
EPIB 681 Data Analysis in health Sciences II Introduction to the Logistic Regression Model

Key Points  in / Commentary on ARL • Up from logistic regression?

Logistic regression is just one example of Binary or Binomial
regression. Bernoulli: each observation or line of data in file is for a
single  individual or trial, each response a 0 or 1 random variable;
Binomial: the observation or line of data refers to a number of
individuals (≥1) with the same covariate pattern, i.e. in the same "cell".
The 'response' is the aggregated (0/1) results i.e. #pos/#persons in the
persons with this profile or covariate pattern. Or, can think of Bernoulli
= Binomial with  just n=1 person in each "cell".

Some Binary regression programs (e.g. PROC LOGISTIC in SAS) by
default assume that the n for each observation (line of data) is 1 and
so simply allow the user to specify MODEL Y = predictors
without having to specify that 'n' = 1 (get an error if have a Y that is not
0 or 1, since if by default the denominator is 1, the numerator must be
0 or 1). PROC LOGISTIC also allows user to specify MODEL #pos/n =
predictors , where you supply the numerator AND the denominator for
the "cell"

Other e.g. of Binomial regression is probit regression. SAS/Stata have
a special program just for logistic regression (LOGISTIC / logistic) and
another just for probit (PROBIT/probit).

Q: Could all binary/binomial regressions be "rolled into one?"

MORE GENERALLY Binary and Binomial regression are themselves
special cases of Generalized Linear Models, where distribution can be
one of SEVERAL (i.e. Gaussian, Bernoulli/Binomial, Poisson, Negative
Binomial, Gamma, Inverse Gaussian) AND where different functions
link the left side of the regression equation (the expected value [mean]
of Y, at a given X, e.g. the expected proportion of Y=1 at this X value)
to the predictors on the right side. Three examples are the IDENTITY
link (e.g. link the proportions themselves to the determinant, as in risk
difference, or link the LOG of the proportions, as for the RiskRatio, or
the LOGIT, as for OddsRatio).

In SAS and Stata these are called GENMOD and glm, respectively.

This raises issue of whether we should learn a number of different
programs, or just one general one (if the latter, we could do all the
analyses in c621 and most of those in c681 from one generalized
program, which simply "toggled" between the different distributions,
AND the different shapes to the link between the left hand side (the
expected value, or mean, or proportion) and the predictors

• Up from 2 x 2 table?  table as special case of logistic regression?
(Preface page x, para 3)

• even the 2 x 1 table (proportion + and – , no comparison, e.g.
3/20 in our first assignment) is a special case of regression .. one
with just an intercept or 'overall proportion'

• 2x 2 table (e.g. infections following warm surgery -- index
category --vs. conventional surgery -- reference category ) is a
comparison of two proportions. and we have already compared
them on SEVERAL scales,

not just the  proportion scale itself (Risk Difference),

but also on the

logit scale, where the difference in the log odds i.e. the
difference in the logits, represents the log of the OddsRatio, and
so the antilog or exponentiated difference in logits is the
OddsRatio

and on the

log scale, where the difference of log risks is the log of  RiskRatio.

• 2 proportions [prevalences/risks] can be written as 1 master
regression equation using as the 'regressor' variable (usually
called X) an indicator of the index  'exposure' category ( E = 0 if
reference category and = 1 if index category)

Risk[generic E value] = Risk[ref cat.] + RiskDiff if index cat.

= Risk[ref cat.] + RiskDiff × E

=        B0             +     B1     × E

Check: Risk[E=0] =        B0             +     B1     × 0
=        B0
=  Risk[ref cat.]

Check: Risk[E=1] =        B0               +     B1     × 1
= Risk[ref cat.]   +     Risk Diff

=  Risk[index cat.]

