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Session 1:

Outline

• Y Scales
Summary Statistics / Parameters

• X & Y Various Configurations / Displays
Measures of relationship Y <--> X

references: M&M Ch 2

• X1, X2 & Y Roles of X1 & X2 :

• Fairer Comparison of levels of X1
BIAS REDUCTION --> X2 is a "Confounder"

• Sharper Comparison of levels of X1
MORE PRECISION --> X2 not necessarily confounder
but produces considerable addnl. variation in Y

• Interest in Both X1, X2 as determinants of Y
X1 and X2 have same SYMMETRICAL status

• X2 "modifies" relationship between X1 and Y
DIFFERENT  Y<->X1 relationship
for DIFFERENT levels (subgroups) of X2

Examples of (Y,  X1 ,  X 2  . . .  )  Data
• Admissions of Males & Females to Berkeley Graduate Schools

- overall and faculty by faculty
• Birthweight - Gestational Age ; Gender
• Fatalities & Speed Limit Change - Time
• Low Birthweight - Alcohol ; Smoking ; Social Class
• Intelligence Quotient (IQ) - Mother's Milk; Other Variables
• Stature(height) of Children on Tetracycline -
• Lung Function of Vanadium Factory Workers

- vs. reference group (matched for smoking and age)
   that was 3.4 cm different in average height

• Blood Pressure and Altitude - age; height; weight; country
• Weight - Age ; Social Class
• longevity - sexual Activity; Size

X 1 ,  X 2  & Y:

If primary interest is in X1  contrast,  and X2  is either
a "Confounder" or produces considerable additional
variation in Y that acts as 'noise'.

Simplest case: X1 is measured on a 2-point scale (binary) so
compare Y in those with X1 = 0 vs. in those with X1 = 1;

     NON-REGRESSION METHODS

Paired / Less Finely Stratified Observations (X2 : pair / stratum)

X2 X1 = 0 X1 = 1 ∆Response *

1 (ave.) response (ave.) response d
2 (ave.) response (ave.) response d
.. . . . . . . . . .
. . (ave.) response (ave.) response d

∑ ∑w•d
∑w  

* using d generically to represent any comparison
  (could be difference, ratio, etc...)

Key: (Weighted) Average of "Within-stratum"
or "other-factors-being-equal" comparisons.

Confounding:

∆ of aggregated responses NOT SAME AS aggregate of ∆ ' s

     References:
counted and measured Y's: Smith & Morrow, §14.6

AAHOVW
Miettinen §11-16

counted Y's:  Walker §8 & 13
KKM § 13
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Session 2: Multiple Regression: Making Comparisons FAIRER

e.g. BREAST MILK AND SUBSEQUENT INTELLIGENCE QUOTIENT
IN CHILDREN BORN PRETERM (Lucas et al  Lancet 1992; 339: 261-64)

There is considerable controversy over whether nutrition in early life has a
long-term influence on neurodevelopment.  We have shown previously that,
in preterm infants, mother's choice to breast milk was associated with
higher developmental scores at 18 months.  We now report data on
intelligence quotient (IQ) in the same children seen at 7.5 - 8 years.

IQ was assessed in 300 children with an abbreviated version of the Weschler
Intelligence Scale for Children (revised Anglicised). Children who had
consumed mother's milk in early weeks of life had a significantly higher IQ
at 7.5 - 8 years than did those who received no maternal milk.  An 8.3 point
advantage (over half a standard deviation) in IQ remained even after
adjustment for differences between groups in mother's education and social
class (p < 0.0001). This advantage was associated with being fed mother's
milk by tube rather than with the process of breastfeeding.  There was a
dose- response relation between the proportion of mother's milk in the diet
and subsequent IQ.  Children whose mothers chose to provide milk but
failed to do so had the same IQ as those whose mothers elected not to
provide breast milk.

Although these results could be explained by differences between groups in
parenting skills or genetic potential (even after adjustment for social and
educational factors), our data point to a beneficial effect of human milk on
neuro-development.

TABLE I - CHARACTERISTICS OF STUDY POPULATION

     Characteristics    

No mother's milk
(group I)
    (n  = 90)   

Mother's milk
(group II)
   (n  = 210)   

Mean (SEM) birthweight (g) 1420   (30)      1440   (20)
Mean (SEM) gestation (wk) 31.4 (0.3) 31.4 (0.2)
% males (no) 42   (38) 55   (116)*
Days in study: median (quartiles) 30   (22,45) 28   (20,40)
Days to full enteral feeds:  " 8   (6,11) 7   (6,9)
% ventilated > 5 days (no) 12   (11) 12   (26)
% in social class I and II (no) 11   (10) 30   (63)+
% mothers higher educ. status (no)@ 24   (22) 52   (109)+

*p < 0.05.    +p < 0.001        @ GCE O levels or above (see text).

