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AGENDA Readings (* primary )

* Chapter 4 of Hosmer and LemeshowKey Points  in / Commentary on ALR Ch 4 ––

Other Resources• General comments on purposes of multivariable models
texts• Variable Selection [4.2]

HARRELL, Frank E. Regression Modeling Strategies. With
applications to Linear Models, Logistic Regression, and
Survival Analysis. Springer Verlag  2002.

- "univariate" analyses, and what they can sometimes miss

- parsimony, confounding, p-values, overfitting
articles

- H&L's 5 steps. • Modeling & Variable Selection in Epidemiology
GREENLAND, S. American Journal of Public Health 1989
[ on website... via alr_4 ]

nominal/ordinal X's

continuous X's .. 'linear first, refine later' (with caveats) • Multivariable prognostic models: issues in developing
models. evaluating assumptions and adequacy, and
measuring and reducing errors by  Frank E HARRELL, Kerry
L LEE and Daniel B MARK , Statistics in Medicine 1996
[ on website... via alr_4 ]..
superseded by Harrell's 2002 textbook

comments on 'interactions'

smoothing & other ways to decide form of continuous X

partial regression (leverage) plots

• Stepwise[4.3] Other Links

• Best Subsets [4.4] • to material on Classification and Regression Trees
[ on website... via alr_4 ]

Classification & Regression Trees [ not in ALR]

Note: Although ALR Chapter 4 has mostly 'generic' material
that is common to all types of regressions,and Chapter 5 is
more logistic-regression specific, it is difficult to skip right to Ch
5 without dealing with the main points in ALR Ch 4.
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Key Points  in / Commentary on ALR Ch 4 –– Decisions made only on the basis of so-called 'univariate' analyses can be
misleading.. after all, if one 'X' variable 'confounds the effect of another, then
the results of the separate univariate analyses will be misleading (remember
that confounding can mask effects).

• " perceived to be only one possible model" (4.1 page 91, para 1)

All models are wrong. Some models are useful.1
Some textbook authors take -- to JH at least -- an overly suspicious attitude
to Nature, and suggest starting with the largest possible models, including
interaction (product) terms for all pairs of variables.

George Box, Statistician & Author, Univ. of Wisconsin [of Box-Cox fame]

• " 'best' model within the scientific context of the problem" (para 2)
Data-analysis is both art and science, or rather substance as well as
computation. If it were strictly a question of finding the "best fitting model to
describe relation ship between Y and a set of X variables", we could simply
label our 20 variables X1-X20. (I have seen students from statistics
departments do this, presumably to hoping to save time typing, and wear and
tear on their fingernails). We could then ship the data off to a computing
robot, who could follow some "stepwise regression" recipe and give us back an
equation linking Y and a set of X variables.

Scientific context / focus  may be on:-
- 'etiologic' variable, but need adjustment for confounding by others [fairer]
- etiologic variable; sharpen estimate if remove noise from others [sharper]
- etiologic variable, but modification of its effect by others [specificity]
- diagnostic/prognostic function of several variables [ accuracy, stability, ... ]
The approach should reflect the context/purpose. For example, in an etiologic
mode, the primary purpose is control of confounding, and less on the "best"
model. Collinearity of two X variables is a serious issue only if the focus is on
one or both of these two variables; clinical prediction models do not
necessarily focus on individual variables, so much as on the score used to
compute  probability  = exp[score]/(1+this). If the score is used in something
like the Framingham Risk Score, then it can suggest to  the person or
healthcare professional who computes it which items in the score are adding
most to the risk.

It is one thing to have 'information' (documentation,  recollections? facts?) on
each individual's smoking 'history'. It is quite another to turn that set of
information into terms in the regression i.e., to  design the form of the
regression terms. Miettinen, in his Theoretical Epidemiology text, devotes
considerable space to this important data-analysis activity, and you might
appreciate his structured approach when you have to face this activity in your
thesis work.

• 4.2 VARIABLE SELECTION  (page 92, para 1)• "must have "  (para 2)
"traditional approach: parsimony / Occam's razor2
..keep number of variables to minimum:- numerically stable model
..the more variables included, the greater the estimated standard errors"

- basic plan for selecting the variables for the model
- a set of methods for assessing the adequacy of the model both in terms
of its individual variables and its overall fit.

