results are
almost identical.
--------------------------INPUT 1------------------------------

- number invited to each arm N=25,000;

- incidence rate w=0.006;

- prevalence at randomization P_0(t_0)=0.003;

- sensitivity beta=0.7;

- median survivals for those not in S_p at t_0 are 10 and 17 years

in the control and screening arms, respectively;

- median survivals for those in S_p at t_0 are 11 and 20 years

in the control and screening arms, respectively;

- screening exams are in year 0, 1, 2, 3;

--------------------------My R Output 1------------------------------

Year Dc Ds

1 5 4

2 19 16

3 41 35

4 71 61

IV



5 108 94

6 152 134

7 203 182

8 260 235

9 322 295

10 390 360

11 462 431

12 540 506

13 621 587

14 707 671

15 797 760

-------------------Ping Hu’s FORTRAN Output 1-------------------

mu med_c0 med_c med_s0 med_s alpha(one-side)

0.50 10.00 11.00 17.00 20.00 0.050

w p_0 beta_S t0 t1 t2 t3

0.0060 0.0030 0.70 0.00 1.00 2.00 3.00

# of exam = 4 sample size = 25000 25000

T death_c death_s Mort Red(%) POWER(%)

3.00 41. 35. 14. 16.

4.00 71. 61. 14. 22.

5.00 108. 94. 13. 25.

6.00 152. 135. 12. 28.

7.00 203. 182. 10. 29.

8.00 260. 235. 9. 29.

9.00 322. 295. 8. 29.

10.00 390. 360. 8. 28.

11.00 462. 431. 7. 28.

12.00 540. 506. 6. 27.

13.00 621. 587. 6. 26.

14.00 707. 671. 5. 25.

15.00 797. 760. 5. 24.

--------------------------INPUT 2------------------------------

V



- number invited to each arm N=25,000;

- incidence rate w=0.006;

- prevalence at randomization P_0(t_0)=0.003;

- sensitivity beta=0.9

- median survivals for those not in S_p at t_0 are 10 and 17 years

in the control and screening arms, respectively;

- median survivals for those in S_p at t_0 are 11 and 20 years

in the control and screening arms, respectively;

- screening exams are in year 0, 1, 2, 3;

--------------------------My R OUTPUT2------------------------------

Year Dc Ds

1 5 4

2 19 15

3 41 34

4 71 58

5 108 90

6 152 130

7 203 176

8 260 229

9 322 288

10 390 353

11 462 423

12 540 498

13 621 578

14 707 662

15 797 750

-------------------Ping Hu’s FORTRAN Output 2-------------------

mu med_c0 med_c med_s0 med_s alpha(one-side)

0.50 10.00 11.00 17.00 20.00 0.050

w p_0 beta_S t0 t1 t2 t3

0.0060 0.0030 0.90 0.00 1.00 2.00 3.00

# of exam = 4 sample size = 25000 25000

T death_c death_s Mort Red(%) POWER(%)

VI



3.00 41. 34. 18. 22.

4.00 71. 58. 18. 29.

5.00 108. 91. 16. 35.

6.00 152. 130. 15. 38.

7.00 203. 176. 13. 39.

8.00 260. 229. 12. 40.

9.00 322. 288. 11. 39.

10.00 390. 353. 9. 39.

11.00 462. 423. 9. 38.

12.00 540. 498. 8. 36.

13.00 621. 578. 7. 35.

14.00 707. 662. 6. 34.

15.00 797. 750. 6. 33.

--------------------------INPUT 3------------------------------

- number invited to each arm N=50,000;

- incidence rate w=0.006;

- prevalence at randomization P_0(t_0)=0.003;

- sensitivity beta=0.9

- median survivals for those not in S_p at t_0 are 10 and 17 years

in the control and screening arms, respectively;

- median survivals for those in S_p at t_0 are 11 and 20 years

in the control and screening arms, respectively;

- screening exams are in year 0, 1, 2, 3;

--------------------------My R OUTPUT 3------------------------------

Year Dc Ds

1 10 8

2 38 30

3 82 67

4 142 117

5 216 181

6 305 260

7 406 352

8 519 458

9 644 576

10 779 705

11 925 845

VII



12 1079 995

13 1243 1155

14 1415 1324

15 1594 1500

-------------------Ping Hu’s FORTRAN Output 3-------------------

mu med_c0 med_c med_s0 med_s alpha(one-side)

0.50 10.00 11.00 17.00 20.00 0.050

w p_0 beta_S t0 t1 t2 t3

0.0060 0.0030 0.90 0.00 1.00 2.00 3.00

# of exam = 4 sample size = 50000 50000

T death_c death_s Mort Red(%) POWER(%)

3.00 82. 67. 18. 33.

