HOW BIG ARE THE REAL MORTALITY REDUCTIONS PRODUCED BY CANCER SCREENING?

WHY DO SO MANY TRIALS REPORT ONLY 20%?

James A. Hanley¹, Zhihui (Amy) Liu¹, Nandini Dendukuri^{1,2}, Erin Strumpf^{1,3}

¹Dept. of Epidemiology, Biostatistics & Occupational Health ²Dept. of Medicine, and Technology Assessment Unit ³Dept. of Economics

McGill University, Montréal, Québec, CANADA

(SSC-sponsored) JSM Invited Session Montréal Aug 7, 2013

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ のへぐ

 With their blindness to the delay until the reductions in mortality are expressed,

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

 With their blindness to the delay until the reductions in mortality are expressed, the prevailing design and data-analysis of cancer screening trials

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

 With their blindness to the delay until the reductions in mortality are expressed, the prevailing design and data-analysis of cancer screening trials under-estimate the mortality reductions that would be produced by a sustained screening program

 With their blindness to the delay until the reductions in mortality are expressed, the prevailing design and data-analysis of cancer screening trials under-estimate the mortality reductions that would be produced by a sustained screening program

(ロ) (同) (三) (三) (三) (○) (○)

P-value-driven stopping rules exacerbate the underestimation

 With their blindness to the delay until the reductions in mortality are expressed, the prevailing design and data-analysis of cancer screening trials under-estimate the mortality reductions that would be produced by a sustained screening program

- P-value-driven stopping rules exacerbate the underestimation
- We might be able to avoid such misleading numbers if we

 With their blindness to the delay until the reductions in mortality are expressed, the prevailing design and data-analysis of cancer screening trials *under-estimate* the mortality reductions that *would be produced by a sustained screening program*

- P-value-driven stopping rules exacerbate the underestimation
- We *might* be able to avoid such misleading numbers if we (i) recognize the issue, and avoid the standard RCT paradigm

- With their blindness to the delay until the reductions in mortality are expressed, the prevailing design and data-analysis of cancer screening trials under-estimate the mortality reductions that would be produced by a sustained screening program
- P-value-driven stopping rules exacerbate the underestimation
- We *might* be able to avoid such misleading numbers if we
 (i) recognize the issue, and avoid the standard RCT paradigm
 (ii) run trials with sufficient rounds of screening and sufficient follow-up

- With their blindness to the delay until the reductions in mortality are expressed, the prevailing design and data-analysis of cancer screening trials under-estimate the mortality reductions that would be produced by a sustained screening program
- P-value-driven stopping rules exacerbate the underestimation
- We *might* be able to avoid such misleading numbers if we
 (i) recognize the issue, and avoid the standard RCT paradigm
 (ii) run trials with sufficient rounds of screening and sufficient follow-up
 (iii) spend major portion of career waiting to measure real reductions

- With their blindness to the delay until the reductions in mortality are expressed, the prevailing design and data-analysis of cancer screening trials under-estimate the mortality reductions that would be produced by a sustained screening program
- P-value-driven stopping rules exacerbate the underestimation
- We *might* be able to avoid such misleading numbers if we

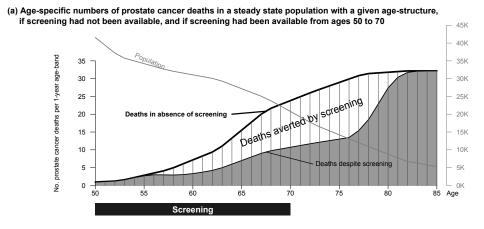
 (i) recognize the issue, and avoid the standard RCT paradigm
 (ii) run trials with sufficient rounds of screening and sufficient follow-up
 (iii) spend major portion of career waiting to measure real reductions
 (iv) analyze the data using time-specificity / non-proportional hazards

- With their blindness to the delay until the reductions in mortality are expressed, the prevailing design and data-analysis of cancer screening trials under-estimate the mortality reductions that would be produced by a sustained screening program
- P-value-driven stopping rules exacerbate the underestimation
- We *might* be able to avoid such misleading numbers if we

 recognize the issue, and avoid the standard RCT paradigm
 run trials with sufficient rounds of screening and sufficient follow-up
 spend major portion of career waiting to measure real reductions
 analyze the data using time-specificity / non-proportional hazards
 focus on the parameters that describe impact of 1 round of screening

Outline

- The mortality reductions produced by a screening regimen: what payers want to know
- European Randomized Study of Screening for Prostate Cancer [and Göteborg portion of this study]
- Data-analysis practice in other cancer screening trials
- How to stop a screening RCT at a 20% mortality reduction? [Theorem]

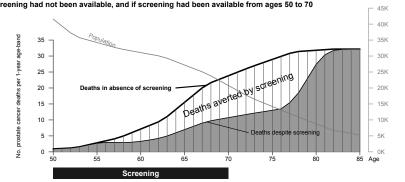

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

A way ahead?

What payers would like to know...

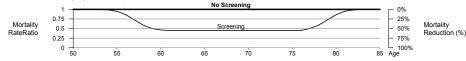
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

What payers would like to know...



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

They could arrive at these numbers if they had...


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

They could arrive at these numbers if they had...

(a) Age-specific numbers of prostate cancer deaths in a steady state population with a given age-structure, if screening had not been available, and if screening had been available from ages 50 to 70

(b) The corresponding age-specific prostate cancer mortality rate ratios

Population per 1-year age-band

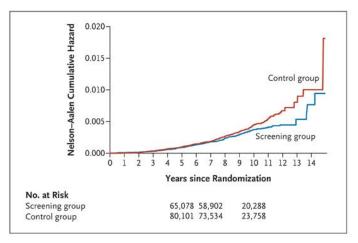
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(?)

Can they obtain these (or asymptote) from published reports?

Screening & Prostate-Ca Mortality in Randomized European Study ("ERSPC" nejm2009.04)

Screening & Prostate-Ca Mortality in Randomized European Study ("ERSPC" nejm2009.04)

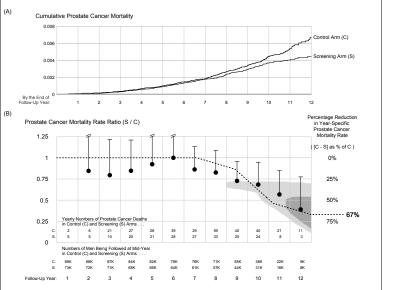
As of December 31, 2006, with an average follow-up time of 8.8 years, there were 214 prostate-cancer deaths in the screening group and 326 in the control group. (...) The adjusted rate ratio for death from prostate cancer in the screening group was 0.80 (95% Cl, 0.65 to 0.98; P=0.04).


< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

"PSA-based screening reduced the rate of death from prostate cancer by 20%."