• danger of easy-to-use software ((Preface page ix, para 2)
cf. story of statisticians &epidemiologists on train [link from FAQ]
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Key Points  in / Commentary  on ARL Ch 1 interesting, but frustrating for people concerned with other
individual (present of future) states/outcomes (e.g. physicians,
weather forecasters, admissions committees, etc.).

One should however, distinguish between predicting the mean
response or  proportion of responders in the (sub)universe of
persons with a particular covariate pattern, and predicting the
response of the individual.

For example, if a weather forecaster says the probability of a
certain type of weather is 60% and on the (one) day in question,
that  type of weather shows up, is this a good prediction? What if
it doesn't turn out that way that day? Or is the forecaster a good
prognosticator if in 60% of the days in which he says the
probability is 60%, and in 30% of those days in which he says the
probability is 30% that type of weather does show up, etc.. ?

• Over last decade...standard method of analysis ( page 1, para 1)

(Given the mainly epi focus of the book) what is history of logistic
regression? The c678 website has one of the first papers, in 1962 by
the biostatistician responsible for 'the odds ratio in epi' [1], and
logistic regression in epi. The stimulus for the 1962 paper was the
Framingham study. (1) Cornfield J. A Method of estimating comparative rates from clinical
data. Applications to cancer of the lung, breast, and cervix. J Natl Cancer Inst 1951;11:1269-1275.

• Goal of model-building techniques in statistics.. find the best fitting
and most parsimonious, yet biologically reasonable model to
describe relation ship between (...)  covariates. ( page 1, para 2)

Several purposes, such as
-description (as suggested)
-smoothing (for reliability)
-ADJUSTMENT  one 'covariate' is PRIMARY: the "exposure" (E);

others  are a nuisance, e.g. confounders,
or create additional variation,
or modify the relation between prob[outcome] &

E

2 The technique of  'creating intervals for the independent
variable' to 'remove some variability' is a form of smoothing, or
'borrowing strength' from  neighbouring individuals. Moving
averages (where one slides the interval, usually a time window),
are a variation on this 'smoothing' idea.• What distinguished logistic from linear.. Y is binary / dichotomous

(page 1, para 3) • It appears that as age increases, the proportion of individuals with
evidence of CHD increases. (page 2, para 5)

As described above, in remarks on preface, there are a number of
other regression models for binary outcomes .. they depend on the
choice of link, or if you prefer, on the scale on which proportions are
regressed on the determinants or covariates

Careful re terminology as it relates to the "linear  regression" model!
"Linear" has several meanings. One relates to the makeup of right
hand side (to be strictly technical about it, 'linear' refers to linear in
the parameters, not in the X's) . H&L's 'linear ' refers more to the left
hand side, and the scale in which the regression is carried out
(everything is same about the right hand side -- except maybe some
constraints -- whether in 'logistic' or what they call 'linear' regression
mode). The better way to distinguish models is via the LINK (the
scale used in the left hand side) and the conditional DISTRIBUTION
(Gaussian, et al for responses measured on a "continuous" scale, and
Binomial, Poisson etc. for responses recorded on a binary or non-
negative integer (count) scale.

This is a 'pet peeve' ('a particular source of aggravation')  of mine.
These data come from a cross-sectional study, and so the
proportions represent prevalences. The statistically correct way to
describe this prevalence pattern is "it appears that the prevalence of
CHD is higher in older individuals". If I had a dollar for every time I
heard this 'dynamic' interpretation of a cross-sectional relationship, I
would be rich. I think this idea of 'as X increases, so does Y' comes
from the same 'physics lab' mentality that makes us call X the
'independent' variable and Y the 'dependent' one. This might be the
case in the lab, where one freely turn knobs or dials to manipulate
temperature, lighting, humidity, etc.. and then observe the response
of a variable that truly 'depends' on or 'responds' to' these changes in
a causal way. Unfortunately, most epidemiology data is not derived
from such experiments.. Nor can we freely (and independently?)
manipulate the knobs and dials in any combination we wish.