Table II - IQ AT 7.5 - 8 YEARS IN THE TWO GROUPS

Mean (SEM) scores Advantage for group II
Abbreviated WISC-R Group I    Group II babies (95% CI)

Verbal scale 92.0(2.0)  102.1(1.3) 10.1 (4.7, 15.5)*
Performance scale 93.2(1.7)  103.3(1.2) 10.1 (6.0, 14.2)*
Overall IQ 92.8(1.6)  103.0(1.2) 10.2 (6.3, 14.1)*

*p < 0.001, group 1 vs group II      CI = confidence interval

Table III -     ADJUSTED     ADVANTAGE IN WISC IQ SCORES
FOR GROUP II BABIES

Mean (SEM) scores Advantage for group II
Advantage 95% CI

Whole Group*
     Verbal scale 7.7 (3.3, 12.1)
     Performance scale 7.9 (3.9, 11.9)
     Overall IQ 7.6 (4.0, 11.2)

Successful**
     Verbal scale 7.7 (3.3, 12.1)
     Performance scale 7.9 (3.9, 11.9)
     Overall IQ 7.6 (4.0, 11.2)

*    All 210 babies in Group II (compared with 90 in Group I)
** 193 babies from Group II who received breast milk (compared with infants
from Group I plus those from Group II who received no breast milk: n=107)

p < 0.001, group 1 vs group II      CI = confidence interval

Table IV- FACTORS RELATING TO IQ AT 7.5–8 YEARS

    Factor      Increase in IQ         95% CI       p value    

  Received mother's milk 8.3 (4.9, 11.7) <0.0001
  Social Class –3.5/class* (–1.5,–5.5)   0.0004
  Mother's education 2.0/group** (0.5, 3.5)   0.01
  Female sex 4.2 (1.0,7.4)   0.01
  Days of ventilation –2.6/wk (–3.7,–1.5)   0.02

*    Social class recorded as 4 categories: I/II, III non-manual, III manual, IV/V
**  Mother's education coded on 5-point scale from 1 (no educational
qualifications) to 5 (degree or other professional qualification)
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Using Multiple Regression to Make Comparisons FAIRER

   Illustration   : Analysis of Rates of Fatal Crashes on rural
interstate highways in New Mexico in the 5 years 1982-1986
(55 mph limit) and in 1987 (65 mph limit). See Oct. 27
article in JAMA by Gallaher et al. 1989;262:2243-2245.

DATA:        ---------- 55 mph -----------||-- 65 mph --
1982  1983  1984  1985  1986 ||   1987

Rates per  2.8   2.0   2.1   1.7   1.9 ||    2.9
108 v-m*
*vehicle miles; Variable named "R_ALL" below.

SUMMARIES IF65MPH = 0         IF65MPH = 1
            (coded "TYPE" = 1) (coded "TYPE" = 2)

  N OF CASES         5        1
  MEAN               2.100    2.900
  VARIANCE           0.175    0.000

0(NO) 1(YES)
0

1

2

3

4

IF 65MPH

L
L
A
_
R

   Two simple (but - at least in this case - cruder, less
   sensitive and more biased) analyses (2 are equivalent).

(1)    t-test    The only estimate of the common variance is from
the 1st 5 years; in fact, some statistical packages will not
compute the t test in this situation.

 t4 = 
2.9 - 2.1

  s2 [ 
1
5
 + 

1
1
 ]

  = 
0.8

0.175 [ 0.2 + 1.0 ]
  = 1.746

(2)    ANOVA   

DEP VAR: R_ALL  N: 6  MULTIPLE R: 0.66  MULTIPLE R2: 0.43

SOURCE SUM-OF-SQUARES DF MEAN-SQUARE    F-RATIO     P(2-sided)
TYPE*       0.533     1    0.533      3.048    0.156
ERROR**     0.700     4    0.175
------      -----    ---   -----
 Total      1.233     5    0.246

* Note: The "BETWEEN TYPES" SS is a weighted sum [weights 5:1
or 1:0.2] of the squared devns. of the mean, for each of the

2 types of years, from the y=  of all 6 years

i.e. as 5[y1
-  - y= ]2 + [y2

-  - y= ]2 = 0.533

As such, apart from a divisor, it has the form of a variance.
[ notice the ratio of 5 :1 or 1/0.2:1/1 i.e. the same ones
which appear in the denominator of the t-test]

Compare the 0.533 with the 
[2.9 - 2.1]2

[ 0.2 + 1.0 ]
  one would get by

squaring the numerator and part of the denominator of the t-
test statistic. Squaring the entire t4 statistic of 1.746

yields the F1,4 ratio test statistic of 3.048.