Screening & Prostate-Ca Mortality in Randomized European Study ("ERSPC" nejm2009.04)

As of December 31, 2006, with an average follow-up time of 8.8 years, there were 214 prostate-cancer deaths in the screening group and 326 in the control group. (...) The adjusted rate ratio for death from prostate cancer in the screening group was 0.80 (95% Cl, 0.65 to 0.98; P=0.04).


"PSA-based screening reduced the rate of death from prostate cancer by 20%."

RE-ANALYSIS OF ERSPC DATA using year-specific prostate cancer mortality ratios

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

(A) Overall vs. (B) Year-specific mortality ratios

Hanley, J Medical Screening, 2010.

Göteborg randomised population-based prostate-cancer screening trial

Göteborg randomised population-based prostate-cancer screening trial

Methods In December, 1994, 20000 men born between 1930 and 1944, randomly sampled from the population register, were randomised by computer in a 1:1 ratio to either a screening group invited for PSA testing every 2 years (n=10000) or to a control group not invited (n=10000). Men in the screening group were invited up to the upper age limit (median 69, range 67–71 years) and only men with raised PSA concentrations were offered additional tests such as digital rectal examination and prostate biopsies. The primary endpoint was prostate-cancer specific mortality, analysed according to the intention-to-screen principle. The study is ongoing, with men who have not reached the upper age limit invited for PSA testing. This is the first planned report on cumulative prostate-cancer incidence and mortality calculated up to Dec 31, 2008. This study is registered as an International Standard Randomised Controlled Trial ISRCTN54449243.

Findings In each group, 48 men were excluded from the analysis because of death or emigration before the randomisation date, or prevalent prostate cancer. In men randomised to screening, 7578 (76%) of 9952 attended at least once. During a median follow-up of 14 years, 1138 men in the screening group and 718 in the control group were diagnosed with prostate cancer, resulting in a cumulative prostate-cancer incidence of 12.7% in the screening group and 8.2% in the control group (hazard ratio 1.64; 95% CI 1.50-1.80; p<0.0001). The absolute cumulative risk reduction of death from prostate cancer at 14 years was 0.40% (95% CI 0.17-0.64), from 0.90% in the control group to 0.50% in the screening group. The rate ratio for death from prostate cancer for attendees compared with the control group was 0.44 (95% CI 0.28-0.68; p=0.0002). Overall, 223 (95% CI 1.77-799) men needed to be invited for screening and 12 to be diagnosed to prevent one prostate cancer death.

Interpretation This study shows that prostate cancer mortality was reduced almost by half over 14 years. However, the risk of over-diagnosis is substantial and the number needed to treat is at least as high as in breast-cancer screening programmes. The benefit of prostate-cancer screening compares favourably to other cancer screening programs.

Hugosson et al. Lancet Oncol. 2010 Aug;11(8):725-32. Epub 2010 Jul 2.

Mortality Results

Mortality Results

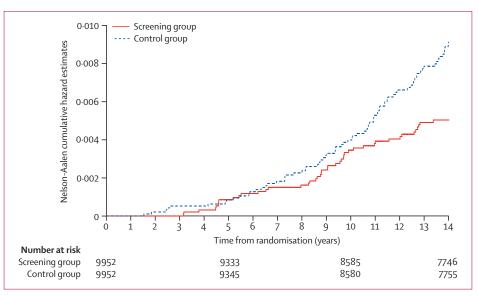


Figure 3: Cumulative risk of death from prostate cancer using Nelson-Aalen cumulative hazard estimates a C

YEARLY numbers of Pr Ca Deaths in Control and Screening groups

YEARLY numbers of Pr Ca Deaths in Control and Screening groups

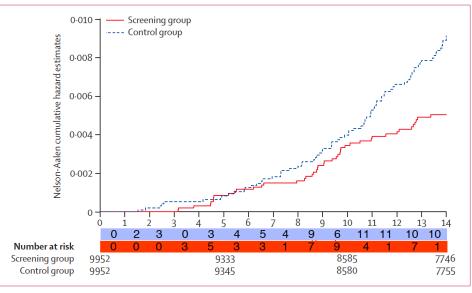
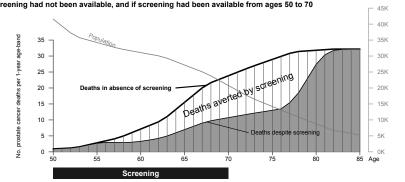
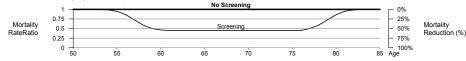



Figure 3: Cumulative risk of death from prostate cancer using Nelson-Aalen cumulative hazard estimates

They could arrive at these numbers if they had...


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

They could arrive at these numbers if they had...

(a) Age-specific numbers of prostate cancer deaths in a steady state population with a given age-structure, if screening had not been available, and if screening had been available from ages 50 to 70

(b) The corresponding age-specific prostate cancer mortality rate ratios

Population per 1-year age-band

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(?)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

EVERY TRIAL & META-ANALYSIS:

and (nejm2010) REPORT on NORWAY NATIONAL SCREENING PROGRAM:

REDUCTION UNDER-ESTIMATED

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

EVERY TRIAL & META-ANALYSIS:

and (nejm2010) REPORT on NORWAY NATIONAL SCREENING PROGRAM:

REDUCTION UNDER-ESTIMATED

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

• Miettinen et al., Lancet 2002.

EVERY TRIAL & META-ANALYSIS:

and (nejm2010) REPORT on NORWAY NATIONAL SCREENING PROGRAM:

REDUCTION UNDER-ESTIMATED

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

- Miettinen et al., *Lancet* 2002.
- Hanley, Epidemiologic Reviews 2011.

EVERY TRIAL & META-ANALYSIS:

and (nejm2010) REPORT on NORWAY NATIONAL SCREENING PROGRAM:

REDUCTION UNDER-ESTIMATED

- Miettinen et al., *Lancet* 2002.
- Hanley, Epidemiologic Reviews 2011.
- Hanley, Liu, Strumpf, Dendukuri, McGregor.
 "No.s of breast cancer deaths averted by mammography screening". (Response to Canadian Task Force on Preventive Health Care)
 ... manuscript under review at Canadian J Public Health
- Hanley JA, Z Liu Z, McGregor M. The [ratio of] benefits [to] harms of breast cancer screening. Letter re the Report The Independent UK Panel on Breast Cancer Screening (Lancet Nov 17, 2012)

LUNG CANCER

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

What was reported (NEJM Aug 4, 2011) ...

Follow-up Year:	1	2	3	4	5	6	7 ALL
Screens	1	↑	↑				·
X-ray Arm:							442
CT Arm:							354
Relative Deficit:							20%

(日) (日) (日) (日) (日) (日) (日)

What was reported (NEJM Aug 4, 2011) ...