• Large Variability in CHD (Y) at t all ages (X). (page 2, para 4)

1 This comes with the territory (the fact that we are measuring the
response on a 2-point scale. This large uncertainty (entropy) is
what makes the outcome of baseball, football, hockey
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• In any regression problem, the key quantity is the mean value of the
outcome variable, given the (i.e. as a function of) the independent
variable (page 4, para 1)

• Two primary reasons for choosing logistic distribution (curve)
(page 6, para 1)

First: (as indicated) The probit used to be more difficult to work with.
this is lees the case nowadays, now that we have generalized linear
models.

[aside] Some statisticians use the logistic distribution as a way to
draw close-to-Gaussian random variables for Monte-Carlo simulations
(unlike the logistic, the Gaussian c.d.f. function does not have a
closed form).

Flexibility (of shape): for a good part of the (0,1) range, the logit and
probit are quite close to each other. They  differ more at the
extremes of the (0,1) scale.

Second [interpretation] This is particularly pertinent in
epidemiology, where, in of case-control studies, we are 'stuck with'
the odds ratio.

The logistic form also arises naturally in discriminant analysis
(indeed, it was from discriminant analysis that Cornfield derived, and
others refined, the famous Framingham logistic) risk function.

d'accord. I agree 100%. But, to emphasize this even more, I would
take out the 'E' in the notation E{Y | x ] and replace it by a µ, i.e.

the pattern of  µ[Y | x ] 's as a function of x

After all, when ones eye, on looking at a scatter plot, mentally draw
a line or curve through the data, one is forming a line (or curve)  of
middles". Indeed, one can then take away the data (noise) and be
just keep the (estimated) signal.

• With dichotomous data, conditional mean must be between 0 and 1;
(page 5, para 1)

Here, why not change directly to proportions, and use the parameter
π, for proportion, or if you are less pretentious, the upper case P ?

Now the challenge is to describe

the pattern of  π[Y=1 | x ] 's as a function of x

In our own exercises in assignment 1, we ran into several situations
and limits where we were dealing with a proportion near 0 or 1, and
in some of these we switched to a logit scale (remember the first
class, where we had the probability scale as a kind of thermometer,
and beside it, a number of other scales, including the open-ended
logit (log odds) scale, with extremes of minus and plus infinity.

• Equation 1.1 (the logistic regression model) (page 6)

This is the form if you work in the (0,1) scale

the equation further down is the one that looks more like a regression
equation  i.e.

  some function of  Prob[Y=1 | x ] is a lin. combination of x's and β's

I would have written it with the ln[p/(1-p)] leftmost, to emphasize that
one is altering the scale on the left hand side.

 ' logit transform of  ' π[Y=1 | x]  =  β0 + β1 x

Notice the ln for 'the natural' log , i.e., log to base e.

• Many (cumulative, or 'distribution)' functions have been proposed
(page 6, para 1)

A popular S-shaped cumulative curve, especially before the logistic,
and still popular with toxicologists, was the probit curve.

The reasoning in toxicology was that the tolerances of (the smallest
amount of poison that would kill ) individual animals has a Gaussian
distribution (on some concentration scale). Then if one gave a dose
that was 2 SD below the average on this scale, one would kill 2.5%;
if one gave a dose that was 1 SD below, one would kill approx. 16%;
if an average dose 50%; a dose 1 SD above would kill approx. 84%,
and 2 SD above would kill 97.5%. And so on.

• 2nd important diff: distribution of Y conditional on [Y=1 | x] (page 6/7)

This is a binomial with an 'n' of 1 (i.e., a Bernoulli random variable]
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• Maximum likelihood Fitting of logistic regression model)
(section 1.2 page 8)

2. cf. the spreadsheet on the numbers of errors on two manuscripts
of 1 and 2 pages respectively (data and relevant formulae are in
sheet 2 of the Maximum Likelihood spreadsheet). The simple
regression model is very 'simple', it does not even have an
intercept. the model is simply

E[ # errors | # of pages ] =  β   *  (#. of pages)
i.e.

