
Incidence, cumulative incidence, survival function... However, consider the 1 year as 365 days, and do the arithmetic day by day. With

such a small unit of time, the use of 1 – 
0.02
365

  as a conditional probability is less of a

transgression.
Expression in Rothman page 31 CI[T] = 1 – exp[ –∫ I[t] dt ]

He derives this by integrating the equation I(t) =  
–dS[t]
S[t]dt Then, we can approximate the fraction of individuals free of an event at time t=1 as

the product of 365 conditional probabilities
where S[t] and dS[t] are:

S[t]
1

0
t

∆S

t+∆t

∆t S[1] = ( 1 – 
0.02
365   ) x ( 1 – 

0.02
365   ) ... ( 1 – 

0.02
365   ) = ( 1 – 

0.02
365   )

365

= 0.980 198 136

We could go even further and calculate hour by hour, multiplying 365 × 24

conditional probabilities of  1 – 
0.02

365  × 2 4
 each to get the fraction surviving as

S[1] = ( 1 – 
0.02

365  × 2 4
  )365  × 2 4

= 0.980 198 651

Dividing the 1 year into an even larger number of infinitely small time increments
has very little effect, and one can check that in the limit, as n-> ∞

S[1] = ( 1 – 
0.02

n   )
nExpression in Miettinen page 249, using the notation ID (Incidence Density) rather

than I,
CI[t0 to t1] = 1 – exp[ –∫ ID[t] dt ]       with integration limits t0 to t1

= 0.980 198 673

Miettinen gives Chiang, Introduction to Stochastic processes in Biostatistics, Wiley
New York, 1968  as a reference. In fact, the Limit of ( 1 – 

x
n  )

n
 as n goes to infinity is a very special function in

mathematics: it's the exp[-x] function

e  = e1 = exp[1] =  limit as n-> of [1 + 
1
n
 ]  

n

exp[x] =  limit as n-> of [1 + 
x
n
 ]  

n
exp[–x] =  limit as n-> of [1 – 

x
n
 ]  

n

How does the exp[ ] function come into it?

Consider a short period of time (e.g. 1 year) where the Incidence Density, ID,  is
constant. To  make matters concrete, say the ID for the event is 2  × 102 PY -1.
What fraction of individuals free of the event at time t = 0, would still be event-free
at time t = 1?  (to use notation from survival analysis, we might call this quantity
S[1], and say that S[0] = 1).

Thus, of those free at t=0, the proportion event-free at t=1 is S[1] = exp[- ID ×  1 ]The first instinct is to say that the proportion event-free would be 1 - 0.02 = 0.98;
but writing this is mixing metaphors, so to speak: one cannot subtract 0.02, which
is a density (with units PY-1), from 1, which is a unitless quantity. Technically, the
0.98 has no meaning.
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From S[1] to S[T] Special Cases

Now that we have an expression for the proportion event-free at the end of 1 time
unit, we can write the general formula for the proportion event-free at the end of T
unit of time as a product of the time unit by time unit conditional probabilities
Prob[> t |  > t -1 ] , i.e.

S[1] = Prob[> 1 |  > 0 ]

• If  ID[t] is constant over t,  then

H(T) =  ∫ID[t]dt

simplifies to

ID × T

so that

S(T)  = exp[- ID × T]

Thus, the cumulative incidence up to time T, CI(T), simplifies to

CI(T) =  1 – S[T] =  exp[- ID × T].

S[2] = Prob[> 1 |  > 0 ]  × Prob[> 2 |  > 1 ]

S[3] = Prob[> 1 |  > 0 ]  × Prob[> 2 |  > 1 ]  × Prob[> 3 |  > 2 ]

or

S(T) = ∏  Prob[> i |  > i-1 ]    (∏ means product, just like ∑ means Sum)

• Moreover, if  ID[t] is constant over t, and  ID × T is small

CI[T]  = 1 –  exp[- ID × T].   ≅   ID × T

or

S[T]  = 1 – ID × T

That's why the fancy calculations above came so close to the naive 0.98; had the
ID been 50  × 102 PY -1 , the approximation would have not been very good.