Follow-up Year:	1	2	3	4	5	6	7 ALL
Screens	↑	1	↑				
X-ray Arm:							442
CT Arm:							354
Relative Deficit:							20%

Year-specific data extracted from graph in that report ...

X-ray Arm:	37	68	82	95	84	73	4	
CT Arm:	31	57	67	84	72	42	3	
Relative Deficit:	16%	16%	18%	12%	14%	42%		

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

What was reported (NEJM Aug 4, 2011) ...

Follow-up Year:	1	2	3	4	5	6	7	ALL
Screens	↑	↑	↑					
X-ray Arm:								442
CT Arm:								354
Relative Deficit:								20%

Year-specific data extracted from graph in that report ...

X-ray Arm:	37	68	82	95	84	73	4	
CT Arm:	31	57	67	84	72	42	3	
Relative Deficit:	16%	16%	18%	12%	14%	42%		

Further year-specific numbers essential to measure impact of 3 rounds of screening.

20% MORTALITY REDUCTION

20% MORTALITY REDUCTION

A UNIVERSAL CONSTANT IN SCREENING TRIALS?

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

- HPV 6,11,16,18 infection:
 - Quadrivalent human papillomavirus (HPV) vaccine

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- HPV 6,11,16,18 infection:
 - Quadrivalent human papillomavirus (HPV) vaccine

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Paralytic or non-paralytic poliomyelitis:
 - Salk Vaccine

- HPV 6,11,16,18 infection:
 - Quadrivalent human papillomavirus (HPV) vaccine

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Paralytic or non-paralytic poliomyelitis:
 - Salk Vaccine
- Death from ruptured abdominal aneurym:
 - Ultrasound screening

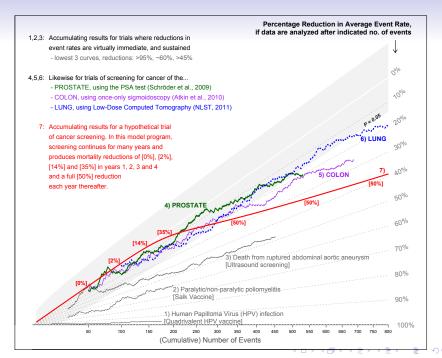
- HPV 6,11,16,18 infection:
 - Quadrivalent human papillomavirus (HPV) vaccine
- Paralytic or non-paralytic poliomyelitis:
 - Salk Vaccine
- Death from ruptured abdominal aneurym:
 - Ultrasound screening

QUESTION: Shape of \downarrow (*t*) function, i.e., % Reduction in Rate as function of follow-up time, if rates based on...

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- HPV 6,11,16,18 infection:
 - Quadrivalent human papillomavirus (HPV) vaccine
- Paralytic or non-paralytic poliomyelitis:
 - Salk Vaccine
- Death from ruptured abdominal aneurym:
 - Ultrasound screening

QUESTION: Shape of \downarrow (*t*) function, i.e., % Reduction in Rate as function of follow-up time, if rates based on...


• all events up to that point in f-up time? (1 'average' rate) ?

(日) (日) (日) (日) (日) (日) (日)

- HPV 6,11,16,18 infection:
 - Quadrivalent human papillomavirus (HPV) vaccine
- Paralytic or non-paralytic poliomyelitis:
 - Salk Vaccine
- Death from ruptured abdominal aneurym:
 - Ultrasound screening

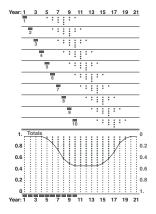
QUESTION: Shape of \downarrow (*t*) function, i.e., % Reduction in Rate as function of follow-up time, if rates based on...

- all events up to that point in f-up time? (1 'average' rate) ?
- when in f-up time events occurred ('time-specific' rates) ?

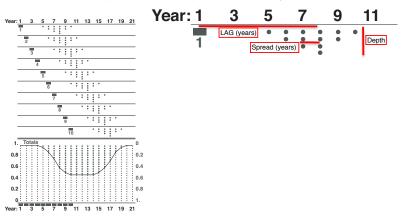
PLANS

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

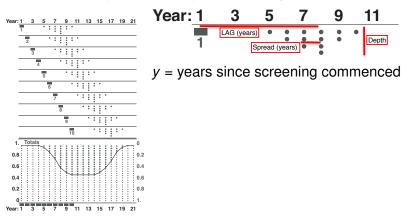
◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

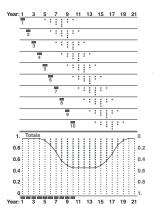

• **Data**: completed RCTs of screening for prostate, breast, colon and lung ca; population-based screening programs.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@


- **Data**: completed RCTs of screening for prostate, breast, colon and lung ca; population-based screening programs.
- 3 Parameters ('deliverables') and how they will be fitted:

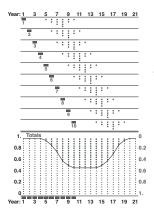
(ロ) (同) (三) (三) (三) (○) (○)


- **Data**: completed RCTs of screening for prostate, breast, colon and lung ca; population-based screening programs.
- **3 Parameters** ('*deliverables*') and how they will be fitted:


- **Data**: completed RCTs of screening for prostate, breast, colon and lung ca; population-based screening programs.
- 3 Parameters ('deliverables') and how they will be fitted:

- **Data**: completed RCTs of screening for prostate, breast, colon and lung ca; population-based screening programs.
- 3 Parameters ('deliverables') and how they will be fitted:

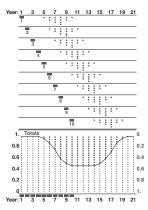
- **Data**: completed RCTs of screening for prostate, breast, colon and lung ca; population-based screening programs.
- 3 Parameters ('deliverables') and how they will be fitted:

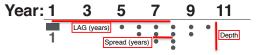


y = years since screening commenced
Rate ratio in Year y, Age a in Study s : RateRatio(y, a, s) =

・ロト ・ 同ト ・ ヨト ・ ヨト

- **Data**: completed RCTs of screening for prostate, breast, colon and lung ca; population-based screening programs.
- 3 Parameters ('deliverables') and how they will be fitted:

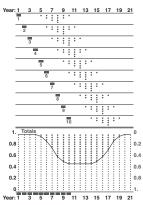




y = years since screening commenced
Rate ratio in Year y, Age a in Study s : RateRatio(y, a, s) = sum of reductions from all previous rounds of screening in study s

・ロト ・ 同ト ・ ヨト ・ ヨト

- **Data**: completed RCTs of screening for prostate, breast, colon and lung ca; population-based screening programs.
- 3 Parameters ('deliverables') and how they will be fitted:

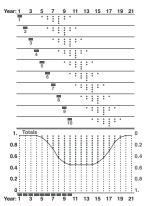

y = years since screening commenced
Rate ratio in Year y, Age a in Study s :

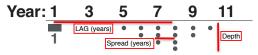
RateRatio(y, a, s) =

sum of reductions from all previous rounds of screening in study *s*

• Design matrix: 1 row per y-a-s 'cell'