**Note: The "ERROR" is calculated by pooling the variances
"within" each of the two types of years. In this e.g. the
estimate of error is contributed entirely by the "TYPE" = 1
years . The "mean square error" is the same as the within
group variance in the t-test.
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   Two more complex [but also more sensitive and less
   biased] analyses. (The two methods are equivalent
   in the example here)
 The aim is to take compare 1987 with the most relevant
period; the average of 1982-1986 is probably too high (rates
seem to have been falling over that time). Also one should
take out the systematic variation in the 5 years that, in the
s2 used in the t-test or 1-way anova, appears as "unexplained
noise". In other words, the idea is to make the comparison
both FAIRER and SHARPER.

   (1) What the authors did   ... Fit a regression line to the 5
years, estimate the "expected" value for 1987 and the
expected range of variation around this fitted mean, and
determine where, relative to this predicted range of
variation, the observed value in 1987 lies.

DEP VAR: R_ALL  N:5  MULTIPLE R:0.794  MULTIPLE R2: 0.630

ADJUSTED MULTIPLE R2: 0.507
STANDARD ERROR OF ESTIMATE: 0.294 (This is a misnomer; It is
really the   of the average squared residual [0.086]  and
could be called an "average residual")

VARIABLE  COEFF.  STD ERROR     T     P(2 TAIL)

CONSTANT  418.740  184.345    2.272     0.108
YEAR       -0.210    0.093   -2.260     0.109

                  ANALYSIS OF VARIANCE
SOURCE   SUM-OF-SQUARES  DF  MEAN-SQUARE  F-RATIO   P

REGRESSION    0.441      1      0.441     5.108   0.109
RESIDUAL      0.259      3      0.086

"fitted" rate for 1987 [generically: ŷ  = b0
^  + b1

^  * x ]

 = 418.740 -0.210*1987 = 1.47
  (slightly different from authors' because of rounding)

Range of variation of individual point about 1.47 :

 1.47 ± t3,95  x 0.294 x   1 + 
1
5
 + 

[1987 - 1984]2

 ∑[year - 1984]2
 

 1.47 ± 3.182 x 0.294 x   1 + 
1
5
 + 

9
10
   = 1.47 ± 1.33

 0.14 to 2.80.

0

1

2

3

4

1982 1983 1984 1985 1986 1987

In the diagram, the solid black line is the regression line
fitted to the points 1982-1986. The dotted lines represent
the 95% limits    for individual values    [ not to be confused by
the 95% CI for the regression line (the line of means)
itself! ].

The observed point of 2.9 (not shown) is just outside the 95%
range of random variation about the mean predicted for 1987.
In fact, using the SD of 1.45 [the 0.4205 obtained by
multiplying the 0.294 by the radical, the 2.9 is

t = 
2.9 - 1.47
 0.4205

  = 3.40 SD's above expected, and since

the estimated SD is based on only 3 df, this deviate is
somewhere between the 97.5% and the 99%ile. It is not clear
whether the p-value in the article is 1- or 2-sided, or
indeed whether the authors calculated it in the same way as
here.
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   (2) Another equivalent multivariate method   ..both this and the
author's methods are multivariate -- in the sense that they
deal with 3 (i.e. > 2 ) variables (the rates and the two
"explanatory" variables of year and the status of the law).

The idea is to estimate simultaneously both the trend over
years and the apparent "effect" (in terms of a jump in the
fatal crash rates) that the relaxing of the law had. The data
points could be thought of as two series with the same trends
but with the second series, starting in 1987, have a higher
level. e.g.

'82 '83 '84 '85 '86 '87 '88 '89

rates ∂ rate

∂ time

    ∂ rate
ß = ------
    ∂ time 

∆

∆Jump

One could represent these two lines by two equations:

 • expected rate = ß0 + ß*year      ('82-'86: 55 mph)

 • expected rate = ß0 + ß*year + D  ('87:     65 mph)

If we want to be compact about it, and define an "indicator
variable" which takes on the value 0 if the limit is 55 mph
and 1 if 65 mph, we can write the two equations in one as:

 • expected rate = ß0 + ß*year + D*indicator_variable

In the computer run below, because of limitations on the
number of letters in the name, the indicator variable has
been called IF65MPH.

By fitting the multiple regression equation:

R_ALL = CONSTANT + YEAR + IF65MPH ,

we obtain the estimates ß̂ 0,  ß̂  and  D̂  as the coefficients

accompanying the variables named CONSTANT, YEAR and IF65MPH.