4.00 142. 117. 18. 46.

5.00 216. 181. 16. 55.

6.00 305. 260. 15. 60.

7.00 406. 352. 13. 62.

8.00 519. 458. 12. 62.

9.00 644. 576. 11. 62.

10.00 779. 705. 9. 61.

11.00 925. 845. 9. 59.

12.00 1079. 996. 8. 58.

13.00 1243. 1155. 7. 56.

14.00 1415. 1324. 6. 54.

15.00 1594. 1501. 6. 52.
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Appendix C: NLST reanalysis R code (Chapter 6)

#Some R code

#updated 2014-01-27

PATIENT=read.table("patient.csv", sep=",", head=T)

pt=PATIENT[,c("pid", "rndgroup", "age", "death_days",

"deathcutoff", "finaldeathLC")]

dim(pt); length(pt$pid)

participation.rate=c(98.5+94+92.9+98+92.6+91.2)/600

participation.rate

ds=subset(pt,pt$finaldeathLC==1&deathcutoff %in% c(1,2))

dim(ds)

ds$deathtime=as.numeric(as.character(ds$death_days))

summary(ds$deathtime/365)

ds=subset(ds,ds$deathtime<366*7)

dim(ds)

#save

ds0=ds

##########functions##########

logL.chisq <- function (x, n.year.follow.up, screen.time,

participation.rate, randomization.ratio)

{

max.reduction = exp(x[1])/(1 + exp(x[1]))

degree = exp(x[2]) + 2

y = 1:n.year.follow.up - 0.5

one.reduction = participation.rate *

max.reduction * dchisq(x = y, df = degree)/

dchisq(x = degree - 2, df = degree)

mat = matrix(0, ncol = n.year.follow.up,

nrow = length(screen.time))

a = n.year.follow.up:1
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for (i in 1:length(screen.time)) {

mat[i, 1:length(screen.time[i]:length(a))] <-

a[screen.time[i]:length(a)]

}

cell.index = t(mat[, ncol(mat):1])

prob.not.helped = NULL

if (length(screen.time) > 1) {

for (i in 1:nrow(cell.index)) {

prob.not.helped[i] <-

cumsum(prod(1 - one.reduction[cell.index[i, ]]))

}

R <- 1 - prob.not.helped

}

else R <- one.reduction

p = randomization.ratio * (1 - R)/

(randomization.ratio * (1 - R) + 1)

like = dat[, 2] * log(p) + dat[, 1] * log(1 - p)

sum(like)

}

logL.half.year.chisq <- function (x, n.interval, screen.time,

participation.rate, randomization.ratio)

{

max.reduction = exp(x[1])/(1 + exp(x[1]))

degree = exp(x[2]) + 2

y = (1:n.interval - 0.5)/2

one.reduction = participation.rate *

max.reduction * dchisq(x = y, df = degree)/

dchisq(x = degree - 2, df = degree)

mat = matrix(0, ncol = n.interval,

nrow = length(screen.time))

a = n.interval:1

for (i in 1:length(screen.time)) {

mat[i, 1:length(screen.time[i]:length(a))] =

a[screen.time[i]:length(a)]

}

cell.index = t(mat[, ncol(mat):1])

prob.not.helped = NULL

X



if (length(screen.time) > 1) {

for (i in 1:nrow(cell.index)) {

prob.not.helped[i] = cumsum(prod(1 -

one.reduction[cell.index[i, ]]))

}

R <- 1 - prob.not.helped

}

else R <- one.reduction

p = randomization.ratio * (1 - R)/

(randomization.ratio * (1 - R) + 1)

like = dat[, 2] * log(p) + dat[, 1] * log(1 - p)

sum(like)

}

logL.individual.chisq <- function (x, screen.time,

participation.rate, randomization.ratio)

{

max.reduction = exp(x[1])/(1 + exp(x[1]))

degree = exp(x[2]) + 2

shift = screen.time[2:length(screen.time)] -

screen.time[1:(length(screen.time) - 1)]

