Highlights / Key Concepts in NKNW4 Chapter 1

- Statistical Relationship/Pattern in observations made at different values of an 'explanatory' variable X
 - Systematic variation in "Centre" of all possible "responses" observed at X -- as a function of X ("centre" doesn't necessarily have to be the mean; it could be the median or another centrality parameter) (nor does the systematic variation have to be linear in X)
 - Random Variation around these "centres" (again, nothing specific about distribution of Y at each value of X)
- Origins of the term "regression" : Galton and his observations on "regression to mediocrity" (our use of the term regression has little to do with this original context)
- Statistical Model(s) : Focus on 2 components:
 - pattern of the "Centers" of Y | \hat{X} at each (possible) value of X ... form of this pattern / signal
 - spread of Y | X at each (possible) value of X (Noise") (can fit models without strong assumptions about noise)
 - the term "error" is misleading; biologic and other variations are not "errors" in sense of "experimental mistakes"
- Uses of Regression Models
 - description / summarization (can think of as descriptive statistics)
 - prediction
 - poor person's experimental control .. multiple regression: adjustment for "confounding" variables
- SIMPLE LINEAR REGRESSION MODEL
 - $E{Y | X}$ linear in X and linear in regression parameters
 - Pattern/Distribution of spread of { $Y \mid X$ } unspecified
- Meaning of regression parameters 0 and 1
 Think of 1 as E{Y | X} / X 0 usually of less interest (or maybe even completely artificial)
- Alternative ("Centered") Form for E{ Y | X} : 0* + 1[X X̄]
 Think of 1as E{Y | X} / X 0 usually of less interest (or maybe even completely artificial)
- Data
 - X values can be stochastic or selected (efficiencies possible if allowed to select which X values to study)
 X values assumed to be measured without error
- Parameter Estimation
 - different fitting criteria Least Squares; Least Absolute Deviations; Least Perpendicular Deviations; ...
 - Maximum Likelihood estimation possible if specify a statistical distribution for spread of Y \mid X
- Method of Least Squares (LS)
 - assumptions (few!)
 - derivation of computational formulae for estimators for $\ _0$, $\ _1$
 - Properties of LS estimators. of residuals, and of fitted line
- Estimation of Var{ Y | X} ... assuming that Var{ Y | X} is constant (homogeneous) over range of X via Mean Square Error (MSE)
- Normal (Gaussian) Error Regression Model
 - assumptions
 - derivation of ML estimators for $_0$, $_1$ and for ML estimators for Var{ Y | X}
 - Equivalence of LS and ML estimators for 0, 1 when assume Normal (Gaussian) Error Regression Model