DEP VAR = R_ALL N=6  MULTIPLE R=0.889 MULTIPLE R2 = 0.790

ADJUSTED MULTIPLE R2 = 0.650
STANDARD ERROR OF ESTIMATE = 0.294 (see comment above)

VARIABLE  COEFFICIENT  STD ERROR   T      P(2 TAIL)

CONSTANT    418.740     184.345   2.272    0.108
YEAR         -0.210       0.093  -2.260    0.109
IF65MPH       1.430       0.426   3.358    0.044

i.e. the estimates are

  ß̂ 0 = 418.74 ; ß̂  = -0.210 and  D̂  = 1.430, with SE's

      184.345;       0.093 and      0.426 respectively.

The one of direct interest is  D̂  = 1.430, which is

 t3 = 
1.430 - 0
0.426

  = 3.358 SE's greater than 0

[which, apart from the rounding errors, is just like it was
in the previous analysis].

What we did do to get the same answer? We introduced one more
observation directly into the analysis, but it went entirely
to estimating D; the residual variation is still based on the
variance of the 5 first years from their trend (the estimated
trend also remains the same). Year is a covariate here.

Usually, analyses of covariance involve covariates which
overlap within the two or more groups of direct interest and
one has some chance to test whether it is reasonable to
assume common slopes for the lines. Also, one is usually more
interested in estimating the D within the middle of the range
of the covariate, not at its extreme, as was the case here.
For completeness, the partition of the overall 5 df variation
of s2 = 1.233 in the 6 datapoints is given below.
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Note that the MULTIPLE R2 = 0.790 comes from dividing the
portion "explained by a jump from a linear trend by the total
variation of 1.233 is .7899, or 0.790 when rounded.

Note also that neither the 1 df test of a non-zero trend nor
the "overall F ratio" for testing whether "two variables are
better than none" is statistically significant. However, the
inclusion of YEAR in the equation, and therefore the
subtraction of the variance explainable by it, is important
in letting the signal (estimated at 1.43) shine through the
remaining -- now not so large -- unexplained "noise", which
we estimate at s2residual = 0.086. Contrast this with the s

2 =

0.175 in the t-test and anova described at the very
beginning.
             ANALYSIS OF VARIANCE
SOURCE   SUM-OF-SQUARES  DF  MEAN-SQUARE  F-RATIO    P

REGRESSION     0.974      2    0.487       5.643    0.096
RESIDUAL       0.259      3    0.086
-----------    -----     ---   -----
Total          1.233      5    0.246

Note: Most would consider the equation
 R_ALL = ß0 + ß*YEAR + ∆*IF65MPH

'unnatural' in that it implies a shift to a    parallel    trend. A
more narural one would be a shift to a    different       slope   . This
could be represented by an equation of the form

R_ALL = ß0 + ß1*YEAR + ß2*YEAR*IF65MPH

where ß2 represents the change to the slope with 65MPH

(negative ß2 means a shallower, positive ß2 a sharper trend.

With only 1 datapoint for 65MPH, we cannot judge from the
data alone which model fits better.

∂rate/∂time = ß1

∂rate/∂time = ß1+ß2

1986-87
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Using Multiple Regression to Make Comparisons
SHARPER & FAIRER

   Illustration      : Effect of sexual activity on male longevity   
Longevity (days) of male fruit-flies randomized to live with
either uninterested (GROUP 1) or interested females (GROUP
2). Also measured: size of the fruit-fly (thorax, measured in
mm) and the percentage of each day he spent sleeping.

GROUP                 LIFETIME      THORAX     SLEEP   
 1  N OF CASES         25          25          25
    Range           42 - 97   0.64 - 0.92    4 - 66
    MEAN              64.8       0.826        24.1
    STANDARD DEV      15.6       0.070        16.7
    STD. ERROR         3.1       0.014         3.3

 2  N OF CASES         25          25          25
    Range           21 - 81   0.68 - 0.92    5 - 73
    MEAN              56.8       0.838        25.8
    STANDARD DEV      15.0       0.071        18.4
    STD. ERROR         3.0       0.014         3.7

1 2 
20 

40 

60 

80 

100 

GROUP 

E
M
I
T
E
F
I
L

•    t-test comparing GROUPS 1 and 2   
  (difference in means is 56.76 - 64.8 = -8.04 days)

[Pooled variance is  approx 233.92]

> by hand ...

 t48 =  
56.760 - 64.8

 233.92 [ 
1
25
 + 

1
25
 ]

  = 
-8.04
4.326

  = 1.86

> by SYSTAT...