Since each Prob[> i |  > i-1 ] can be computed from the ID for that interval as
exp[-IDi],  we can write the S[T] product as

 S[T] = ∏  exp[-IDi] = exp[-∑IDi]

If we want to, we can replace  IDi  by the integral or summation ∫ID[t]dt where the
integration or summation is over the little time units in interval i, and if we further
take the summation over all intervals, then  S[T] simplifies to

S(T) = exp[ –∫ID[t]dt ]  = exp [–H[T] ]

where the summation or integration is from 0 to T.

The integral H[T] = ∫ID[t]dt  is called the "integrated hazard" or "cumulative hazard"
and denoted H(T) or Λ(T).

Note the reverse relation

H[T] = – log[ S[T] ].

It is common to plot the log of a survival curve against T to see if certain
assumptions concerning ID are borne out by the data.

Plots of functions of log[S[T]] versus t or log[t] can help suggest parametric
forms for  ID[t].

Another way to link  ID[t] and S[t]

Relate, at time t, the number of persons who become positive to the number
negative at time t , i.e. as a rate,... if f[t]dt persons become positive in the
interval (t,t+dt) then the rate or hazard at time t  is

 ID[t] = limit 
f[t]dt
S[t]

  as dt –> 0

or

ID[t] = limit  
– dS[t]

S[t]
  as dt –> 0.

We, as Rothman does, can reverse this equation to give

S[t] = exp[–∫ID[t]dt ].
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Cumulative Rate and Cumulative Risk
 [for comparison of cancer incidence] Now, the risk for any specific tumour up to age 75 is very rarely over 0.1, and

for a value of 0.1, one can approximate expression (1) by
(author N.E. Day)

(2) ∫ I[t]dtChapter 10 (pp 668-670) from  Cancer Incidence in Five Continents VOL  IV

The accuracy of the approximation is shown in Table 10.2 (for example, if
expression (2) equals 0.1, expression (1) has a value of 0.095).

Editors  J WATERHOUSE, C  MUIR, K. SHANMUGARATNAM , J POWELL In
collaboration with D PEACHAM, S WHELAN, Technical Editor for IARC   W. DAVIS,

IARC SCIENTIFIC PUBLICATIONS No. 42, Lyon, 1982.
 Expression (2) is dimensionless, and so not strictly a rate which should have
dimension (time)-1. However, if the integration is looked upon as a weighted
sum of incidence rates, with dimensionless weights, which would be the
same numerically, then expression (2) can be regarded as an incidence rate.

       In Volume lll of this series, the cumulative rate was advanced as a new age
standardized incidence rate. Some of the advantages that would follow from
its widespread adoption were described. In this volume rates standardized to
the so-called European and African populations have been dropped and
replaced by rates cumulated over the age ranges 0-64 and 0-74. This change
must be regarded as an encouraqing step towards the objective of removing
arbitrary rates of weight completely from descriptive epidemiology. The use of
different standard populations, not infrequently without specifying which one
has been used, has been a definite hindrance to communication in the past,
and interfered with the primary aim of age standardization, comparability.
Since the cumulative rate is still not widely used, and since each volume in
this series is intended to be self-contained, the reappearance of a virtually
identical chapter to the one in Volume III was considered warranted.

The proposed   measure is, then, the sum  over each  year of age of the age-
specific incidence  rates, taken  from birth  to age 74+  (as age-specific
incidence rates are usually computed for 5-year age intervals, the cumulative
rate is five times the sum of the age-specific incidence rates calculated over
five year age-groups, or during the first five years of life, where the group 0-1
is often given separately, by the rate in the 0-1 age-group plus four times the
rate in the 1-4 age-group. It can be interpreted either as a directly age-
standardized rate with the same population size in each age-group, or as an
approximation to the cumulated risk. It has been proposed  to call  the
measure the Cumulative Rate. It is more conveniently expressed per
hundred (per cent) than per hundred thousand.The purpose of this chapter, as in the corresponding chapter of Volume III, is

to encourage the greater use of the cumulative rate, which is both a directly
standardized incidence rate and a good approximation to the actuarial or
cumulative risk.

 A corresponding measure for, childhood cancer would sum the age-specific
rates over each year of age, 0-14.