Q = function(y) {

q1 = participation.rate * max.reduction * dchisq(x = y,

df = degree)/dchisq(x = degree - 2, df = degree)

y = y - shift[1]

q2 = participation.rate * max.reduction * dchisq(x = y,

df = degree)/dchisq(x = degree - 2, df = degree)

y = y - shift[2]

q3 = participation.rate * max.reduction * dchisq(x = y,

df = degree)/dchisq(x = degree - 2, df = degree)

y = y + shift[1] + shift[2]

return(ifelse(y <= screen.time[2], q1,

ifelse(y > screen.time[2] & y <= screen.time[3],

q2 * (1 - q1) + q1, (1 - q1) * (1 - q2) * q3 +

q2 * (1 - q1) + q1)))

}

H = Q(ds$deathtime/365.25)

p = randomization.ratio * (1 - H)/
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(randomization.ratio * (1 - H) + 1)

like = sum(log(p[which(ds$rndgroup == "1")])) +

sum(log(1 - p[which(ds$rndgroup == "2")]))

sum(like)

}

reduction.chisq <- function (x, follow.up.time, screen.time,

participation.rate)

{

max.reduction = exp(x[1])/(1 + exp(x[1]))

degree = exp(x[2]) + 2

one.reduction = participation.rate *

max.reduction * dchisq(x = follow.up.time, df = degree)/

dchisq(x = degree - 2, df = degree)

mat = matrix(0, ncol = length(follow.up.time),

nrow = length(screen.time))

a = length(follow.up.time):1

for (i in 1:length(screen.time)) {

mat[i, 1:length(screen.time[i]:length(a))] <-

a[screen.time[i]:length(a)]

}

cell.index = t(mat[, ncol(mat):1])

prob.not.helped = NULL

if (length(screen.time) > 1) {

for (i in 1:nrow(cell.index)) {

prob.not.helped[i] =

cumsum(prod(1 -one.reduction[cell.index[i, ]]))

}

R <- 1 - prob.not.helped

}

else R <- one.reduction

return(R)

}

##########data##########

xray=subset(ds0,ds0$rndgroup==2);dim(xray)

ct=subset(ds0,ds0$rndgroup==1);dim(ct)
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postscript("~/Dropbox/1-work/1-PhD/thesis/Figures/

NLST_cumulative.eps", width=8.5, height=5,

paper="special", horizontal=FALSE)

plot(sort(xray$deathtime)/365,cumsum(rep(1,nrow(xray))),col=2)

points(sort(ct$deathtime)/365,cumsum(rep(1,nrow(ct))),col=1)

dev.off()

##########using yearly data##########

d0=as.numeric(table(floor(sort(xray$deathtime/365))))

d1=as.numeric(table(floor(sort(ct$deathtime/365))))

dat=cbind(d0,d1);dat

colSums(dat)

fit=optim(par=c(-2.5,1),fn=logL.chisq,n.year.follow.up=7,

screen.time=c(1,2,3),participation.rate=participation.rate,

randomization.ratio=1,method="BFGS",hessian=T,

control=list(fnscale=-1))

fit

(est=fit$par)

(covmat=solve(-fit$hessian))

cov2cor(covmat)

se=sqrt(diag(covmat));

CI.lo=est-qnorm(.975)*se; CI.hi=est+qnorm(.975)*se;

(param=c(exp(est[1])/(1+exp(est[1])),2+exp(est[2])))

(SE=c(se[1]*exp(est[1])/((1+exp(est[1]))^2),exp(est[2])*se[2]))

c(exp(CI.lo[1])/(1+exp(CI.lo[1])),2+exp(CI.lo[2]));

c(exp(CI.hi[1])/(1+exp(CI.hi[1])),2+exp(CI.hi[2]));

postscript("~/Dropbox/1-work/1-PhD/thesis/Figures/

NLST_fit_chisq.eps",width=8.5,height=5,paper="special",

horizontal=FALSE)

n.FU=9

R=reduction.chisq(est, follow.up.time=seq(0, n.FU, by=.1),

screen.time=c(1,11,21), participation.rate=participation.rate)

plot(seq(0, n.FU, by=.1), 1-R, ylim = c(0, 1.6),
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ylab="Reduction", xlab="Follow-up year", type = "l",

col=2, lwd=2, yaxt="n", xaxt="n");

axis(2, at=1-seq(0,1,.2), labels=paste(100*seq(0,1,.2),"%"),

las=2,cex=.8)

axis(1, at=seq(0,n.FU,1),labels=paste(0: n.FU), las=1, cex=.8)

points(seq(0.5,6.5, by=1), dat[,2]/dat[,1],

cex=.3/sqrt(1/dat[,2]+1/dat[,1]), pch=19, col=2)

abline(h=1,lty=1)

abline(h=seq(.2,1,by=.2),lty=’dotted’)