INDEPENDENT SAMPLES T-TEST ON LIFETIME

     GROUP         N     MEAN           SD
       1          25       64.800       15.652
       2          25       56.760       14.928

  POOLED VARIANCES T =    1.859
                  DF =   48
                  PROB =  0.069

•    EQUIVALENTLY:-    ANALYSIS OF VARIANCE OF LIFETIME

   SOURCE    SS      DF    MS    F-RATIO       P
GROUP    808.02    1  808.020  3.454    0.069
ERROR  11228.56   48  233.928

N=50  MULTIPLE R = 0.259  MULTIPLE R2 = 0.067

•    Another way :-  CI {difference in mean lifetime}

CI95 = -8.04 ± t48,95 SE(observed difference)

     = -8.04 ± t48,95 {SE(64.8)}2 + {SE(56.76)}2  

     = -8.04 ±   2.01 (4.326) = -8.04 ± 8.69
     =  -16.74 to 0.655, which just overlaps zero.
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•    Yet another way ... Regression analysis   
  GROUP 1 represented by X = 0 and GROUP 2 by X = 1

Fit: lifetime =  CONSTANT + X + random variation

i.e. Mean(lifetime) = ß0 + ß*X  [ß "times" X in "computerese"]

   VARIABLE   COEFFICIENT  STD ERROR      T    P(2 TAIL)

CONSTANT   ß
^
 0 = 64.800   3.059        0.000

X          ß
^
   = -8.040   4.326        1.859  0.069

   Fit means for two GROUPS by substituting X values.   

gp 1  ß
^
 0 + ß

^
 *X = 64.800 + -8.040*0 = 64.80

gp 2: ß
^
 0 + ß

^
 *X = 64.800 + -8.040*1 = 64.80-8.040 = 56.76

i.e. the coefficient  ß
^
  associated with the "dummy" variable

X estimates the difference in the means of the two
populations i.e. we can represent the "GROUPS" by variables
that take on numerical values, just like any other numerical
predictor variable. [This is in contrast to the use of the
the variable "GROUP" which simply uses the integers 1 and 2

as    labels    for groups]. Note that  ß
^
  divided by its SE of

4.326 gives the identical t-value as in the previous
analyses. Also, the MEAN-SQUARE  RESIDUAL of 233.928 based on
48 degrees of freedom is the "pooled variance" used in the t-
test. The anova table that goes with the regression analysis
(below) is identical to the one that goes with the classical
anova table used above.. the only differences are the
interchangeable uses of the terms RESIDUAL in place of ERROR
and REGRESSION (i.e. X) in place of GROUP.

               ANALYSIS OF VARIANCE

   SOURCE   SUM-OF-SQUARES  DF  MEAN-SQUARE  F-RATIO    P
REGRESSION   808.020     1      808.020   3.454    0.069
RESIDUAL   11228.560    48      233.928
[√233.928 = 15.3 = SD of resuiduals, sometimes called "SE of
estimate"]

LIFETIME  N=50  MULTIPLE R = 0.259 MULTIPLE R2 = 0.067
•    Should one worry about the distribution of the other
   variables thorax size and sleep?

The crude differences in lifetime between the two study
groups are shown in the top right panel of the scatter plot
matrix [groups are represented by X=0 and X=1].

One can see from the middle panel in the top row of the
scatter plot matrix that thorax size has an important
influence on longevity, with larger flies living considerably
longer than smaller ones. [Ideally, one should look at this
in each group separately, but the data (not shown) show the
same relationship in each one]

LIFETIME 

THORAX 

X 

However, this was a randomized study and one can also see
from the middle panel in the rightmost column that the flies
are quite evenly distributed with respect to size. For what
it is worth, the experimental group (x=1) is just slightly
larger on average than the control group (x=0) and as such is
starting out with a slight survival advantage; thus the final
adjusted estimate of "days lost" by the experimental group
needs to be enlarged to compensate for the fact that, had it
started out without this advantage, it would have lost even
more.
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"Correcting for" imbalances with respect to size will enhance
the observed difference only slightly. As we will see later,
the adjustment moves the shortened lifetime from an average
of 8.04 to an average of 9.65 days. If we still use the
margin of error of ± 8.69 that we calculated at the
beginning, this new estimate moves the significance level
from P=0.06 to P=0.025 approx.