Standard error of the cumulative rate
Cumulative rate: Definition

The variance and standard error of the cumulative rate can be derived directly
from the general expression for the standard error of a directly standardized
rate given in Chapter 11. If we have k age groups and the age-specific rate in
age group i is based on r cases and n person years, then the age-
standardized rate given by

        Before defining the cumulative rate,  the concept of the cumulative risk
will  be introduced. The cumulative risk is the risk an individual would have of
developing the disease in question during a certain age period if no other
causes of death were in operation. The age period over which the risk is
accumulated has to be specified, and would depend on the comparison
being made. Thus for childhood tumours one would take age 0-14, for
example. However, in general the whole life span risk would be the
appropriate measure, which can be taken as 0-74. If the instantaneous
incidence rate at an age t is given by I(t), then the cumulative risk between
apes t1 and t2 is given by

∑ w 
r
n

has a variance (based on the Poisson distribution) of

∑ r { 
w
n
}2(1) 1 - exp[ – ∫ I[t]dt ]         with limits t1 and t2

and a standard error equal to the square root of the variance.
The expression inside the exponential is closely approximated by the sum of
the age specific incidence rates for each year of age between the two limits t1
and t2.
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Advantages of the proposed measure
pR' + (1—p)

R'
r

  = R

or

R' = rR/(1 + rp—p)

1 As a form of direct age-standardization, the arbitrariness in choosing a
standard population is removed, and the calculations are simpler.

2 As an approximation to the cumulative risk, it

(a) has greater intuitive appeal than that of an incidence rate standardized
to  some arbitrary population, and is more directly interpretable as the
carcinogenic load of the specific environment for the specific site;
(b) is a natural way of expressing the tumour experience of cohorts
defined by year;
(c) can be combined with the relative risk outlined from analytical i.e.. case
control) studies to obtain measures of risk for particular groups see
below) This definition of risk for subgroups would seem of particular
importance both for the individuals concerned and those treating them,
and
(d) is directly comparable with the risks observed in animal experiments,
when the latter are analysed by the correct life table approach. This point
may not seem of much importance, but nevertheless consideration of
Table 10.1 shows the error in the often repeated belief that tumour
incidence in animal experiments is almost always an order of magnitude
greater than for human populations. Thus the risk of stomach cancer in
males in Japan up to age 75 is 12%, which is within the range observed in
experimental situations.                                          However, it should be
remembered that the effect of other diseases such as those occurring in
middle age in developing countries is ignored.

Thus consider a woman in Birmingham, UK, whose mother has a cancer of
the breast. The associated relative risk is of the order of 3. If one assumes that
5% of women are thus affected, the risk is given by:

 
5.58x3

1 +0.15 -0 05
  = 15.2

indicating a very substantial risk (close to the figure for a second primary
among long term breast cancer survivors).

Taking as a second example lung cancer among Birmingham males, the 10%
of the population with the highest cigarette consumption have a risk for lung
cancer 6 times higher than the rest of the population. The risk for such men is
then given by:

  
9.73x5

1+0.5-0.1
 = 34.75

 a very high value indeed.

The absolute risks thus measured appear to be precisely the quantity one
would want to know for different groups under consideration,  and
considerably more meaningful than some annual incidence rate.

Cancer epidemiology often appears divided into two disjointed activities. the
establishing of incidence rates on the one hand and the identification of risk
factors and quantification of relative risks on the other. Both, however, should
have as their aim the measurement of the absolute risk, as much for
populations as a whole as for individuals with given characteristics. The aim of
this note is to propose a measure of incidence which should assist in unifying
the diverse measures in present use.

Some examples

To demonstrate the range of values one obtains using the cumulative rate,
and  to compare these values with the truncated or age-standardized rate for
the same neoplasm, examples are given in Table 10.1.

N . E. DayTable 10.2 demonstrates the correction needed to convert the proposed
measure into a mathematically precise measure of risk (other causes of death
excluded). For values under 10% the change is small.

Note from JH: See also Section 2.3 (Cumulative Incidence Rates) in Volume I of Breslow
and Day Statistical Methods in Cancer Research, IARC Scientific Publications No. 32,
Lyon 1980

Combination with relative risks

Suppose a factor X occurs in p% of the population and is associated with a
relative risk of r for a particular tumour. If the cumulative risk for the whole
population is R, then the cumulative risk, R', for those with factor X is given by
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