- Data: completed RCTs of screening for prostate, breast, colon and lung ca; population-based screening programs.
- 3 Parameters ('deliverables') and how they will be fitted:

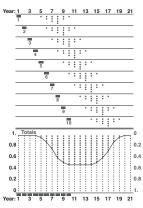


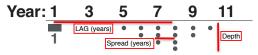

- y = years since screening commenced
- Rate ratio in Year y, Age a in Study s : RateRatio(y, a, s) =

sum of reductions from all previous rounds of screening in study s

- Design matrix: 1 row per y-a-s 'cell' No. deaths in screening arm No. deaths in 2 arms combined
 - in each 'cell'

- Data: completed RCTs of screening for prostate, breast, colon and lung ca; population-based screening programs.
- 3 Parameters ('deliverables') and how they will be fitted:



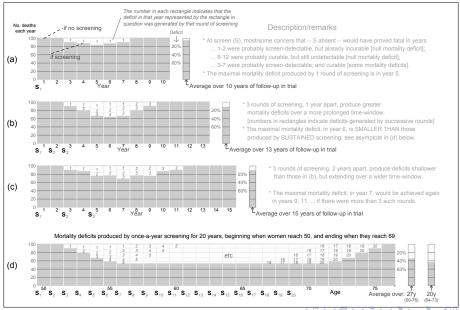

- y = years since screening commenced
- Rate ratio in Year y, Age a in Study s : RateRatio(y, a, s) =

sum of reductions from all previous rounds of screening in study s

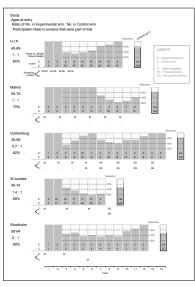
- Design matrix: 1 row per y-a-s 'cell'
 - No. deaths in screening arm No. deaths in 2 arms combined in each 'cell'
- Fit by Max. Likelihood (binomial model)

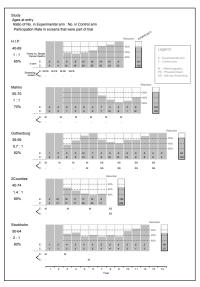
- Data: completed RCTs of screening for prostate, breast, colon and lung ca; population-based screening programs.
- 3 Parameters ('deliverables') and how they will be fitted:

- y = years since screening commenced
- Rate ratio in Year y, Age a in Study s : RateRatio(y, a, s) =


sum of reductions from all previous rounds of screening in study s

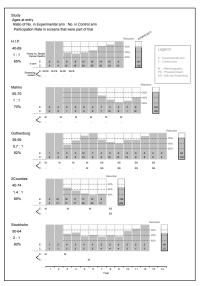
- Design matrix: 1 row per y-a-s 'cell' in each 'cell'
 - No. deaths in screening arm No. deaths in 2 arms combined
 - Fit by Max. Likelihood (binomial model)
- USE: project mort. reductions due to a screening regimen


Mortality deficits produced by 1 or more rounds of screening


◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

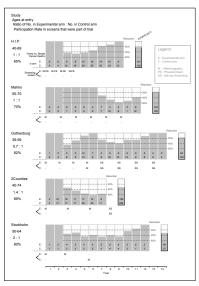
Mortality deficits produced by 1 or more rounds of screening

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○



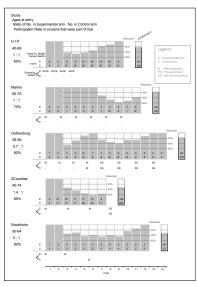
• Canadian Task Force guidelines are based on data-analyses that ignore some essential principles of cancer screening. The analyses underestimate the reductions in breast cancer mortality that would be seen in the 50-80 age range if women were screened regularly from when they reach age 50 until 69.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト


э

• Canadian Task Force guidelines are based on data-analyses that ignore some essential principles of cancer screening. The analyses underestimate the reductions in breast cancer mortality that would be seen in the 50-80 age range if women were screened regularly from when they reach age 50 until 69.

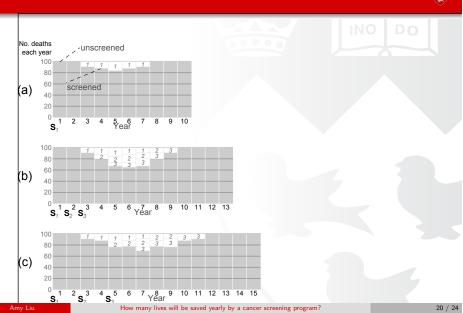
• We use year-specific data from the trials used by the Task Force, to quantify the magnitude and timing of the mortality reductions in relation to the no. & timing of the rounds of screening. We use the nadirs of the rate ratio curves as conservative estimates of what the reduction would be in a sustained program.


ヘロマ ヘ動 マイロマー

• Canadian Task Force guidelines are based on data-analyses that ignore some essential principles of cancer screening. The analyses underestimate the reductions in breast cancer mortality that would be seen in the 50-80 age range if women were screened regularly from when they reach age 50 until 69.

• We use year-specific data from the trials used by the Task Force, to quantify the magnitude and timing of the mortality reductions in relation to the no. & timing of the rounds of screening. We use the nadirs of the rate ratio curves as conservative estimates of what the reduction would be in a sustained program.

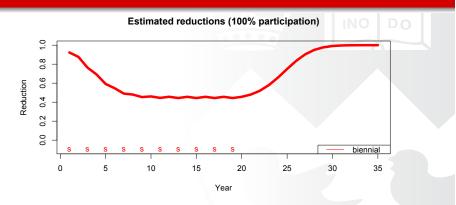
• Based on the 5 studies with adequate participation, 20 years of screening, 50–69, would be followed by 20 years (55–74) in which the breast cancer mortality reduction in these years would be \geq 40%, with smaller deficits in other years. Fewer than 200 women would need to participate in such a program in order to avert a breast cancer death in the age range 50-80.

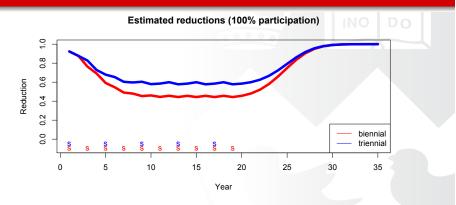

• Canadian Task Force guidelines are based on data-analyses that ignore some essential principles of cancer screening. The analyses underestimate the reductions in breast cancer mortality that would be seen in the 50-80 age range if women were screened regularly from when they reach age 50 until 69.

• We use year-specific data from the trials used by the Task Force, to quantify the magnitude and timing of the mortality reductions in relation to the no. & timing of the rounds of screening. We use the nadirs of the rate ratio curves as conservative estimates of what the reduction would be in a sustained program.