This last part about increased SE's is much more critical with logistic
regression i.e., with the ' y|x ~ Bernoulli(some function of  Bx)' models, than
with ' y|x ~ Normal(some function of  Bx, σ)' models.

As we will see, the order in which things "should" be done (1. selecting
variables, and 2. making sure variables are represented in the "best" form or
scale e.g., linear, categorical, quadratic, threshold, etc.., is difficult to
prescribe. In a multi-dimensional situation, it is not easy to deal with all
issues, or visualize all variables, at once: using one form for a variable at a
selection step, hoping to 'fix up' the form, or not considering a biologically
relevant effect modifier, until a later stage, i.e. after the number of variables
has already been reduced, may mislead. Plots of the data are very important.

2[from http://en.wikipedia.org/wiki/Occam's_Razor ] The principle is most often
expressed as Entia non sunt multiplicanda praeter necessitatem, or "Entities
should not be multiplied beyond necessity", but this sentence was written by later
authors and cannot be found in Occam's surviving writings. William wrote, in Latin,
Pluralitas non est ponenda sine neccesitate, which translates literally into English
as "Plurality should not be posited without necessity".

1*from Stephen Duffull, School of Pharmacy, Univ of Queensland: "I have been
trying to find the original reference for the famous quote: "All models are wrong but
some are useful" GEP Box. After searching around, I found several hits for this -
most were wrong but some were useful.  It seems that this statement is made in a
number of forms in various articles written by Box (although only 1 matching the
exact wording given above). The only version I have found to date is in: Box GEP
Robustness in the strategy of scientific model building. In: Launer RL & Wilkinson
GN Robustness in Statistics. New York: Academic Press, 1979:pp. 202.

Someone else (found via web search) spoke of paraphrasing George Orwell that,
"All models are wrong, but some models are less wrong than others."

Dave Beckett of the University of Kent at Canterbury writes: "The medieval rule of
parsimony, or principle of economy, frequently used by Ockham came to be
known as Ockham's razor." [1]

Occam's Razor has also been referred to as "parsimony of postulates" and the
"principle of simplicity" and "K.I.S.S." (keep it simple, stupid). Another proverb
expressing the idea that is often heard in medical schools is, "When you hear
hoofbeats, think horses, not zebras."
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"epidemiologic methodologists suggest including all clinically and intuitively
relevant variables in the model, regardless of their "statistical significance"

likelihood ratio test of (the k-1 beta_s that accompany the  k-1 indicator
(dummy) variables are zero, i.e. a model with a single beta_0 (a 'single
proportion fits all' model) adequately explains the observed variation among the
k proportions. One thing to be aware of: the chi-square test with k-1 df is an
omnibus non-specific test, and is not very sensitive to monotonic patterns in
the proportions.. a single df test for trend in the proportions might more sense,
especially if on expects a monotonic relationship.  This illustrates why one
cannot 'screen' variables of an ordinal nature with global (df>1) tests: if we make
our selection based on p-values, without actually plotting the proportions, we
might not keep the variable in the model, and so later on (in step 4 on p97), this
variable wouldn't be there to have its 'form' scrutinized.

This is not an entirely accurate statement of prevailing dogma. Yes,
epidemiologists do suggest a variant of this in the control of confounding, but
realistically use a "change in estimate" rule as well, since they realize that one
cannot include all such variables  in the model. And yes, they do, as they
should, advise against using statistical significance as the criterion for
confounding. JH's approach, especially in looking at imbalances in Table 1 of
a trial, or any other comparison, is to look for "embarrassing differences", or
to say to a physician: if you had to take care of the patients in column 1, and
your colleague those in column 2, which of you would have the tougher task?
JH also reinforces the advice in the RCT methodology literature that one
should not put p-values beside the differences with respect to each baseline
variable (row), even if the NEJM still allows authors to do so.

• (...) for continuous variables, the most desirable univariate analysis
involves fitting a univariate logistic regression model to obtain the
estimated regression coefficient, the LR test, the SE and the Wald
test" (p 94)"The major problem with this approach is "overfitting"
It is a important  that this seemingly blanket statement is modified  in the next
paragraph with a "supplementary evaluation", to check if the logit is indeed linear
in the X in question (H&L refer to the "appropriate scale".) And, of course the
scientific question may focus specifically on the shape of the curve, as in the
risks of spontaneous abortion as a function of folate levels -- as in the study
recently reviewed in the practicum.