However, there is another important reason to take the
variation due to size into account {An even better term might
be "to take the effect of size    out of the account   "}. I
deliberately use the term "take into account" rather than
"correct for" since we often think of the latter only when
there is an imbalance. In fact, taking the extraneous factor
into account can have an important impact even if the two
groups are perfectly balanced by design or by good fortune.
The logic is the same as the one that says we should perform
a paired t-test, rather than an independent samples test,
when measurements come from matched pairs: using only the
intra-pair differences removes what could be a large
variation [even between members of the same group] due to the
extraneous matching factor. We can think of regression [or as
it is sometimes called analysis of covariance] as using
"synthetic" or "poor-person's" matching in order to remove
noise from the comparison of two groups [see article on
appropriate uses of multivariate analysis]. This is done by
fitting regression lines to the data from each of the two
groups and calculating the vertical distances between them.
Just as in the example of the effect of liberalizing speed
limits, the idea is depicted schematically as follows:

life
time

∂ lifetime
∂ thorax

    ∂ lifetime
ß = ----------
     ∂ thorax 

thorax

1
ß

Means of Control 
Population

Means of Experimental 
Population

mean = ß0 + ß thorax

mean = ß0 + ß thorax - ∆

∆
∆

∆

•    Regression analysis:        GROUP 1 coded X = 0 and GROUP 2 X
   = 1,    and     with linear effect of thorax

Fit: lifetime =  CONSTANT + X + THORAX + random variation

i.e. Mean(lifetime) = ß0 + ßT*THORAX + ßX*X

                                     [using ßX for ∆]

   VARIABLE   COEFFICIENT  STD ERROR   T    P(2 TAIL)

CONSTANT  ß
^
 0 = -46.038     20.799  -2.214    0.032

THORAX    ß
^
 T = 134.252     25.019   5.366    0.000

X         ß
^
 X =  -9.651      3.456  -2.793    0.008

   SOURCE          SS    DF  MEAN-SQUARE  F-RATIO    P   
REGRESSION  5073.677   2    2536.839   17.124    0.000
RESIDUAL    6962.903  47     148.147STANDARD ERROR OF
ESTIMATE = √148.147 = 12.2 [vs 15.295]
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 ß
^
 X =  -9.651 is the "adjusted" mean difference between the

groups; this is a 20% adjustment on the "crude" estimate of
8.04 days. Furthermore, the uncertainty about the new
estimate, as measured by its SE, is 3.456, which is also a
20% reduction from the previous SE of 4.326, which was based
on the overall or crude variation within each group. [that
the two corrections are both 20% is just a coincidence].

The    purposes   , then, of the    analysis of covariance    (using
thorax size as a covariate) are    two-fold   : (1) to    correct   , by
an arithmetic adjustment, for any imbalances in important
variable(s) between the groups being compared and (2) to
   sharpen    the contrasts by removing noise due to these same
variables and thereby reducing the SE of the estimated
between-group differences in the response variable. Note that
(2) will occur even if (1) is unnecessary from a "bias-
correction" point of view.

•    A simpler example    of this might be the following data which
one could imagine resulting from a comparison of the fuel
consumption of two makes of automobile. Shown are the
measurements in 4 runs of 1000, 2000, 3000, and 4000Km  for
each make. Consumption measured as litres/run (B) or litres
/100Km, shortened to  l/100Km (C).

        Make 1                 Make 2
 (A)   (B)      (C)        (A)   (B)      (C)
 Km   litres  l/100Km      Km  litres    l/100Km
1000    81      8.1       2000   182      9.1
3000   231      7.7       1000    89      8.9
4000   328      8.2       3000   270      9.0
2000   160      8.0       4000   360      9.0

xbar   200<------------------->225.3
s      105      t = 0.322      116.3

xbar             8<---------------------->9
s                0.22    t = 8.66        0.08

In theory, one might want to weight each of the 4
observations according to its precision [e.g. fuel might not
be measured equally precisely; even if fuel can be measured
precisely, a longer trip might be less likely to be
influenced by various short-term fluctuations]
However, the main point is that, even though the 2 sets of
observations are "balanced" with respect to distance, the
variations in the  "litres per run" index are very large and
due more to variations in distance than to variations in fuel
consumption between makes. Such noise makes it difficult to

see that make 2 is  a bigger consumer of fuel -- something
that can be seen clearly (and if need be backed up with a
statistical test, which quantifies the limits of random
variation) if one uses the less noisy index of l/100Km.
In this particular example, the runs could be matched and one
could use a paired analysis to bring out the signal. But what
if the 8 runs were all of different distances? A regression
approach woul handle this. In this e.g. below, distances are
in units of 100Km, and remain balanced.

Fuel DIST1 DIST2 (unit = 100Km)
 81 10   0
231 30   0
328 40   0
160 20   0
 89   0 10
270   0 30
360   0 40
182   0 20
FIT:  average(FUEL) = ß1*DIST1+ ß2*DIST2 (NO CONSTANT)

     VARIABLE    COEFFICIENT    STD ERROR    T    P(2 TAIL)

   DIST1       ß
^
 1 =  8.02      0.091   88.00*    0.000

   DIST2       ß
^
 2 =  9.01      0.091   98.86*    0.000

(* proof that it takes a non-zero amount of gasoline to drive 100KM !)