• Based on the 5 studies with adequate participation, 20 years of screening, 50–69, would be followed by 20 years (55–74) in which the breast cancer mortality reduction in these years would be \geq 40%, with smaller deficits in other years. Fewer than 200 women would need to participate in such a program in order to avert a breast cancer death in the age range 50-80.

• The mortality reductions in these five studies are at least double the "average" figure of 21% used by the Task Force, while the number of women who, from age 50, would need to participate in a 20 year-screening program to avert one breast cancer death is a fraction of the 720 calculated by the Task Force.


A round-by-round approach?


Possible Solutions

A round-by-round approach (SSC 2012)

Starting in year 7, a sustained yearly reduction of over **50%** in an **biennial** program,

A round-by-round approach (SSC 2012)

Starting in year 7, a sustained yearly reduction of over **50%** in an **biennial** program, or **40%** in an **triennial** program.

 With their blindness to the delay until the reductions in mortality are expressed,

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

 With their blindness to the delay until the reductions in mortality are expressed, the prevailing design and data-analysis of cancer screening trials

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

 With their blindness to the delay until the reductions in mortality are expressed, the prevailing design and data-analysis of cancer screening trials

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

 With their blindness to the delay until the reductions in mortality are expressed, the prevailing design and data-analysis of cancer screening trials under-estimate the mortality reductions that would be produced by a sustained screening program

 With their blindness to the delay until the reductions in mortality are expressed, the prevailing design and data-analysis of cancer screening trials under-estimate the mortality reductions that would be produced by a sustained screening program

(ロ) (同) (三) (三) (三) (○) (○)

P-value-driven stopping rules exacerbate the underestimation

 With their blindness to the delay until the reductions in mortality are expressed, the prevailing design and data-analysis of cancer screening trials under-estimate the mortality reductions that would be produced by a sustained screening program

- P-value-driven stopping rules exacerbate the underestimation
- We might be able to avoid such misleading numbers if we

 With their blindness to the delay until the reductions in mortality are expressed, the prevailing design and data-analysis of cancer screening trials under-estimate the mortality reductions that would be produced by a sustained screening program

- P-value-driven stopping rules exacerbate the underestimation
- We *might* be able to avoid such misleading numbers if we (i) recognize the issue, and avoid the standard RCT paradigm

- With their blindness to the delay until the reductions in mortality are expressed, the prevailing design and data-analysis of cancer screening trials under-estimate the mortality reductions that would be produced by a sustained screening program
- P-value-driven stopping rules exacerbate the underestimation
- We *might* be able to avoid such misleading numbers if we
 (i) recognize the issue, and avoid the standard RCT paradigm
 (ii) run trials with sufficient rounds of screening and sufficient follow-up

- With their blindness to the delay until the reductions in mortality are expressed, the prevailing design and data-analysis of cancer screening trials under-estimate the mortality reductions that would be produced by a sustained screening program
- P-value-driven stopping rules exacerbate the underestimation
- We *might* be able to avoid such misleading numbers if we
 (i) recognize the issue, and avoid the standard RCT paradigm
 (ii) run trials with sufficient rounds of screening and sufficient follow-up
 (iii) spend major portion of career waiting to measure real reductions

- With their blindness to the delay until the reductions in mortality are expressed, the prevailing design and data-analysis of cancer screening trials under-estimate the mortality reductions that would be produced by a sustained screening program
- P-value-driven stopping rules exacerbate the underestimation
- We *might* be able to avoid such misleading numbers if we

 (i) recognize the issue, and avoid the standard RCT paradigm
 (ii) run trials with sufficient rounds of screening and sufficient follow-up
 (iii) spend major portion of career waiting to measure real reductions
 (iv) analyze the data using time-specificity / non-proportional hazards

- With their blindness to the delay until the reductions in mortality are expressed, the prevailing design and data-analysis of cancer screening trials under-estimate the mortality reductions that would be produced by a sustained screening program
- P-value-driven stopping rules exacerbate the underestimation
- We *might* be able to avoid such misleading numbers if we

 (i) recognize the issue, and avoid the standard RCT paradigm
 (ii) run trials with sufficient rounds of screening and sufficient follow-up
 (iii) spend major portion of career waiting to measure real reductions
 (iv) analyze the data using time-specificity / non-proportional hazards
 (v) focus on the parameters that describe impact of 1 round of screening

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

MONOGRAPHS IN EPIDEMIOLOGY AND BIOSTATISTICS VOLUME 19

Screening in Chronic Disease

Second Edition

ALAN S. MORRISON

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへぐ

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ のQ@

MONOGRAPHS IN EPIDEMIOLOGY AND BIOSTATISTICS VOLUME 19

Screening in Chronic Disease

Second Edition

ALAN S. MORRISON

Screening for breast cancer in women aged 40-49 years. Montreal: CETS Report no. 22, 1993. 91p. Available at: http://www.aetmis.gouv.qc.ca/en/

J. Caro and M. McGregor

MONOGRAPHS IN EPIDEMIOLOGY AND BIOSTATISTICS VOLUME 19

Screening in Chronic Disease

Second Edition

ALAN S. MORRISON

.....

Screening for breast cancer in women aged 40-49 years. Montreal: CETS Report no. 22, 1993. 91p. Available at: http://www.aetmis.gouv.qc.ca/en/

J. Caro and M. McGregor

Mammographic screening: no reliable supporting evidence?

Olli S Miettinen, Claudia I Henschke, Mark W Pasmantier, James P Smith, Daniel M Libby, David F Yankelevitz

Much confusion is being generated by the conclusion of a recent review that "there is no reliable evidence that screening for breast cancer duces mortality." In that review, however, there was no appreciation of the appropriate mortality-related measure of screening's usefulness; and correspondingly, there was no estimation of the magnitude of this measure. We take this measure to be the proportional reduction in case-fatality rate, and studied its magnitude on the basis of the only valid and otherwise suitable trial. We found reliable evidence of fatality reduction, apparently substantial in magnitude.

Lancet 2002; 359: 404-06

MONOGRAPHS IN EPIDEMIOLOGY AND BIOSTATISTICS VOLUME 19

Screening in Chronic Disease

Second Edition

ALAN S. MORRISON

Mammographic screening: no reliable supporting evidence?

Olli S Miettinen, Claudia I Henschke, Mark W Pasmantier, James P Smith, Daniel M Libby, David F Yankelevitz

Much confusion is being generated by the conclusion of a recent review that "there is no reliable evidence that screening for breast cancer duces mortality." In that review, however, there was no appreciation of the appropriate mortality-related measure of screening's usefulness; and correspondingly, there was no estimation of the magnitude of this measure. We take this measure to be the proportional reduction in case-fatality rate, and studied its magnitude on the basis of the only valid and otherwise suitable trial. We found reliable evidence of fatality reduction, apparently substantial in magnitude.

Lancet 2002; 359: 404-06

.....