The 'excellent tutorial paper" by Harrell et al can be found on the c681
webpage (under alr_4), along with the equally helpful one by Greenland 1996.

Think of 'overfitting' as being overly particularistic and of "tuning" the model to
the data. A radio that is "tuned" to bring in as specific station perfectly when
operated at the corner of Peel and Pine maybe not receive the signal very well
at another location. The "smoothing" referred to on page 94 can be carried out with the klm [lowess in

version 8] command in Stata, or via (among others) the "FIT" command inside
the interactive data menu in SAS (the "INSIGHT" module) -- more in 4.4.

• 4.2 SEVERAL STEPS TO AID IN SELECTION OF VARIABLES (p92-) This issue of how to represent a continuous variable at the early stages is an
important, and slightly tricky, one. (With the caveat 2 paragraphs below) JH
agrees that it makes more sense and is more relevant to deal with the correct
form of a continuous X variable in the context of the multivariable model, i.e.
with other relevant variables already in the model. If one devotes a lot of effort
to its form at the univariate stage, the shape of the X<>Y relationship will be
affected by all of the artifacts that can occur when we look at X<>Y relationships
one X at a time.

Because, as these authors state, the "process is quite similar to the one used
in linear regression" (they mean in c621), the comments below will try to focus
on what (little)  is specific to logistic regression.

• 1 (...) begin with careful univariate analysis of each [X] variable
(p 92)
I am happy to see that this textbook does not start with examining the
distribution of the X variable , and "check it for Normality". Over the years, I
have found that students obsess with checking normally of X's, when in fact the
variation of interest is in the Y's, CONDITIONAL on the X values. Indeed, as I
say elsewhere in c697 and v678, it is better, for the precision of slopes, etc.,
NOT to have X's be Normal (Gaussian). And after all, if X1=age and X2= sex,
why check that age is Gaussian? Why not check (and confirm) that sex (i.e. the
random variable with 2 categories, male-female -- sometimes, and correctly in
non-biological, i.e. more 'sociological' situations, called 'gender') cannot  have a
Gaussian distribution.

• 2 (...) select variables for multivariate analysis (p 95)
Missing from the advice is any consideration of the possibility that the different
data items may be obtained in 'blocks' (e.g., history, physical, blood tests,
imaging, etc. ) or that different items may cost more (in money, or discomfort..)
to obtain.
The warning (in the 3rd para of (2)) about effects being 'masked' by confounding
is an important one. For example, if we go back to the altitude in relation to
east/west and north/south, we could see a situation where the specific pattern of
(x1,x2) data points could lead us to conclude-- in univariate analyses -- that
neither X matters, and stop right there (imagine the data points included were
those encountered by travelling one block  south for every 4 blocks east.!)

Of course, 'wild' values of an X variable, measured on a numerical scale, can
have a strong influence on the fitted coefficients, particularly in the case of
logistic regression. And so one needs to watch out for these 'potentially
influential' values. Whereas it may be possible in y|x~N(*,σ) data-analyses to "begin the

multivariable analysis with all possible variables", it seldom is with logisticFor a 2 x k table,  the usual test of homogeneity of proportions is a chi-square
test. Since you are going to be using logit models anyway, you can test via the
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regression, where the "effective" sample size" is the smaller of the number of
observations with Y=1, or with Y=0. [see sample size issues in Chapter 8.5]

suppose that we have n observations in all, n/2 with M=0 and n/2 with M=1.
Suppose further that for each of the 2 levels of M, one half or n/4 have X=0, and
n/4 have X=1. Then, within each level of M, and with  the variance of slope
comparing the average response when X=1 with that when X=0 is σ2 × ( 1/ [n/4] +
1/[n/4]). Thus the variance for the difference, in the Y<->X slopes, between the
2 levels of M is

 σ2 × ( 1/ [n/4] + 1/{n/4]) +  σ2 × ( 1/ [n/4] + 1/{n/4])
or

 σ2 × ( 16/ n)

whereas, if the data are combined (to give n/2 with X=0 and n/2 with X=1, and
there is no interaction, the variance of the estimated (common) slope is only

σ2 × ( 1/ [n/2] + 1/{n/2])
or

σ2 × ( 4/ n )

Moreover, whether in y|x~N(*,σ) or in y|x~Bernoulli(*), there is another factor --
how correlated the X's are. If, conditional on X1, the distribution of X2 has a
limited range, then the effective size for studying the net effect of X2 is reduced
by (1 minus the square of the correlation between X2 and X1). You may have
met this factor as the 'tolerance', or the reciprocal of it, i.e. 1/(1 minus the r-
square between one X and all the other X's) as the Variance Inflation Factor
(VIF).

