SESSION 9 LOGISTIC REGRESSION: AN INTRODUCTION

Binary Outcome $Y=0$ or 1

```
average Y = PROPORTION (of Y's that are 1)
```

usually denote proportion by
if parameter.. Greek letter π or upper case P
if statistic. $\hat{\pi}$ (" π-hat") or \hat{P} ("P-hat") or lower case p
Inference concerning a single P \{or single Odds $=P /(1-P)$ \}
\# of observations with $Y=1 \quad \Sigma y$

Tests concerning (and CI's for) P based on ...
Exact Binomial: $\Sigma y \sim$ Binomial (n,P) if n small \sim Poisson ($\mu=n$) if n large \& P small
or
Gaussian Approxn. to Binomial (n large \& P not extreme):

$$
\begin{aligned}
& \mathrm{P}(=\overline{\mathrm{Y}}) \sim \operatorname{Gaussian}(\mathrm{P}, \mathrm{SD}=\operatorname{sqrt}[\mathrm{P}(1-\mathrm{P})] / \operatorname{sqrt}[\mathrm{n}] \text {) } \\
& \text { ~ Gaussian (} \mathrm{P}, \mathrm{SE}=\operatorname{sqrt}[\mathrm{p}(1-\mathrm{p})] / \operatorname{sqrt}[\mathrm{n}] \text {) }
\end{aligned}
$$

If $Y=0$ or 1 's, then $\sigma^{2}(Y)=\operatorname{Var}(Y)=P(1-P)$, where $P=$ proportion of 1 's

Inference concerning two P's
Several Comparative Parameters (unlike μ_{1} vs μ_{2})

$$
\begin{array}{cccl}
P_{2} & - & P_{1} & \text { (Risk Difference RD) } \\
P_{2} & / & P_{1} & \text { (Risk Ratio RR) } \\
\frac{P_{2}}{1-P_{2}} & / \frac{P_{1}}{1-P_{1}} & \text { (Odds Ratio OR) }
\end{array}
$$

sample 1
sample 2

Tests of $P_{1}=P_{2}$ (or, equivalently, $R R=1$ or $O R=1$) based on..
Hypergeometric distribution ("Fisher's exact test")
-- conditions on (fixes) BOTH margins
Gaussian Approxn. to distrn. of difference of 2 p's
-- unconditional test ... only ONE fixed margin
$-Z^{2}=X^{2}$ (chi-square statistic)

CI's for $R D, R R$ and $O R \ldots$

RD: - Gaussian Approxn. to distrn. of difference of $2 p^{\prime} s$

- test-based method

RR: - Gaussian Approxn. to distrn. of diff. of logs of 2 p's

- test-based method
(see Epi textbooks)

OR: - Gaussian Approxn. to distrn. of diff. of logs of 2 odds (unconditional; "Woolf's method")

- "exact" CI based on Non-Central Hypergeometric distrn.
- test-based method (uses "null" SE)
(see Epi textbooks)

Test for trend (over X) in Proportions

| $X=x_{1}$ | $X=x_{2}$ | \cdots | $X=x_{k}$ |
| :---: | :--- | :--- | :--- | :--- |
| $\frac{\Sigma y}{n_{1}}=p_{1}$ | $\frac{\Sigma y}{n_{2}}=p_{2}$ | \cdots | $\frac{\Sigma_{Y}}{n_{k}}=p_{k}$ |

$\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{k}$ are numerical values or "spacings"
See Armitage and Berry textbook
Only a Test with a p-value..
No measure of actual gradient in proportions

Examples of gradients in Proportions
Illness rates in relation to number of Falls while WindSurfing Low Birth Weight rates in relation to Altitude
Mortality (in rats) in relation to dose of Cadmium
Unemployment Rates as a function of Age, Education \& Gender

Why not use Y 's in "regular" regression?
i.e.
$\mu(\mathbf{Y} \mid \mathrm{X} 1, \mathrm{X} 2, \ldots)=\operatorname{Prop}(\mathrm{Y}=1 \mid \mathrm{X} 1, \mathrm{X} 2, \ldots)=\beta_{0}+\beta_{1} . \mathrm{X}_{1}+\beta_{2} . \mathrm{X}_{2}+\ldots$

- constraints on range of $P: 0<1$ fitted" $P^{\prime} s<1$
- Y's arising from P near 0.5 are more variable than $Y^{\prime} s$ arising from P nearer to 0 or 1 (?? different weight for each obsn.)