Screening for breast cancer in women aged 40-49 years. Montreal: CETS Report no. 22, 1993. 91p. Available at: http://www.aetmis.gouv.qc.ca/en/

J. Caro and M. McGregor

NATURAL INHERITANCE

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

F. Galton, Natural Inheritance, 1889.

F. Galton, Natural Inheritance, 1889.

"It is difficult to understand why statisticians commonly limit their inquiries to Averages, and do not revel in more comprehensive views.

F. Galton, Natural Inheritance, 1889.

"It is difficult to understand why statisticians commonly limit their inquiries to Averages, and do not revel in more comprehensive views.

Their souls seem as dull to the charm of variety as that of the native of one of our flat English counties, whose retrospect of Switzerland was that,

F. Galton, Natural Inheritance, 1889.

"It is difficult to understand why statisticians commonly limit their inquiries to Averages, and do not revel in more comprehensive views.

Their souls seem as dull to the charm of variety as that of the native of one of our flat English counties, whose retrospect of Switzerland was that, if its mountains could be thrown into its lakes, two nuisances would be got rid of at once."

FUNDING, CO-ORDINATES, DOWNLOADS

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣�?

FUNDING, CO-ORDINATES, DOWNLOADS

Natural Sciences and Engineering Research Council of Canada

Le Fonds québécois de la recherche sur la nature et les technologies

Canadian Institutes of Health Research (2011-2014)

.....

FUNDING, CO-ORDINATES, DOWNLOADS

Natural Sciences and Engineering Research Council of Canada

Le Fonds québécois de la recherche sur la nature et les technologies

Canadian Institutes of Health Research (2011-2014)

.....

James.Hanley@McGill.CA

A D F A 同 F A E F A E F A Q A

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Some References

- Schröder FH, Hugosson J, Roobol MJ, et al. Screening and prostate-cancer mortality in a randomized European study. N Engl J Med 2009;360:1320-1328.
- *Hanley JA. Mortality reductions produced by sustained prostate cancer screening have been underestimated. Journal of Medical Screening. J Medical Screening 2010;17:147-151.
- *Hanley JA. Measuring Mortality reductions in cancer screening studies. *Epidemiologic Reviews* 2011. Advance Access published May 30, 2011.
- *Hanley JA. CANNeCTIN Clinical Trials Methodology Seminar Series. Videoconference April 9, 2010. <u>Slides</u>: http://www.cannectin.ca/. <u>Video</u>: Archived Events, http://webcast.otn.ca/
- Thompson SG, Ashton HA, Gao L, Scott RAP on behalf of the Multicentre Aneurysm Screening Study Group. Screening men for abdominal aortic aneurysm: 10 year mortality and cost effectiveness results from the randomised Multicentre Aneurysm Screening Study. *BMJ* 2009;338:b2307 doi:10.1136/bmj.b2307.
- *Hanley JA. Analysis of Mortality Data From Cancer Screening Studies: Looking in the Right Window. Epidemiology 2005; 16: 786-790.
- Miettinen OS, Henschke CI, Pasmantier MW, et al. Mammographic screening: no reliable supporting evidence? Lancet 2002;359:404-406.
- Miettinen OS, Henschke CI, Pasmantier MW, et al. Mammographic screening: no reliable supporting evidence? Available at: http://image.thelancet.com/extras/1093web.pdf. Accessed July 6, 2005.
- The National Lung Screening Trial Research Team. Reduced Lung-Cancer Mortality with Low-Dose Computed Tomographic Screening. N Engl J Med 2011; 365:395-409.
- 10. Hanley JA, Liu Z, Strumpf E, Dendukuri N, McGregor M. Numbers of breast cancer deaths averted by mammography screening". under review at Canadian Journal of Public Health

(ロ) (同) (三) (三) (三) (○) (○)

* http:www.biostat.mcgill.ca/hanley/ (reprints/talks)

▲□▶▲□▶▲□▶▲□▶ □ ● ● ● ●

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 Enrollment: 1971-1976; negative on 'prevalence' screen; screening every 4 mo. for 6 years (vs., on enrollment, recommendation to receive annual chest x-ray & sputum cytology).

- Enrollment: 1971-1976; negative on 'prevalence' screen; screening every 4 mo. for 6 years (vs., on enrollment, recommendation to receive annual chest x-ray & sputum cytology).
- JNCI 2000: "Lung Cancer Mortality in the Mayo Lung Project: Impact of Extended Follow-up"

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Enrollment: 1971-1976; negative on 'prevalence' screen; screening every 4 mo. for 6 years (vs., on enrollment, recommendation to receive annual chest x-ray & sputum cytology).
- JNCI 2000: "Lung Cancer Mortality in the Mayo Lung Project: Impact of Extended Follow-up"

Would 24-year follow up "allow for a reduction in lung cancer mortality to be observed?"

(日) (日) (日) (日) (日) (日) (日)

- Enrollment: 1971-1976; negative on 'prevalence' screen; screening every 4 mo. for 6 years (vs., on enrollment, recommendation to receive annual chest x-ray & sputum cytology).
- JNCI 2000: "Lung Cancer Mortality in the Mayo Lung Project: Impact of Extended Follow-up"

Would 24-year follow up "allow for a reduction in lung cancer mortality to be observed?"

(日) (日) (日) (日) (日) (日) (日)

ALL lung cancer deaths, from those in year...

- Enrollment: 1971-1976; negative on 'prevalence' screen; screening every 4 mo. for 6 years (vs., on enrollment, recommendation to receive annual chest x-ray & sputum cytology).
- JNCI 2000: "Lung Cancer Mortality in the Mayo Lung Project: Impact of Extended Follow-up"

Would 24-year follow up "allow for a reduction in lung cancer mortality to be observed?"

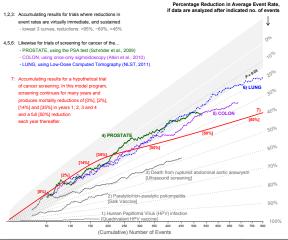
- ALL lung cancer deaths, from those in year...
 - 1, before impact could become evident,

Mayo Lung Project (chest x-ray & sputum cytology)

- Enrollment: 1971-1976; negative on 'prevalence' screen; screening every 4 mo. for 6 years (vs., on enrollment, recommendation to receive annual chest x-ray & sputum cytology).
- JNCI 2000: "Lung Cancer Mortality in the Mayo Lung Project: Impact of Extended Follow-up"

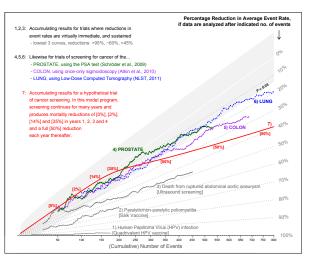
Would 24-year follow up "allow for a reduction in lung cancer mortality to be observed?"