"The analyst, not the computer, is ultimately responsible for the
review and evaluation of the model" [end of (2)]

Here here! d'accord!

• 3 (...) Following the fit of the multivariate model, the importance of
each variable included in the model should be verified (p 96)

JH has nothing to add

• 4 (...) Once we have obtained a model that contains the essential
variables, we should look more closely at the variables in the
model. (p 96)

i.e. the variance for the estimate of the INTERACTION is 4 TIMES LARGER!
The same type of calculations applies for odds ratios: V0 = 1/a0 + 1/b0 + 1/c0 +
1/d0 is the variance of the log odds ratio in the M=0 subgroup, and  V1 = 1/a1 +
1/b1 + 1/c1 + 1/d1 for those with M=1. Then the variance of the difference of two
log odds ratios (the coefficient that accompanies the X•M product term), is  V0 +
V1, is also approximately 4 times larger than the variance of a single log odds
ratio computed from the overall total of n observations, i.e.. V = 1/a + 1/b + 1/c
+ 1/d .

"The question of appropriate categories for discrete  variables should
have been discussed at the univariate stage" (i.e. (1) |

"For continuous variables, we should check the assumption of the
linearity of the logit"

- when dealing with interaction terms, coefficients will be more
manageable, and interpretable, and less correlated, if you center
the components of the product before making the product. The
example from the Lidkopping injury prevention study is a good case
in point.

This, presumably is the same strategy that H&L would recommend for a
y|x~N(*,σ) situation.

Their logic that one can represent a continuous X as a linear effect in the
preliminary stapes, and that it can be refined at step (4) is reasonable,
provided, as they also warn,  that the relationship is not U-shaped and missed
entirely at step (0). This is where graphical displays, and some anticipation, with
guidance from the literature or experts, are critical.

- Note the sensible advice about having a biological basis for these
"interactions". Indeed, these should be entertained a-priori. Sub-group analyses,
based on data-dredging", run the risk of false positive findings.

 5(...) Once we have refined the main effects model and ascertained
that the continuous variables are scaled correctly (see later), we
check the interactions among the variables in the model (p 98)

• 4 (...)  we should look more closely at the variables in the model.  ...
REVISITED on pages 99 onwards; this is the main focus of the
example that starts on page 104.- Note the sensible advice about having a biological basis for these

"interactions". Indeed, these should be entertained a-priori. Sub-group analyses,
based on data-dredging", run the risk of false positive findings.

- The "bottom line" advice is that given in the second half of page 99: Instead of
categorizing the continuous X into quartiles and looking at the relationship with
Y in a univariate  analysis, do so more in the (more realistic) multivariate
analysis.- As it happens, the power to detect interactions is much less than the power to

detect main effects. This is more evident if one regards the beta_hat for the
product term not as just another regression coefficient, but as a difference of
two coefficients (slopes), one from the observations where the modifier M=0 and
one from those where M=1. A simple example, from c621 type data, will
illustrate:

So do not form and plot the empirical logits (univariate) that some other texts
recommend. Instead, fit the other covariates plus the 3 indicator (design)
variables for the quartiles of the X variable under scrutiny.
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All JH would add to the advice is that one take account of the CI's that
accompany the 3 beta_hats: without these, users tend to over-interpret
apparent non-linearities -- which may be merely random fluctuations.

Multiple regression as a sequence of simple regressions

E.g.: Regression of Weight(lb) on age(yrs) and Height(in)
in 11-16 year olds- The reason why the authors need to resort to "smoothers" to see the pattern

has to do with the binary nature of Y, the same reason that in Fig 1.1 in
Chapter 1, one cannot not see the forest from the trees until one computes
the proportions where Y=1 for various groupings or categories of the "X"
variable. Think of all of these smoothers (even the simplest one in Table 1.2
and Fig 1.2) as variations on the same theme.. some smoothers use
"moving" averages, where they move or slide the "X" window; others (e.g. Fig
1.2) take non-overlapping 'windows' or 'slices' of the X axis.