##########using half-yearly data##########

d0=as.numeric(table(floor(sort(xray$deathtime/182.5))))

d1=as.numeric(table(floor(sort(ct$deathtime/182.5))))

round(100*(1-d1/d0),di=2)

dat=cbind(d0,d1);dat

colSums(dat)

fit=optim(par=c(-2.5,1), fn=logL.half.year.chisq, n.interval=14,

screen.time=c(1,3,5), participation.rate=participation.rate,

randomization.ratio=1,method="BFGS",hessian=T,

control=list(fnscale=-1))

(est=fit$par)

(covmat=solve(-fit$hessian))

cov2cor(covmat)

se=sqrt(diag(covmat));

CI.lo=est-qnorm(.975)*se; CI.hi=est+qnorm(.975)*se;

(param=c(exp(est[1])/(1+exp(est[1])),2+exp(est[2])))

(SE=c(se[1]*exp(est[1])/((1+exp(est[1]))^2),exp(est[2])*se[2]))

c(exp(CI.lo[1])/(1+exp(CI.lo[1])),2+exp(CI.lo[2]));

c(exp(CI.hi[1])/(1+exp(CI.hi[1])),2+exp(CI.hi[2]));

R=reduction.chisq(est, follow.up.time=seq(0,n.FU,by=.1),

screen.time=c(1,11,21), participation.rate=participation.rate)

lines(seq(0, n.FU,by=.1), 1-R, lwd=2, col=4)

points(seq(.5,13.5,by=1)/2, dat[,2]/dat[,1],
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cex=.3/sqrt(1/dat[,2]+1/dat[,1]), pch=19, col=4)

##########using individual data##########

rm(fit)

fit=optim(par=c(-2.5,1), fn=logL.individual.chisq,

screen.time=c(0,1,2), participation.rate=participation.rate,

randomization.ratio=1, method="BFGS", hessian=T,

control=list(fnscale=-1))

fit

(est=fit$par)

(covmat=solve(-fit$hessian))

cov2cor(covmat)

se=sqrt(diag(covmat));

CI.lo=est-qnorm(.975)*se; CI.hi=est+qnorm(.975)*se;

(param=c(exp(est[1])/(1+exp(est[1])),2+exp(est[2])))

(SE=c(se[1]*exp(est[1])/((1+exp(est[1]))^2),exp(est[2])*se[2]))

c(exp(CI.lo[1])/(1+exp(CI.lo[1])),2+exp(CI.lo[2]));

c(exp(CI.hi[1])/(1+exp(CI.hi[1])),2+exp(CI.hi[2]));

R=reduction.chisq(est, follow.up.time=seq(0,n.FU,by=.1),

screen.time=c(1,11,21), participation.rate=participation.rate)

lines(seq(0,n.FU,by=0.1), 1-R, lwd=2, lty=2)

legend("bottomright",col=c(2,4,1),c("Using yearly data",

"Using half-yearly data","Using individual-level data"),

lty=c(1,1,2),lwd=2)

text(0,.05,"S1",cex=1); text(1,.05,"S2",cex=1);

text(2,.05,"S3",cex=1);

dev.off()

##########projection##########

fit=optim(par=c(-2.5,1), fn=logL.individual.chisq,

screen.time=c(0,1,2), participation.rate=participation.rate,

randomization.ratio=1,method="BFGS",hessian=T,

control=list(fnscale=-1))
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fit

(est=fit$par)

(covmat=solve(-fit$hessian))

cov2cor(covmat)

se=sqrt(diag(covmat));

CI.lo=est-qnorm(.975)*se; CI.hi=est+qnorm(.975)*se;

(param=c(exp(est[1])/(1+exp(est[1])),2+exp(est[2])))

c(exp(CI.lo[1])/(1+exp(CI.lo[1])),2+exp(CI.lo[2]));

c(exp(CI.hi[1])/(1+exp(CI.hi[1])),2+exp(CI.hi[2]));

postscript("~/Dropbox/1-work/1-PhD/thesis/Figures/

NLST_projection.eps",width=8.5,height=5,paper="special",

horizontal=FALSE)

n.FU=15;

R=reduction.chisq(est, follow.up.time=seq(0,n.FU,by=.1),

screen.time=seq(1,91,by=10), participation.rate=participation.rate)

plot(seq(0, n.FU, by=.1), 1-R, ylim = c(0, 1), xlim=c(0,15),

ylab="Reduction", xlab="Follow-up year", type = "l",

col=2, lwd=2, yaxt="n", xaxt="n");