- P's unlikely to be linear over X if wide P range; more likely to be S-shaped (esp. in toxicology)

Other options for Binary Regression

```
- use unequal weights to allow for different
    variances for Y's ..
    more weight to observations for which P
    (and thus P[1-P]) is more extreme
    less to observations for which P is more
    central (near 0.5) (and thus P[1-P]) is larger
    BUT... this still does not fix the issue of the
    shape of the "P vs X" function, and the fact that
    P must stay between 0 and 1 and be biologically
    "sensible"
In 1960 and 70's, statisticians devised ways to fit
models where there was some flexibility in the choice
of "P vs X" function (Generalized Linear models)
    e.g. probit curves in toxicology
        (had been around for many decades, but
                couldn't handle multiple X's very well)
            logit curves in epidemiology
            (Cornfield / Framingham study)
```


Generalized Linear Models

- use "link" function to "toggle" between

IDENTITY	$\mu \mid \mathbf{x}_{1}, \mathbf{x}_{2} \ldots$	$=\beta_{0}+\beta_{1} \cdot \mathbf{x}_{1}+\beta_{2} \cdot \mathbf{x}_{2}+\ldots$
LOG	$\log \left(\mu \mid \mathbf{x}_{1}, \mathbf{x}_{2} \ldots\right)$	$=\beta_{0}+\beta_{1} \cdot \mathbf{x}_{1}+\beta_{2} \cdot \mathbf{x}_{2}+\ldots$
LOGIT $\quad \operatorname{logit}\left(\mu \mid \mathbf{x}_{1}, \mathbf{x}_{2} \ldots\right)$	$=\beta_{0}+\beta_{1} \cdot \mathbf{x}_{1}+\beta_{2} . \mathbf{x}_{2}+\ldots$	
PROBIT probit $\left(\mu \mid \mathbf{x}_{1}, \mathbf{x}_{2} \ldots\right)$	$=\beta_{0}+\beta_{1} \cdot \mathbf{x}_{1}+\beta_{2} . \mathbf{x}_{2}+\ldots$	

- use "ERROR" distributions to "toggle" between

$$
\begin{array}{l|llll}
Y & X_{1}, & X_{2} \ldots & \sim \text { Gaussian }\left(\mu\left[x_{1}, x_{2}\right], \sigma\right) \\
Y & X_{1}, & X_{2} \ldots & \sim \text { Binomial }\left(n, P\left[x_{1}, x_{2}\right]\right) \\
Y & X_{1}, & X_{2} \ldots & \ldots & \sim \text { Poisson }\left(\mu\left[x_{1}, x_{2}\right]\right)
\end{array}
$$

- Typically, there is a "natural" or "canonical" pairing of link and Error, but most software now allows the user to even "mix and match"
"natural" (LINK,ERROR) pairings
(IDENTITY, Gaussian) (LOGIT,Binomial) (LOG,Poisson)
very little to choose between them on quantitative grounds, but...
- influence of epidemiology

Cornfield
ODDS RATIO estimable in case-control studies without further data
natural to extend from 2×2 tables to REGRESSION and produce ODDS RATIO's for continuous X's
even if X itself binary, don't have to rely on Mantel-Haenszel aggregation of OR estimates (cells sparse if multiple X's)

- other reasons..

```
see Cox 1970 Analysis of Binary Data
    Cox and Snell 1989 Analysis of Binary Data
```


With Logistic Regression, What's Different / The Same?

SAME

- the X's, indicator variables for categorical X's
- meaning of linear predictor
- meaning of individual coefficients
- confounding
- interaction
- model fits (variables added last / in order ..)

DIFFERENT

- the scale of Y 's and the scale of P
- RATIOS on one scale are differences on another
- having to go forward/back from one scale to another
- error variance tied to mean... σ is function of $\mu[=P]$
- =>can tell if model close to best achievable
- "Individual" Residuals not as meaningful;
- idea of "cells" or covariate patterns
- (tied to this) degrees of freedom available
- the statistics for testing additional terms in model \Rightarrow no longer tied to F or t (we don't have to estimate σ separately from $\mu\left[\mathbf{x}_{1}, \mathbf{X}_{2} \ldots\right]=\mathrm{P}\left[\mathbf{X}_{1}, \mathbf{X}_{2} \ldots\right]$

