
Fall 1999   Course 513-697: Applied Linear Models

Highlights / Key Concepts in NKNW4 Chapter  6 ...  revised after 1999/10/18 class

6.1 Multiple Regression Models

Why need multiple terms in model?: 1 term inadequate; too much imprecision. even if have control
over (and measure) all factors, still important to use these factors in model

1st order models: linear in the variables (distinguish variables from terms) response surface a
plane / hyperplane over the variables.

meaning of β's: β1 = δE[Y|X1,X2]/δX1 ("freezing" X2])

for (X1,X2) model, can draw as

X1

E[Y]

β1
1 unit of X1

Change in E[Y] for 
1 unit change in 
X2, with X1 held 
constant

β2

Lines are for 
different values 
of X2, 1 unit 
apart 

GENERAL Linear models: linear in the p terms (it might have been better if we used X's for
variables and Z for terms), so several possibilities:-

• p-1 separate variables  (so response surface is a hyperplane)

• a qualitative variable with more than k > 2 levels, represented as k-1 "indicator" terms
(these terms are often called "dummy" variables"; "dummy variables" were originally questions
inserted in questionnaires to see if respondent was being consistent or falling asleep or aware of
hypothesis being studied)

• terms made from powers X2, X3, ... of a variable or products of two or more variables
(so that response surface is curvilinear in the variables, but still a hyperplane in the terms)

• transformations of Y variable to have its relationship linear in the predictors

• combinations of the above

• LINEAR means linear in the coefficients (b's). Nothing "wrong" with models where predictor
function cannot be made linear in the coefficients; but estimation (even if use the LS criterion)
usually requires an iterative solution, since the estimating equations may no longer be linear in
the coefficients to be fitted

6.2 General Linear Regression Model in Matrix Terms
 - see text
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6.3 Estimation of Regression Coefficients

LS criterion ->  p estimating equations ("Normal Equations") :
(p linear equations in p β's,  if no redundancy!)

ML estimator same as LS estimator (if ε's i.i.d) , since maximize e -(1/2σ2)Q

Note that ML estimator of σ2 involves a divisor of n, rather than n-p, and so is biased.

6.4 Fitted Values and Residuals

Fitted values : substitute b for  in the model for E[y]: i.e.,

 fitted E[y] = X b = X [ X' X)-1 X' y ] = H y,

where H = X [ X' X)-1 X'  is called "hat" matrix

Since X is a matrix of "constants", b is p linear combinations of the n y's, so
X b is also (another) p linear combinations of the y's, and ultimately  -- if model is correct --
of the n (invisible) random ε ' s.

Residuals: substitute b for  in the model for E[y]: i.e.,

 vector of n residuals e  = y - X b = y  - H y  = ( I - H ) y

where H = X [ X' X)-1 X'  is called "hat" matrix

Again,  e is p linear combinations of the n y's, so ultimately  -- if model is correct --
p linear combinations of the n (invisible) random ε ' s.

Notice in particular equation 6.31

var[e] = σ2 ( I - H ) ,

where var is the sampling variance. i.e. what variation -- and covariation -- we would get if we
say simulated infinitely many datasets from the same X, just changing the  vector each time.

Remember that H involves just the X's. Thus, contrary to what you might expect,
the n fitted e's do not all have the same variance    .. unlike the 's  .  we will try to
see this in a spreadsheet. Basically, the reason is that the e's at the edges of the X
domain are more constrained (i.e. smaller) than those near the centre, since it is
the y's at the edge that determine the fit more than the ones at the middle.
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6.5 ANOVA

As with simple linear model, except that df are now p-1 and n-p  [1 df removed by fitting mean]

In this context, think of df = number of independent assessments of the variance being estimated.

"F test for regression relation" is a global test

i.e. β1 = β2 = ... = βp-1 = 0 vs. not all p-1 of the β 's are 0 (at least one non-zero)

As such, often not very useful.