R=reduction.chisq(est, follow.up.time=seq(0,n.FU,by=.1),

screen.time=seq(1,21,by=10),

participation.rate=participation.rate)

lines(seq(0, n.FU, by=.1), 1-R, lty=2, lwd=2);

axis(2,at=1-seq(0,1,.2), labels=paste(100*seq(0,1,.2),"%"),

las=2, cex=.8)

axis(1,at=seq(0,n.FU,1), labels=paste(0: n.FU), las=1, cex=.8)

text(0:2,rep(.1,3),"S",col=1)

text(0:9,rep(.015,10),"S",col=2)

abline(h=seq(.2,1,by=.2),lty=’dotted’)

legend("bottomright",legend=c("Fitted (3 rounds)",

"Projection (10 rounds)"), lty=c(2,1), col=c(1,2), lwd=c(2,2))

dev.off()
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##########projection (using subgroup data)##########

xray=subset(ds0,ds0$rndgroup==2&ds0$age<65);

ct=subset(ds0,ds0$rndgroup==1&ds0$age<65);

ds=subset(ds0,ds0$age<65)

logL.individual.chisq <- function (x, screen.time,

participation.rate, randomization.ratio)

{

max.reduction = exp(x[1])/(1 + exp(x[1]))

degree = exp(x[2]) + 2

shift = screen.time[2:length(screen.time)] -

screen.time[1:(length(screen.time) - 1)]

Q = function(y) {

q1 = participation.rate * max.reduction * dchisq(x = y,

df = degree)/dchisq(x = degree - 2, df = degree)

y = y - shift[1]

q2 = participation.rate * max.reduction * dchisq(x = y,

df = degree)/dchisq(x = degree - 2, df = degree)

y = y - shift[2]

q3 = participation.rate * max.reduction * dchisq(x = y,

df = degree)/dchisq(x = degree - 2, df = degree)

y = y + shift[1] + shift[2]

return(ifelse(y <= screen.time[2], q1,

ifelse(y > screen.time[2] & y <= screen.time[3],

q2 * (1 - q1) + q1, (1 - q1) *

(1 - q2) * q3 + q2 * (1 - q1) + q1)))

}

H = Q(ds$deathtime/365.25)

p = randomization.ratio * (1 - H)/

(randomization.ratio * (1 - H) + 1)

like = sum(log(p[which(ds$rndgroup == "1")])) +

sum(log(1 - p[which(ds$rndgroup == "2")]))

sum(like)

}

fit=optim(par=c(-2.5,1),fn=logL.individual.chisq,

screen.time =c(0,1,2), participation.rate=participation.rate,

XVII



randomization.ratio=1, method="BFGS", hessian=T,

control=list(fnscale=-1))

fit

(est=fit$par)

(covmat=solve(-fit$hessian))

cov2cor(covmat)

(param=c(exp(est[1])/(1+exp(est[1])),2+exp(est[2])))

postscript("~/Dropbox/1-work/1-PhD/thesis/Figures/

NLST_projection_below65.eps", width=8.5, height=5,

paper="special", horizontal=FALSE)

n.FU=15

R=reduction.chisq(est, follow.up.time=seq(0,n.FU,by=.1),

screen.time=seq(1,91,by=10),

participation.rate=participation.rate)

plot(seq(0, n.FU, by=.1), 1-R, ylim = c(0, 1),

ylab="Reduction", xlab="Follow-up year", type = "l",

col=2, lwd=2, yaxt="n", xaxt="n");

R=reduction.chisq(est, follow.up.time=seq(0,n.FU,by=.1),

screen.time=seq(1,21,by=10),

participation.rate=participation.rate)

lines(seq(0, n.FU, by=.1), 1-R, lty=2,lwd=2);

axis(2,at=1-seq(0,1,.2), labels=paste(100*seq(0,1,.2),"%"),

las=2, cex=.8)

axis(1,at=seq(0,n.FU,1), labels=paste(0: n.FU), las=1, cex=.8)

text(0:2,rep(.1,3),"S",col=1)

text(0:9,rep(.015,10),"S",col=2)

abline(h=seq(.2,1,by=.2),lty=’dotted’)

legend("bottomright",legend=c("Fitted (3 rounds)",

"Projection (10 rounds)"),lty=c(2,1),col=c(1,2),lwd=c(2,2))

dev.off()
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