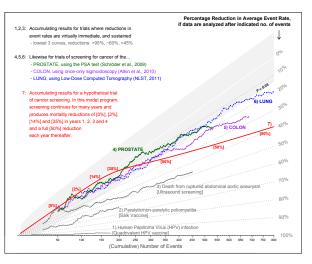
- ALL lung cancer deaths, from those in year...
 - 1, before impact could become evident, to

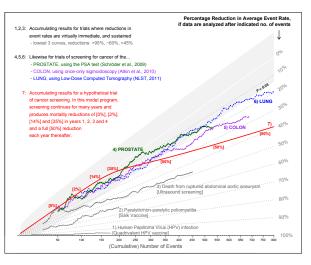

Mayo Lung Project (chest x-ray & sputum cytology)

- Enrollment: 1971-1976; negative on 'prevalence' screen; screening every 4 mo. for 6 years (vs., on enrollment, recommendation to receive annual chest x-ray & sputum cytology).
- JNCI 2000: "Lung Cancer Mortality in the Mayo Lung Project: Impact of Extended Follow-up"

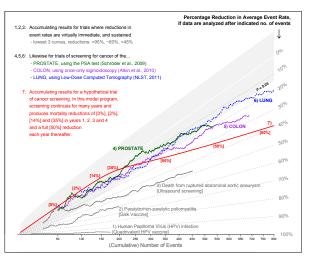
Would 24-year follow up "allow for a reduction in lung cancer mortality to be observed?"


(日) (日) (日) (日) (日) (日) (日)


- ALL lung cancer deaths, from those in year...
 - 1, before impact could become evident, to
 - 24, 18 years after last screen.


60%

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・


Mortality reductions from cancer screening manifest distally. Enrolling and following more people for short length of time yields a more precise UNDERestimate.

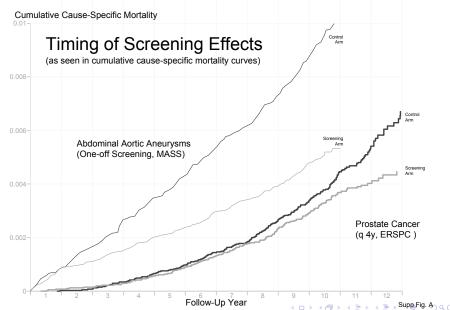
Mortality reductions from cancer screening manifest distally. Enrolling and following more people for short length of time yields a more precise UNDERestimate.

The seemingly-universal 20% reduction is an artifact of prevailing data-analysis methods and stopping rules.

・ロット (雪) (日) (日)

Mortality reductions from cancer screening manifest distally. Enrolling and following more people for short length of time yields a more precise UNDERestimate.

The seemingly-universal 20% reduction is an artifact of prevailing data-analysis methods and stopping rules.

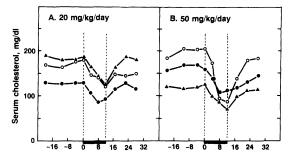

If use all data from time screening commences, the first % reduction which was statistically different from zero does not answer the question of interest to payers.

(日)

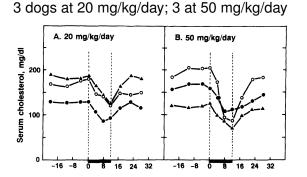
The loneliness of the long-distance trialist

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

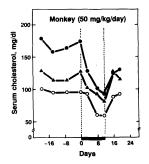
The loneliness of the long-distance trialist


Timing of cholesterol reductions produced by statins

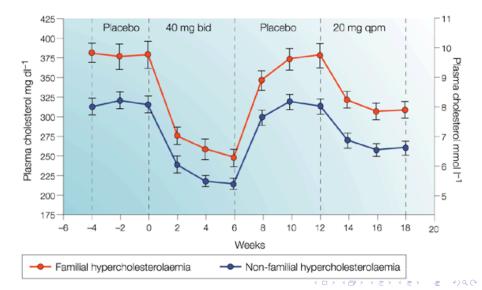
▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣�?


Timing of cholesterol reductions produced by statins

< ロ > < 同 > < 回 > < 回 >


3 dogs at 20 mg/kg/day; 3 at 50 mg/kg/day

Timing of cholesterol reductions produced by statins


3 monkeys at 50

Timing of cholesterol reductions produced by statins Humans

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Timing of cholesterol reductions produced by statins Humans

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

in 100,000 men

(average age at entry: 62 years)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

in 100,000 men (average age at entry: 62 years)

if screened using PSA test

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

in 100,000 men (average age at entry: 62 years)

if screened using PSA test

0, 1, 2, 3, or 4 times,

in 100,000 men (average age at entry: 62 years)

if screened using PSA test

0, 1, 2, 3, or 4 times,

tests 4 years apart

in 100,000 men (average age at entry: 62 years)

if screened using PSA test

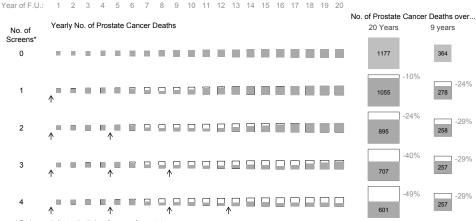
0, 1, 2, 3, or 4 times,

tests 4 years apart

and followed for (9) 20 years

in 100,000 men (average age at entry: 62 years)

if screened using PSA test

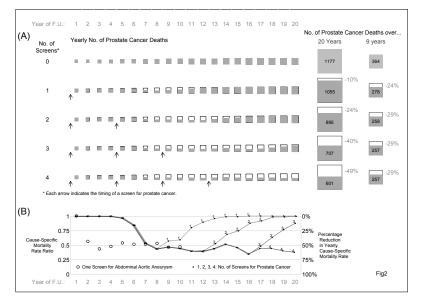

0, 1, 2, 3, or 4 times,

tests 4 years apart

and followed for (9) 20 years

HYPOTHETICAL DATA

Cumulative & Year-specific results, if screen 0,1,...,4 times, q 4y [HYPOTHETICAL]



イロト 不得 トイヨト イヨト

э.

* Each arrow indicates the timing of a screen for prostate cancer.

(B) Year-specific Rate Ratios & Percent Reductions [HYPOTHETICAL]

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ(?)

Norway - 'before-after' study

	EW ENGLA AL of MED	
ESTABLISHED IN 1812	SEPTEMBER 23, 2010	VOL. 363 NO. 13

Effect of Screening Mammography on Breast-Cancer Mortality in Norway

Mette Kalager, M.D., Marvin Zelen, Ph.D., Frøydis Langmark, M.D., and Hans-Olov Adami, M.D., Ph.D.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Screening program was started in 1996 and expanded geographically during the subsequent 9 years.

Women between the ages of 50 and 69 years were offered screening mammography every 2 years.