3 SIMPLE REGRESSIONS

(1)   WEIGHT =  -105.378 + 3.363 * HEIGHT + RESWT

(2)   AGE    =    -0.789 + 0.226 * HEIGHT + RESAGE , so that

(2')  RESAGE =    AGE - {  -0.789 + 0.226 * HEIGHT }

(3)   RESWT  =    -0.023 + 2.822 * RESAGE + RESIDUAL (variance 187.02)

- In c621, this issue of trying to see the correct form for a continuous X is made
easier by the use of "partial leverage plots". They may go by various names
in different packages, but the idea is basically this. One might be tempted to
(1) compute the Y residuals from a model with the other X variables, and then
(2) plot these residuals from model (1) against the X variable under scrutiny.
But this would give a distorted view, since -- to the extent to which the "X" in
question is correlated with (can be predicted from) the other X variables -- X
has already been (partially) 'used up' in fitting model (1) and computing these
residuals. For a good example of this, and of how to correctly view a multiple
regression as a series of univariate regressions, look at the example on the
next column. The key is to regress the residuals from (1) NOT on the X of
interest, BUT on what remains by way of variation in X, after that variation in X
which could have been predicted from the others is removed. I have put an
example of this, using the (low) birthweight data set, on the resources for alr_4
web page.

Substitute (2') into (3) to get

(4)   RESWT  =    -0.02337 + 2.822 * { AGE - {-0.789 + 0.226 * HEIGHT } }

and then (4) into (1) to get ...

(5)   WEIGHT =  -105.378 + 3.363 * HEIGHT +

                  -0.023 + 2.822 * { AGE - {-0.789 + 0.226 * HEIGHT } }

                + RESIDUAL (variance 187.02)

             =  -105.378  +                 3.363 * HEIGHT   + 2.822 * AGE
                  -0.023  +        -2.822 * 0.226 * HEIGHT   +
                2.822 * {-{-0.789}}

                + RESIDUAL (variance 187.02)
This concept is at the heart of 'partial leverage plots', available in the
interactive SAS INSIGHT or 'partial regression plots' available by specifying
the PARTIAL option in the MODEL statement in SAS PROC REG. In Stata,
you can do this with the post-estimation command  'avplot indepvar'
to graph an added-variable plot (leverage plot) after regress

             =  -103.174  +                 2.725 * HEIGHT   + 2.822 * AGE

              + RESIDUAL (variance 187.02)

This is numerically equivalent (apart from some rounding
errors introduced by not using enough decimal places) to
performing a multiple linear regression:

- Read through the example on pp. 104-, paying attention to the smoothers
used in diagrams Fig4.2 to 4.6 These strategies are best practiced in the
context of the full-blown data-analysis project i c621 for example, or with the
book beside you when dealing with your thesis data. DEP VAR:  WEIGHT      N:     233  MULTIPLE R: 0.703  SQUARED MULTIPLE R: 0.494

ADJUSTED SQUARED MULTIPLE R: 0.490    STANDARD ERROR OF ESTIMATE:     13.70530

• 4.3 Stepwise and 4.4 (Best Subsets) Logistic Regression (pp 116-) VARIABLE  COEFFICIENT    STD ERROR     STD COEF TOLERANCE    T   P(2 TAIL)

Not much to add, over what will be covered generically, in c621. Generally, other
than for "pure" prediction situations, e.g., diagnostic and prognostic functions,
we should use these 'partially mindless' approaches sparingly.

CONSTANT   -103.14981     14.19908      0.00000    .      -7.26454  0.00000
HEIGHT        2.72315      0.29462      0.55333   0.61379  9.24288  0.00000
AGE           2.82220      0.80680      0.20941   0.61379  3.49802  0.00056

                       ANALYSIS OF VARIANCE

SOURCE       SUM-OF-SQUARES   DF  MEAN-SQUARE     F-RATIO       P
REGRESSION     42186.19420     2  21093.09710   112.29578     0.00000
RESIDUAL       43202.08906   230    187.83517
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Classification and Regression Trees (CART) Discriminant Analysis
 Blind use of stepwise [and 'same linear model forall' ]
in BOTH Discriminant Analysis & Logistic Regression !]