SE(9.01- 8.02) = 0.0912 + 0.0912  = 0.13 (approx), so
difference of 0.99 l/100Km is 7.5 SE's beyond zero (t=8.66
above arrived at by slightly different method).

ANALYSIS OF VARIANCE
   SOURCE         SS      DF    MS        F-RATIO       P
REGRESSION   436501.5   2   218250.75  8759.227    0.000
RESIDUAL        149.5   6       24.92
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Multiple Regression for Proportions

Examples:

Lowbirtweight in relation to alcohol consumption during
pregnancy

Asthma trends in Israel

Psychological Stress, Smoking, Alcohol Consumption and
susceptibility to the common cold.

   Non-regression    approaches as before. They depend on the
comparative parameter to be used:  ∆ of proportions; ratio of
proportions; ratio of odds.

Likewise,    regression    approaches depend on the form of
comparative parameter.

Suppose we denote the parameters as π's. The general approach
is to use a regression model

g(π) = ∑ ß•x

If g() is the "Identity" 'link' ie g(θ) = θ, we can
estimate ∆'s of proportions (risk differences).

If g() is the "Log" 'link' ie g(θ) = ln(θ), we can model
ratios of proportions ('risk ratios' or 'relative
risks').

If g() is the "Logit" 'link' ie g(θ) = ln(
θ
1–θ

 ), we can

model ratios of odds ('odds ratios' or 'relative odds').

If g() is the "Probit" 'link' ie g(θ) = the Gaussian Z
deviate corresponding to a proportion θ, then we can
estimate shifts in LD50 (or LDxx) based on a Gaussian
distribution of tolerance. The probit curve is a close
relative of the logit curve; both can be used for
modelling S-shaped 'dose-response' relationships.

References:

Armitage and Berry (3rd ED) §12.8
Healy: GLIM: An Introduction
Hosmer and Lemeshow: Logistic Regression
Kleinbaum: Logistic Regression
Miettinen §18.3
Checkoway H : Res. Methods for Occ. Epi. §8
Kahn HA & Sempos: Sta. Meth. in Epi. :  §6
Selvin S: Sta. Anal. of Epi. Data:  §7 and 8
Breslow N and Day N: Volume I (Case Control studies)
Schlesselman J: Case Control Studies
Bland and Keirse (2 expository articles: logistic Regression)
AAHOVW
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Session 3:
Multiple regression as sequence of simple regressions

E.g.: Regression of Weight(lb) on age(yrs) and Height(in) in 11-16 year olds

3 SIMPLE REGRESSIONS
(1)  WEIGHT =  -105.38 + 3.36 * HEIGHT + RESWT

(2)  AGE    = -0.79 + 0.23 * HEIGHT + RESAGE , so that
(2') RESAGE = AGE - {  -0.79 + 0.23 * HEIGHT }

(3)  RESWT  = -0.023 + 2.82 * RESAGE + RESIDUAL
(variance 187.02)

Substitute (2') into (3) to get

(4)  RESWT  = -0.023 + 2.82 * {AGE - {-0.79 + 0.23 * HEIGHT}}

and then (4) into (1) to get ...

(5) WEIGHT =

   -105.38  + 3.36 * HEIGHT +
     -0.023 + 2.82 * {AGE - {-0.79 + 0.23 * HEIGHT}}
   + RESIDUAL (variance 187.02)

 =  -105.378  +                   3.36 * HEIGHT + 2.822 * AGE
      -0.023  +          -2.822 * 0.23 * HEIGHT
    + 2.822*{-{-0.789}}
    + RESIDUAL (variance 187.02)

 =  -103.174  +                  2.725 * HEIGHT + 2.822 * AGE
    + RESIDUAL (variance 187.02)

This is equivalent  (ignoring rounding errors from not using enough
decimal places) to performing a multiple linear regression:

Y=WEIGHT; N=233; MULT. R=0.70; SQ. MULTI. R= 0.49
ADJUSTED SQ. MULT R=0.49; STANDARD ERROR OF ESTIMATE=13.705

VAR.         COEFF   .    STD ERROR       STD COEF          T          P(2 TAIL)   

CONST.  -103.150   14.199   0.000    -7.264  0.00000
HEIGHT     2.723    0.294   0.553     9.242  0.00000
AGE        2.822    0.807   0.209     3.498  0.00056

                       ANALYSIS OF VARIANCE
   SOURCE     SUM-OF-SQUARES  DF  MEAN-SQ.  F-RATIO   P
REGRESSION  42186.19420    2  21093.09  112.29578 0.000
RESIDUAL    43202.08906   230    187.83517
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Collinearity

    Example of the issue   : Suppose that in a study of workers aged
45-65 to quantify the degree to which hearing loss was affected
by their exposure to the noise from heavy machinery, the
number of years of exposure to this noise and the extent of
hearing loss were determined for each person. A multiple
regression is planned to assess the effect and to take the person's
age into account (hearing loss generally becomes worse with
age, even if there is no unusual occupational exposure).

