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Figure 3. Shape of each predictor on log hazard of death. Y-axis shows XJ, but the predictors not plotted are st to

reference values. ‘Rug plots’ on the top of each graph show the data density of the predictor. Note the highly

non-monotonic relationship with ap, and the increased slope after age 70 which has been found in outcome models for
various diseases

Here ‘Factor + Higher Order Factors’ means the combined main effect and interaction effect.
The global test of additivity has P = 027, so we will ignore the interactions (and also forget to
penalize for having looked for them below!).

The following UNIX S-Plus statements plot how each predictor is related to the log hazard of
death, along with 0-95 confidence bands. Note that due to a peculiarity of the Cox model the
standard error of the predicted X ﬁ is zero at the reference values (medians here, for continuous
predictors).

par(mfrow = c¢(3, 4)) # 4 X 3 matrix of graphs

r «c(—-1,D # use common y-axis range for all

plot(f, rx = NA, ylim =r) NA — use default range for predictor
plot(f, age = NA, ylim =r)

scatld(age) # scatld from statlib, for any S-Plus

plot(f, wt = NA, ylim =r) # scatld shows data density




MULTIVARIABLE PROGNOSTIC MODELS 383

1.0

Fraction Surviving 60 Months
04 0.6 08
'l

0.2

0.0

0.1 0.2 0.3 04 0.5 0.6
Predicted 60 Month Survival

Figure 4. Bootstrap estimate of calibration accuracy for 5-year estimates from the final Cox model. Dots correspond to
apparent predictive accuracy. x marks the bootstrap—corrected estimates

We first validate this model for Somers’ D,, rank correlation between predicted log hazard and
observed survival time, and for slope shrinkage. The bootstrap is used (with 200 re-samples) to
penalize for possible overfitting, as discussed in Section 6.

validate(f, B=200,dxy =T, pr=T)

index. orig training test optimism index. n
corrected
Dxy —-0-337377 —0364644 -—-0-30976 —0-05488 —0-282380 200
R2 0221444 0261369 0-18445 0-07691 0-14453 200
Slope 1.000000 1.000000 078484 021536 078464 200

Here ‘training’ refers to accuracy when evaluated on the bootstrap sample used to fit the model,
and “test’ refers to the accuracy when this model is applied without modification to the original
sample. The apparent D,, is —0-34, but a better estimate of how well the model will discriminate
prognoses in the future is D,, = — 0-28. The bootstrap estimate of slope shrinkage is 0-78,
surprisingly close to the simple heuristic estimate. The shrinkage coefficient could easily be used
to shrink predictions to yield better calibration.

Finally, we validate the model (without using the shrinkage coefficient) for calibration accuracy
in predicting the probability of surviving S years. As detailed in Section 5, the bootstrap is used to
estimate the optimism in how well predicted 5-year survival from the final Cox model tracks
Kaplan-Meier 5-year estimates, stratifying by grouping patients in subsets with about 70 patients
per interval of predicted 5-year survival.

plot(calibrate(f, B = 200, u=5+123, m = 70))

The estimated calibration curves are shown in Figure 4. Bias—corrected calibration is very good
except for the two groups with extremely bad prognosis — their survival is slightly better than
predicted, consistent with regression to the mean. Even there, the absolute error is low despite a large
relative error. Hence for this example it may not be worthwhile to develop a model using shrinkage.

Now compare this analysis with three previous analyses of this dataset. In all three analyses, all
continuous covariables were arbitrarily categorized into intervals and scored with somewhat
arbitrary category codes. In none of the three were sbp, dbp, ekg, ap, bm considered. Patients
having missing values on any of the candidate predictors were excluded from consideration.
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Turn first to Byar and Green,®” who used an exponential survival model and dichotomized
treatment by combining placebo and low dose and combining the two highest doses. The
important predictors werc found to be hx, sg, sz, hg, and the following interactions were
detected in an exploratory analysis which did not control for multiple comparisons: TX X 8§ and
rx x age. These interactions were not significant in the present model (even if dose were re—coded
as in Byar and Green).

Kay®® considered Cox models for various causes of death. For time until all-cause mortality,
Kay found that the most important predictors were Sz, hx, sg, age. The treatment along with
age, hx were significant predictors of cardiovascular death. The treatment (in the opposite
direction), and hg, s2, s§ predicted cancer death. Treatment and age, Wt predicted time until
death from other causes.

Sauerbrei and Schumacher®® also used a Cox model and an approach in which a backward
elimination procedure was done for each of 100 bootstrap samples. The relative frequency of
selection of variables as ‘important’ was used as the criterion for inclusion of variables in the final
model. Variables were retained if they were selected > 70 times. All candidate predictors met this
criterion. Treatment interactions involving age and sg were the most common interactions (56
and 48 bootstrap repetitions, respectively), but they did not meet the criterion for selection. The
authors noted that these interactions were misleadingly more significant in a model which only
adjusted for ‘significant’ predictors instead of all candidate predictors.

None of the three references just cited provided a model validation or quantified the predictive
discrimination of the final model.

10. SUMMARY

Methods were described for developing clinical multivariable prognostic models and for assessing
their calibration and discrimination. A detailed examination of model assumptions and an
unbiased assessment of predictive accuracy will uncover problems that may make clinical
prediction models misleading or invalid. The modelling strategy presented in Section 7 provides
one sequence of steps for avoiding the pitfalls of multivariable modelling so that its many
advantages can be realized.
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