Results & Conclusions

Results & Conclusions

The rate of death was reduced by 7.2 deaths per 100,000 person-years in the screening group as compared with the historical screening group (rate ratio, 0.72; and by 4.8 deaths per 100,000 person-years in the nonscreening group as compared with the historical nonscreening group (rate ratio, 0.82; for a relative reduction in mortality of 10% in the screening group. Thus, the difference in the reduction in mortality between the current and historical groups that could be attributed to screening alone was 2.4 deaths per 100,000 person-years, or a third of the total reduction of 7.2 deaths.

Results & Conclusions

The rate of death was reduced by 7.2 deaths per 100,000 person-years in the screening group as compared with the historical screening group (rate ratio, 0.72; and by 4.8 deaths per 100,000 person-years in the nonscreening group as compared with the historical nonscreening group (rate ratio, 0.82; for a relative reduction in mortality of 10% in the screening group. Thus, the difference in the reduction in mortality between the current and historical groups that could be attributed to screening alone was 2.4 deaths per 100,000 person-years, or a third of the total reduction of 7.2 deaths. The availability of screening mammography was associated with a reduction in the rate of death from breast cancer, but the screening itself accounted for only about a third of the total reduction.

Time-insensitivity: not exclusive to RCT reports

(日)

Paraphrase of (refused) letter by JH to NEJM re 2010 analysis of data from Norway

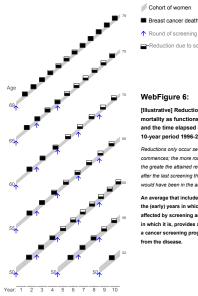
Kalager Zelen Langmark Adami.

Time-insensitivity: not exclusive to RCT reports

Paraphrase of (refused) letter by JH to NEJM re 2010 analysis of data from Norway

Kalager Zelen Langmark Adami.

Epidemiologic Reviews, 2011


▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Time-insensitivity: not exclusive to RCT reports

Paraphrase of (refused) letter by JH to NEJM re 2010 analysis of data from Norway

Kalager **Zelen** Langmark Adami.

Epidemiologic Reviews, 2011

-Reduction due to screening

Cohort of women

WebFigure 6:

[Illustrative] Reductions in breast-cancer mortality as functions of the duration of screening and the time elapsed since it was begun, in the 10-year period 1996-2005 in Norway.

Breast cancer deaths, in absence of screening

Reductions only occur several years after screening commences: the more rounds of screenings there are. the greate the attained reduction is; at some point after the last screening the rates return to what they would have been in the absence of screening.

An average that includes - and is dominated by the (early) years in which mortality is not affected by screening and excludes (later) years in which it is, provides a diluted measure of a cancer screening program's impact on mortality from the disease.

• Year-specific* mortality rate ratios

- Year-specific* mortality rate ratios
- Moving averages* to reduce the statistical noise (deaths in moving 3-year intervals)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- Year-specific* mortality rate ratios
- Moving averages* to reduce the statistical noise (deaths in moving 3-year intervals)
- Smooth curve for rate ratio function (data bins 0.2 y wide).

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

^{*} cf. Miettinen et al. 2002

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへぐ

Enrollment: August 2002 - March-2004
 3 annual screens: low-dose helical CT (vs. standard chest X-ray).

(ロ) (同) (三) (三) (三) (○) (○)

• Enrollment: August 2002 - March-2004 3 annual screens: low-dose helical CT (vs. standard chest X-ray). Primary scientific goal:

(ロ) (同) (三) (三) (三) (○) (○)

• Enrollment: August 2002 - March-2004 3 annual screens: low-dose helical CT (vs. standard chest X-ray). Primary scientific goal:

> to determine whether three annual screenings with low-dose helical computerized tomography (LDCT) reduces [sic] mortality from lung cancer

> > (日) (日) (日) (日) (日) (日) (日)

• Enrollment: August 2002 - March-2004 3 annual screens: low-dose helical CT (vs. standard chest X-ray). Primary scientific goal:

> to determine whether three annual screenings with low-dose helical computerized tomography (LDCT) reduces [sic] mortality from lung cancer

> > (日) (日) (日) (日) (日) (日) (日)

• Press Releases, November 2010:

• Enrollment: August 2002 - March-2004 3 annual screens: low-dose helical CT (vs. standard chest X-ray). Primary scientific goal:

> to determine whether three annual screenings with low-dose helical computerized tomography (LDCT) reduces [sic] mortality from lung cancer

> > ◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

• Press Releases, November 2010:

Screening of people at high-risk for lung cancer with low dose CT significantly reduces lung cancer death: 20% fewer lung cancer deaths [ACR]

Enrollment: August 2002 - March-2004
 3 annual screens: low-dose helical CT (vs. standard chest X-ray).
 Primary scientific goal:

to determine whether three annual screenings with low-dose helical computerized tomography (LDCT) reduces [sic] mortality from lung cancer

Press Releases, November 2010:

Screening of people at high-risk for lung cancer with low dose CT significantly reduces lung cancer death: 20% fewer lung cancer deaths [ACR]

An interim analysis of the study's primary endpoint, reported to the DSMB on October 20, 2010, revealed a deficit of lung cancer deaths in the LDCT arm, and the deficit exceeded that expected by chance,

(ロ) (同) (三) (三) (三) (○) (○)

Enrollment: August 2002 - March-2004
 3 annual screens: low-dose helical CT (vs. standard chest X-ray).
 Primary scientific goal:

to determine whether three annual screenings with low-dose helical computerized tomography (LDCT) reduces [sic] mortality from lung cancer

Press Releases, November 2010:

Screening of people at high-risk for lung cancer with low dose CT significantly reduces lung cancer death: 20% fewer lung cancer deaths [ACR]

An interim analysis of the study's primary endpoint, reported to the DSMB on October 20, 2010, revealed a deficit of lung cancer deaths in the LDCT arm, and the deficit exceeded that expected by chance, even allowing for the multiple analyses conducted during the course of the trial. Data presented at previous meetings of the DSMB did not meet the requirements for statistical significance with respect to the primary endpoint. [NCI(US)]

ACR Imaging Network: Press Release

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

ACR Imaging Network: Press Release

Table 3: Interim Analysis of Primary Endpoint Reported on October 20, 2010

Trial Arm	Person years (py)	Lung cancer deaths	Lung cancer mortality per 100,000 py	Reduction in lung cancer mortality (%)	Value of test statistic	Efficacy boundary
LDCT	144,097.6	354	245.7	20.3	-3.21	-2.02
CXR	143,363.5	442	308.3			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

ACR Imaging Network: Press Release

Table 3: Interim Analysis of Primary Endpoint Reported on October 20, 2010

Trial Arm	Person years (py)	Lung cancer deaths	Lung cancer mortality per 100,000 py	Reduction in lung cancer mortality (%)	Value of test statistic	Efficacy boundary
LDCT	144,097.6	354	245.7	20.3	-3.21	-2.02
CXR	143,363.5	442	308.3			

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

"Deficit": 88