What is the  correlation between age and cumulated exposure
likely to be?

If it is very high, what will it do to the estimate of the regression
slope of loss on exposure?.

If it is low, what will it do?  If you think it will do very little,
would you bother to include age in the regression? [This
question has to do with reduction of noise and making
comparisons sharper].

If you had a choice of  which workers to select from a larger
available group, would you choose on a purely random basis, or
on some other basis? Why?

See some examples on next page. The panel on the extreme left
shows the distribution of age and exposure (both in years), with
a fairly strong positive correlation. An example of a 'stratified
sample' is given next to it (upper panel). Here the    selection is
   constrained to obtain persons equally from all 4 quadrants   . This
makes it easier to separate the effect of age from the effect of
exposure. An example of an 'unstratified sample' is given in the
lower panel. Here the selection is simply a 'miniature' of the
parent distribution and so there will be greater difficulty in
separating the effect of age from the effect of exposure.

Suppose that in fact the mean hearing loss for persons of a
certain age and exposure is as follows:

mean = 0.3•(age–25) + 0.4•exposure

and that the inter-individual variation around this mean is
Gaussian with a SD of 3.  In technical language, we say that
ß[exposure] = 0.4 and that ß[age] = 0.3, and that the SD of the
'residuals' is 3.0.

On the right hand side of the following page the effects of the
collinearity on our estimates of the two ß's are displayed in list
and graphic mode for 10 unconstrained and 10 constrained
(stratified) random samples. The message from these is that the
estimates of the ß associated with exposure are      more variable   
(and so less dependable) when the samples have    collinearity    .
(the same is true for the estimates of the ß for age).
In the extreme, if the collinearity between age and exposure were
close to a correlation of 1, the estimates of the ß for exposure
could oscillate even more, and could go from being quite
negative to quite positive. The only thing that would remain
reasonably stable is the    sum      of the estimate of ß for exposure
and of the ß for age (i.e. the sum of the two estimates would be
close to 0.4 + 0.3 = 0.7, but an equation with the estimate of
ß[exposure] = –1.2 and ß[age] = +1.9  {or for that matter
ß[exposure] = +2.3 and ß[age] = –1.6} would do an equally
good job of predicting the responses (all the individuals would
be spread out along the diagonal in the age vs. exposure
diagram). You can see some of this compensatory behaviour of
the two estimates in the plot in the panel on the right (estimates
from "unstratified" samples), where there is a strong     negative   
correlation between the two estimates.
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Effect Modification

In the previous example, if  females, because of their longer hair
or greater tendency to wear ear-protectors, or because of some
biological factor that might make them less susceptiple to noise-
induced hearing loss, were analyzed separately from males, how
would the regression coefficients for hearing loss on  years of
exposure compare in the two sexes?

Effect Modification = "Different Slopes for Different
Folks"

Can we combine the separate equations for males and females
into one?

    A similar example    of combining two equations into one:  How to
estimate ideal body weight (based on findings of a Harvard
study)

For      Women    : 100 pounds for a height of 5 feet, with five
additional pounds for each added inch of height

For      Men    : 110 pounds for a height of 5 feet, and six additional
pounds for every added inch of height

Since 5 feet = 60 inches, and letting H = height in inches  – 60,
the equations become:

Women: weight = 100 + 5•H
Men: weight = 110 + 6•H

If denote Women by a variable G(ender)=0 and Men by G=1,
we can combine the 2 equations

weight = 100 + 10•G + 5•H + 1•G•H

    Terminology    : Note that the use of the product G•H as an
additional variable in the regression equation is called an
'    interaction    ' term. If the coefficient associated with this variable
were 0, we would have 'no statistical interaction' (i.e. we would
have the 'same slope for different folks'.

Thus the ideas of '   effect modification    ' and 'statistical interaction'
are really the same: epidemiologists tend to use the former and
statisticians the latter.

The trouble with the word interaction is that it refers to a purely
numerical trick to write the equations for 2 or more  non-parallel
lines in a single compact equation. Unfortunately, users of the
equations sometimes try to give the word a biological meaning.
But by suitable transformations, one can sometimes transform
non-parallel curves into parallel lines and vice versa, so any
'interaction' term has to be viewed in the context of the scale
used.


