The mortality reduction patterns produced by cancer screening

James Hanley & Amy (Zhihui) Liu

Annual Meeting of Statistical Society of Canada Edmonton

2013.05.29

Outline

Animations of the force of mortality - Turner & Hanley SSC 2009

Models/simulations/animations to study mortality patterns in cancer screening - Liu SSC2012/2013

Pearson's fitted 5-component mixture for frequency distribution of age at death

Analyzed in his 1897 essay The Chances of Death.

Rendered by Karl Pearson's wife, Maria Sharpe Pearson.

21st century animation of Pearson's Bridge of Life

Mortality Reductions Produced by Cancer Screening Programs & Trials

Impact of a hypothetical 20-year screening program measured...

Impact of a hypothetical 20-year screening program measured...

(a) in absolute numbers of cancer-specific deaths averted

Impact of a hypothetical 20-year screening program measured...

(a) in absolute numbers of cancer-specific deaths averted

(b) as rate (or hazard) ratios (HR's) and as percentage reductions.

Impact of a hypothetical 20-year screening program measured...

(a) in absolute numbers of cancer-specific deaths averted

(b) as rate (or hazard) ratios (HR's) and as percentage reductions.

Impact of a hypothetical 20-year screening program measured...

(a) in absolute numbers of cancer-specific deaths averted

(b) as rate (or hazard) ratios (HR's) and as percentage reductions.

Delay (usually ignored in data-analysis) explained in later slides

Support for the bathtub shape of the HR function?

Support for the bathtub shape of the HR function?

BUT... (a), (c), and (d) don't explain how bathtub shape arises

We explain it as a convolution of reductions produced by individual rounds

We explain it as a convolution of reductions produced by individual rounds

- Adopt simple model for reductions produced by 1 round
- Can fit this model to observed data in trial(s)
- What shape should this parametric model take?

• focus on cancers that, screening absent, proved to be fatal

(they did so because they were detected/treated too late)

• focus on cancers that, screening absent, proved to be fatal

(they did so because they were detected/treated too late)

• allow each fatal cancer to have had a faster/slower course

• focus on cancers that, screening absent, proved to be fatal

(they did so because they were detected/treated too late)

- allow each fatal cancer to have had a faster/slower course
- (possibly) alter their courses by earlier detection/treatment:

focus on cancers that, screening absent, proved to be fatal

(they did so because they were detected/treated too late)

- allow each fatal cancer to have had a faster/slower course
- (possibly) alter their courses by earlier detection/treatment:
- posit latest date when still curable & earliest date detectable

3-speed model - no screening

y-axis: 'stage'; x-axis: time ; diagonal line: progress of cancer

3-speed model - 1 round of screening

vertical line: 1 screen: diagonal line: progress possibility arrested; | probability

1 round of screening, smoother example

w.l.o.g. 2 'otherwise fatal' cancers/year; %↓ would apply whatever no./year

2 rounds of screening

cancer has 2 chances to be detected & have its course altered;

2 rounds of screening, smoother example

From Trial Data to Program projections, via (same) 3 parameters for each round

Trials do not reach the same 'asymptote' that programs would.

From Trial Data to Program projections, via (same) 3 parameters for each round

Trials do not reach the same 'asymptote' that programs would.

Use 3 parameters to model deficit due to each round & apply to any schedule.

Main points:

• They are delayed - and, in trials, transient

Main points:

- They are delayed and, in trials, transient
- Hazards are definitely non-proportional (ratio NOT constant)

Main points:

- They are delayed and, in trials, transient
- Hazards are definitely non-proportional (ratio NOT constant)
- Time needs to be a carefully considered and modelled

Main points:

- They are delayed and, in trials, transient
- Hazards are definitely non-proportional (ratio NOT constant)
- Time needs to be a carefully considered and modelled
- Graphics (static/dynamic) help us model, and explain.