E[ Y | X ] =  β   *      X

what is your regression estimate of  β  if you estimate it by

least squares ? (say proc reg, with NOINT option)

grade 4 math?

Maximum Likelihood [need complete statistical model] ?

The different methods imply different metrics..

Least squares measures discrepancies between a y and its (fitted)
expected value (line)  by the square of the (y – expected), and
the overall closeness as the sum of these squares, summed
across the datapoints.

The method of Maximum Likelihood measures the closeness of
an observed y to a proposed expected (fitted) value using the
height of the theoretical probability distribution function at that y
value.. and the overall closeness of the datapoints by the
product of these probabilities. For any (trial) value of  β, one
determines the implied fitted values. These then become the
means for the probability model. In this case one might be
tempted to adopt as a model the Poisson distribution, so that for
each manuscript size X, one has  with the fitted (proposed) mean
µ =  β * X . Say we suggest as an estimate the value   β = 2.1, so
that the y=2 and y=5 are then calculated as coming from means
of 2.1 and 4.2. The probability of obtaining a 2 in a Poisson
distribution with mean = 2.1 is 0.27; the probability of obtaining
a y=5 from a Poisson distribution with a mean of 4.2 is 0.163.
The probability of obtaining the 2 and the 5, when β=2.1, is
therefore 0.27 x 0.163 = 0.044. One would now change to a new
candidate value of β and recalculate the probability of the
observed 2 and the 5 under the two new means implied by this
new value of the parameter β. Thus, one can obtain a curve of

In the method of Least Squares, there was no intrinsic assumption
about the distribution of the errors (the ε 's, i.e. the variations of the
individual Y's at a given value of X from the true mean of all
possible Y's at this same given value of X) . i.e. the least squares
criterion is a strictly mathematical or geometrical criterion for
closeness of the fit of the data points to the line. the fact the method
of least squares has some good properties if in fact the data follow
certain laws is another matter)

By contrast, the method of Maximum Likelihood requires a specific
statistical model for the distribution of the observations. It is not
enough that the model specify the mean value of Y at each X, but
also the exact pattern of variation of these x-specific Y's about that
mean.

Two examples might help explain the entirely different approach
implied by the use of the maximum likelihood criterion. in the first of
these, we consider just two values of the parameter of interest, in the
other we consider all possible (positive) values of a regression slope

1. cf. the spreadsheet on the colour distribution of a sample of
M&M candies from one of two sources (data and relevant
formulae are in sheet 1 of the Maximum Likelihood spreadsheet).
They are all from one or other of two sources: either  'milk
chocolate', where 70% of the source have certain colours; or
'crispy chocolate', where 50% are of these colours. We don't
know which, and we have no prior information to guide us one
way or the other (we are neutral), and we cannot use our sense of
smell, just our sense of sight.

the observed proportion of the colours in question is 60%. So,
are the data more likely to have come from the source with 70%
or the source with 50%

the question effectively asks you to calculate the probability of
observing 60% under each of the 2 scenarios (the two competing
parameter values are 'milk' i.e. 70&, and 'crispy' i.e. 50%).

and to rank the two sources by this 'probability of obtaining the
observed data, or what is called the "likelihood".

Moral: even though 60% (data) is equidistant from 50% and
70%, the data are more likely under the '50% in source' model.
(the 50% model also gives the smaller chi-squared value too, if
we adopt a minimum-chi-square criterion.
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the probability values as a function of β, a function that is called
the Likelihood, one can obtain that β value which makes the
probability largest. This is called the Maximum Likelihood
Estimate (MLE) of β, or the value of β that makes the data more
likely than any other value of β.