Coefficient of Multiple determination (R2):

R2 = SSRegression/SStotal = 1 - SSResidual/SStotal

Useful to think of R2 as square of correlation of the n pairs of (y, fitted y) values.

(cf exercise 6.26)

"Adjusted"  R2:

R2 increases if use more terms in model, to point where R2 = 1 if fit n terms to n y's.

Clearly, a "saturated" or "near-saturated" model that fits a particular n datapoints
is unlikely to do quite so well with a new set of y's measured at the same x's. For example,
what if there are n=2 y values corresponding to 2 values of X. A straight line model will
predict the 2 y's perfectly, so R2 = 1. But this line will not predict where 2 new y values at
these same X values will be.

Imagine that for n y's, one created n-1 columns of X's from a random number table.. or the
telephone book or the like (or use X1= last digit of telephone no., X2 = square of this,
X3=cube of it etc).

With X1 alone, the R2 will be positive, since you force the fitting algorithm to find the b1
that maximizes the correlation of the (y,yhat) pairs [minimize the residuals].

I heard the following argument once, although it does not quite fit the formula. One variable,
whether really related or not, will by chance explain roughly 1/nth of the total variance, two
variables roughly 2/nths etc [if memory serves me right, the fractions are actually 1/(n-1),
2/(n-1), ...]. Thus, we can quantify how much of the "apparent" predictability is expected
even if the variables are -- in the infinite world -- truly unrelated, but in the finite sample,
seemingly related. This is the basis for the "adjusted" R2.

Think of the numerator of an adjusted R2 as SSregression minus "SSregression expected even
if no real relationship with these p-1 variables", so that one candidate might be

 Hanley's "Adjusted"  R2 =  
SSregression - [p-1]/[n-1] SStotal 

 SStotal

Am relying on memory and hurried: my formula doesn't match formula 6.42. Why?
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6.6 Inference re 's

Unbiasedness:   E[b] = , so b is unbiased.

Precision: Var[b] =  b  =   σ2 (XTX)-1

Structure of Var[b] : the price of estimating  b from correlated vs uncorrelated X's

e.g. X =  (1 x1 x2)  is an n × 3 matrix consisting of a column of 1's, of the n values of X1,
and the n values for X2.

Assume w.l.o.g.  that ave(X1) = ave(X2) = ... = 0, so that ave(Xi2) = var(Xi) = Vi, then

n 0 0

XTX  = 0 n V1 n Cov12

0 n Cov12 n V2

1/n 0 0

(XTX )- 1  = 0 1/[n{V1(1-r122)}]  -r12  / [n{SD1SD2(1-r122)}]

0  -r12  / [n{SD1SD2(1-r122)}] 1/[n{V2(1-r122)}]

If X1, and X2 are uncorrelated, so that Cov12  = 0, then

1/n 0 0

(XTX )- 1  = 0 1/[nV1] 0

0 0 1/[nV2]

with diagonal entries like those in simple linear regression on X1 and X2 separately. i.e. there is no
price for estimating β1 and β2 simultaneously.

Note that the difference in the two cases is the additional (1-r122) in the denominator of the variance
of each of b1 and b2 when X1 and X2 are correlated.  The bigger the r12 , the more this increases.the
variance of the estimator: i.e., one pays a price for estimating the β's from positively correlated X's.
Note also that the correlation of  b1 and b2 is opposite in sign from that of the correlation of X1 and
X2.
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6.7 Estimation of mean (and individual) response at a given Xh .

Use the (scalar) dot product XhT  β̂  for both.  β̂  is the random vector and Xh . is the vector of given
X values. The Variance of the estimor is larger for the individual response, reflecting both the
uncertainty in the estimation of the mean, and the additional uncertainty of the individual response
from this mean.

Rules for variance of dot product apply:

var{XhT  
^}   = XhT  b  Xh

var{XhT  
^  + ε }   =  XhT  b  Xh     +  σ2 .  (as usual, substitute MSE for σ2 in b  and in  σ2 ).
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