One interesting approach that is not mentioned in the text is the use of
'(regression) trees'. The idea is very appealing, and more natural that the 'purely
mathematical' approach of linear predictors.  I have put a link to a survival
analysis example in the alr_4 resources page. A flavour for this method is given
by the following abstract, from an author who has used this (also known as
"Recursive partitioning") method extensively.Note also that he tests the
algorithm in new ("validation") samples.

This technique (see ALR index) was more common early on, before logistic
regression became widely available in packages.

The editorial "Statistical approaches to clinical predictions" McNeil BJ, Hanley
JA. in the N Engl J Med. 1981 May 21;304(21):1292-4. commented on the use
of discriminant analysis to identify  patients with different types of gallstones .
(one of these subgroups responds to longterm therapy, one does not)Goldman L, Weinberg M, Weisberg M, Olshen R, Cook EF, Sargent RK,

Lamas GA, Dennis C, Wilson C, Deckelbaum L, Fineberg H, Stiratelli R.

A  computer-derived protocol to aid in the diagnosis of
emergency room patients with acute chest pain.
N Engl J Med. 1982 Sep 2;307(10):588-96

Dolgin SM, Schwartz JS, Kressel HY, Soloway RD, Miller WT, Trotman BW,
Soloway AS, Good LI.        N Engl J Med. 1981 Apr 2;304(14):808-11.

Identification of patients with cholesterol or pigment gallstones
by discriminant analysis of radiographic features.
In a search for a way to distinguish cholesterol gallstones from pigment
gallstones by oral cholecystography, we evaluated 56 patients with surgically
confirmed cholelithiasis. Only buoyancy was highly predictive of
gallstone composition: all 14 patients with floating stones had
cholesterol stones  (P less than 0.01), but only one third of the patients with
cholesterol stones had stone buoyancy. Using a function derived by stepwise
discriminant analysis, we separated patients with cholesterol stones from those
with pigment stones. The predictive accuracy was significantly improved:
sensitivity was 95 per cent (37 of 39 patients with cholesterol stones),
specificity was 82 per cent (14 of 17 patients with pigment stones), and
efficiency was 91 per cent (51 of 56 total patients). The resultant function,
applied prospectively to 17 additional cases, classified all of them correctly. In
patients with cholelithiasis and gallbladders visualized on oral cholecystography,
discriminant analysis can improve the prediction of gallstone composition and
the subsequent selection of medial or surgical therapy.

To determine whether data available to physicians in the emergency room can
accurately identify which patients with acute chest pain are having myocardial
infarctions, we analyzed 482 patients at one hospital. Using recur s i ve
part i t ioning analysis , we constructed a decision protocol in the format of a
simple flow chart to identify infarction on the basis of nine clinical factors. In
prospective testing on 468 other patients at a second hospital, the protocol
performed as well as the physicians. Moreover, an integration of the protocol
with the physicians' judgments resulted in a classification system that preserved
sensitivity for detecting infarctions, significantly improved the specificity (from
67 per cent to 77 per cent, P less than 0.01) and positive predictive value (from
34 per cent to 42 per cent, P = 0.016) of admission to an intensive-care area. The
protocol identified a subgroup of 107 patients among whom only 5 per cent had
infarctions and for whom admission to non-intensive-care areas might be
appropriate. This decision protocol warrants further wide-scale prospective
testing but is not ready for routine clinical use.

Discriminant analysis is not that different in spirit from logistic regression (and
indeed is the fore-runner of it). This particular dataset illustrated an interesting
feature that shows the limitations of stepwise methods (discriminant analysis
and logistic regression both): whereas buoyancy was highly predictive of
gallstone composition: all 14 patients with floating stones had cholesterol
stones, it only entered 'second' in a stepwise analysis. A clinician might well
have separated the patients immediately on the basis of this first triage
variable, then maybe even considered different other predictors for the 'floaters'
and the 'sinkers'. In effect, this is like saying that another piece of information
could have different usefulness in the two groups:- in the floaters it is not even
needed, whereas if it does not, additional radiographic features can help refine
the probabilities further.
This is why software for fitting these trees is sometimes called "AID" or
Automatic Interaction Detection, rather than CART (Classification and
Regression Trees)
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