Of course, one might well be able to find the MLE by more
direct and less 'brute force' methods. In some instances, as in this
very one, one can take the derivative of the Likelihood function
with respect to β and find the value of β where this is zero
directly, by algebra Or, if need be, one can use a computer
search for where the Likelihood is a Maximum.

One may have observed that when one multiplies a large
number of probabilities together, their product becomes small,
and so we more often work with the log of the product, i.e. the
sum of the logs of the probabilities for the individual data points.
This has two advantages: it shows the fact that one is summing
over (aggregating information from) the different observations,
and it turns out that the log of many probabilities derived from
the standard distributions is easier to work with than the
probability itself (a case in point is the height of the Gaussian
curve at the observed value y. The height is

proportional to exp[ minus the square of (y - fitted y)  ],

so that the log of the probability (or likelihood contribution) is

proportional to minus of square of (y - fitted y)

and indeed this shows why the general (maximum likelihood)
method of estimation that H&L refer to on para 1 of page 8 does
in fact coincide with the method of Least Squares when the error
terms have a Gaussian distribution --  the likelihood will be at a
maximum when the negative of the sums of the squares of the
(y - fitted y) 's is at a maximum, i.e. when the positive  of the
sums of the squares of the  (y - fitted y) 's is at a minimum ('least'
squares).

This maximization, by working in the log Likelihood scale, and
setting its derivatives to zero, is what is summarized in equations
1.4 to 1.6, for the case of a Binomial model.  In their example,
unlike our simpler zero-intercept model, there are two parameters
β0 and β1, (and the sometimes write them as a single bold , a
vector ) so that the search is a 2-dimensional search, just as if a

blind person were finding the highest point on Mont Royal by
repeatedly using a cane, and the gradients in all directions
around him/her, to decide in which direction led uphill. Then by
iteration, one would find the summit (provided one did not go up
the second-highest peak of Mont Royal by mistake). Fortunately,
in most  Likelihoods, the log Likelihood is like an upside down
wok (the mathematicians call it concave upwards) i.e. it does not
have any dents or valleys, and cannot fool the summit-seeker by
a 'local' maximum.

• An interesting consequence:  y =  ^
( page 10, 1st para )

This is the same (Sum of observed frequencies = Sum of expected,
or fitted frequencies) constraint on the frequencies in a frequency
table that takes away some degrees of freedom when testing the fit of
the observed and expected frequencies.

• Worked example, data in Table 1, Fitted parameters in Table 1.3.
( page 10 )

See under resources for the SAS/Stata programs that reproduce the
results in Table 1.3, and that plot the observed points shown in
Table 1.2, along with the fitted regression equation 1.7.

Overleaf is a contour plot of the log Likelihood, confirming the
MLE's of -5.3 for the intercept (β0) , and +0.11 for the slope (β1)

Note also a second version, with age 'centered' at 45, and how much
easier the search is (the parameter estimates are now not so
negatively correlated, since a perturbation in the slope does not
have so much influence on the intercept.

• Testing for the significance of the coefficients
( page 11- section 1.3, )

Note the operationalization of this, in the question posed in italics in
the middle of page 11. Note also that the authors emphasize that
they are not, at this stage, asking about the 'fit' in an absolute sense,
but rather in a relative sense.

At bottom of page 12, again in italics, is the criterion used in
Likelihood-based fits. It might have been clearer if they had said

Compare the product of the n probabilities of the observed
values under the two models -- i.e. with and without the
extra predictor variable. In practice, compare the sum of the logs
of the n individual probabilities i.e., the log-likelihood.
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Contour plot of the log Likelihood, a function β0 and β1. Contour plot of the log Likelihood, a function β0 and β1,

but with age 'centered' at 45. Note that the MLE of the intercept
changes, but not that of the slope, and that the parameter estimates
are now much less correlated

 but with age 'centered' at 45. Note that the MLE of the intercept
changes, but not that of the slope, and that the parameter estimates
are now much less correlated
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• "Saturated" model in this example.. ( page 13  ) the two are not the same (This can happen if with the larger model,
some observations are dropped because they are missing data on the
additional variables in the larger model).In this example, the saturated model is one where you can perfectly

predict for each person whether they had CHD or not. It is like having
another column of data, such as the results of the actual tests (or self-
reports, or whatever was used in this dataset) that classified the person
as having CHD

Or think of it as being able to have a probability 'curve' for Figure 1.1
that bounces up and down as needed and goes through every
observed 0 or 1!

• "Wald" test.. ( page 16  )

In large datasets, with a lot of information (large numbers of subjects
with Y = 1, large numbers with Y=0, and not too much collinearity in
the X's) this difference between the Wald test and the Likelihood
Ratio test is usually not that great.

Or think of it as being able to have a probability 'curve' for Figure 1.1
that bounces up and down as needed and goes through every
observed 0 or 1!

• NB Deviance reported by SAS and by Stata ( page 13  )

To e what they are talking about, compare your output with that obtained
by others using a different package (or even GENMOD vs. LOGISTIC)

Ultimately though, since , as H&L say, –2 times the log likelihood of
the saturated model cancels out when you subtract the deviances of
two realistic models of different sizes, this discrepancy between
packages is not serious in practice.

Also, at a practical level, the difference in deviances for two models is
usually not identified in computer printouts as G (see 1.12 p 14). G
seems to be mainly a textbook notation. In printouts, you may see
–2logLR, i.e. minus twice the log of the Likelihood Ratio

Some packages report the –2logL and let you subtract them yourself
for two different models. Some report –logL, so watch out

You can see why G is a difference.. the log of a Ratio is the difference
of the components.

Also, how do you know if a log likelihood is better if small or if large?

Think back to the likelihood of a saturated model. In this example, the
probability of getting the observed Y would be 1, and so their product
(over all n observed Y's) would be 1. Therefore the log Likelihood
would be 0. An imperfect model would have a product that was less
than 1, and so a log likelihood that is negative.. The more negative
the log likelihood, the worse the model. But if you work with the
negative log Likelihood, the larger the –logL (the more it is above 0),
the worse

Remember also that , just like a SSR, or an SSTotal, its size of logL is
a function of the number of observations.. L gets smaller the more
probabilities you multiply. So logL is a greater negative value if based
on more data.  So, be careful if you compare two logL's (or 2logL's)
from different models, if the numbers of observations used to calculate

• Confidence Interval Estimation ( page 17- section 1.4, )

The large CI for the 'far away' intercept estimate is no surprise.. if
your age data are a long ways from 0, you can't expect that
projections from where the data are, back to 0, will be precise.

This is particularly the case when the 'X" is calendar time, using AD's
such as 1998, 2000, 2003, etc.. Then projecting back to 0 Ad is
quick imprecise, as well as being silly.

The contours earlier show the better way to estimate things..

They also show that if you want to minimize the covariance in
equation 1.18, you would be well advised to centre your data near
the X values of greatest interest.

The calculations on pp 19 and 20 are very like what we have done
already when calculating CI's for Risk and Odds Ratios -- calculate
the CI in the log or logit scale, THEN convert the 2 limits of the CI
back to the limits in the desired scale.

• Other estimation methods ( page 21 - section 1.5, )

One interesting approach, used by Berkson ('of the bias'), was a
minimum chi-square approach, used a lot (as was probit analysis) for
fitting toxicology curves, with several observations at each dose (like
age-grouped example in Table 1.2). H&L use the same chi-sq to
compare observed and fitted values, but with MLE fits .

The discriminant analysis approach was overtaken by logistic soon
after 1980. see editorial about it versus logistic regression to identify
which gallstones do / do not respond (only know after about 6
months!) to medical treatment. McNeil BJ, and JH: "Statistical
approaches to clinical predictions". NEJM 304: 1292-1294, 1981.
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