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Session 1:

Outline
Y Scales

Summary Statistics/ Parameters
*X&Y Various Configurations/ Displays

Measures of relationship Y <--> X
references. M&M Ch 2
e X1, X20&Y Roles of X1 & Xo:

* Fairer Comparison of levels of X4
BIASREDUCTION --> X, isa"Confounder"

* Sharper Comparison of levels of X3
MORE PRECISION --> X5 not necessarily confounder
but produces considerable addnl. variationin’Y

* Interest in Both X4, X, as determinants of Y
X1 and X, have same SYMMETRICAL status

* X5 "modifies" relationship between X; and Y
DIFFERENT Y<->X; relationship
for DIFFERENT levels (subgroups) of X,

Examples of (Y, X1, X2 ... ) Data

» Admissions of Males & Femalesto Berkeley Graduate Schools
- overall and faculty by faculty

* Birthweight - Gestational Age ; Gender

* Fatalities & Speed Limit Change - Time

 Low Birthweight - Alcohol ; Smoking ; Social Class

* Intelligence Quotient (1Q) - Mother's Milk; Other Variables

« Stature(height) of Children on Tetracycline -

* Lung Function of Vanadium Factory Workers
- vs. reference group (matched for smoking and age)

that was 3.4 cm different in average height

* Blood Pressure and Altitude - age; height; weight; country

* Weight - Age ; Social Class

* longevity - sexual Activity; Size

X1, Xo &Y.

If primary interest isin X, contrast, and X, iseither
a " Confounder" or produces considerable additional
variation in Y that acts as 'noise'.

Simplest case: X1 ismeasured on a 2-point scale (binary) so
compareY inthose with X1 = 0 vs. in those with X1 = 1;

NON-REGRESSION METHODS

Paired / Less Finely Stratified Observations (X5 : pair / stratum)

Xo X1=0 X1=1 DResponse *
1 (ave.) response (ave.) response d
2 (ave.) response (ave.) response d
'(;a.ve.) response .(éve.) response d
a awed
aw

* using d generically to represent any comparison
(could be difference, ratio, €tc...)

Key: (Weighted) Average of "Within-stratum”
or "other-factors-being-equal” comparisons.

Confounding:

D of aggregated responses NOT SAME AS aggregate of D's

References:

counted and measured Y's.  Smith & Morrow, 814.6
AAHOVW
Miettinen §11-16

counted Y's: Walker 88 & 13
KKM 8§13
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Session 2: Multiple Regression: Making Comparisons FAIRER

e.g. BREAST MILK AND SUBSEQUENT INTELLIGENCE QUOTIENT
IN CHILDREN BORN PRETERM (Lucaset a Lancet 1992; 339: 261-64)

Thereis considerable controversy over whether nutrition in early life hasa
long-term influence on neurodevelopment. We have shown previously that,
in preterm infants, mother's choice to breast milk was associated with
higher developmental scores at 18 months. We now report data on
intelligence quotient (1Q) in the same children seen at 7.5 - 8 years.

IQ was assessed in 300 children with an abbreviated version of the Weschler
Intelligence Scale for Children (revised Anglicised). Children who had
consumed mother's milk in early weeks of life had a significantly higher IQ
at 7.5 - 8 years than did those who received no maternal milk. An 8.3 point
advantage (over half a standard deviation) in 1Q remained even after
adjustment for differences between groups in mother's education and social
class (p < 0.0001). This advantage was associated with being fed mother's
milk by tube rather than with the process of breastfeeding. Therewasa
dose- response rel ation between the proportion of mother's milk in the diet
and subsequent 1Q. Children whose mothers chose to provide milk but
failed to do so had the same 1Q as those whose mothers el ected not to
provide breast milk.

Although these results could be explained by differences between groupsin
parenting skills or genetic potential (even after adjustment for social and
educational factors), our data point to a beneficial effect of human milk on
neuro-devel opment.

TABLE | - CHARACTERISTICS OF STUDY POPULATION

No mother's milk  Mother's milk

(group 1) (group 1)
Characteristics (n =90) (n =210)
Mean (SEM) birthweight (g) 1420 (30) 1440 (20)
Mean (SEM) gestation (wk) 31.4 (0.3) 31.4 (0.2)
% males (no) 42 (38) 55 (116)*
Daysin study: median (quartiles) 30 (22,45) 28 (20,40)
Daysto full enteral feeds: " 8 (6,11) 7 (6,9)
% ventilated > 5 days (no) 12 (11) 12 (26)
% in social class| and |1 (no) 11 (10) 30 (63)+
% mothers higher educ. status (no)@ 24 (22) 52 (109)+

*p<0.05. +p<0.001 @ GCE O levels or above (see text).

Tablell - 1Q AT 7.5- 8 YEARSIN THE TWO GROUPS

Mean (SEM) scores
Abbreviated WISC-R Group!l Groupll

Advantage for group |1
babies (95% CI)

Verbal scale 92.0(2.0) 102.1(1.3) 10.1 (4.7, 15.5)*
Performance scale 93.2(1.7) 103.3(1.2) 10.1 (6.0, 14.2)*
Overal IQ 92.8(1.6) 103.0(1.2) 10.2 (6.3, 14.1)*

*p <0.001, group L vsgroup Il Cl = confidence interval

Tablelll - ADJUSTED ADVANTAGE IN WISC 1Q SCORES
FOR GROUP || BABIES

Mean (SEM) scores Advantage for group |1
Advantage 95% ClI
Whole Group*
Verbal scale 7.7 (3.3,12.1)
Performance scale 7.9 (3.9, 11.9)
Overdl IQ 7.6 (4.0, 11.2)
Successful**
Verbal scale 7.7 (3.3, 12.1)
Performance scale 7.9 (3.9, 11.9)
Overdl IQ 7.6 (4.0, 11.2)

* All 210 babiesin Group Il (compared with 90 in Group |)
** 193 babies from Group |1 who received breast milk (compared with infants
from Group | plus those from Group Il who received no breast milk: n=107)

p <0.001, group Lvsgroup Il Cl = confidence interval

Table V- FACTORS RELATING TO 1Q AT 7.5-8 YEARS
Factor Increasein |Q 95% CI pvalue

(4.9,11.7)  <0.0001

Received mother's milk 8.3

Social Class —-3.5/class* (-1.5,-5.5) 0.0004
Mother's education 2.0/group** (0.5, 3.5) 0.01
Female sex 4.2 (1.0,7.4) 0.01
Days of ventilation —2.6/wk (-3.7,-1.5) 0.02
* Socia classrecorded as 4 categories: I/11, I11 non-manual, 111 manual, IV/V

** Mother's education coded on 5-point scale from 1 (no educational
qualifications) to 5 (degree or other professional qualification)
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Using Multiple Regression to Make Comparisons FAIRER

Illustration: Analysis of Rates of Fatal Orashes on rural
interstate highways in New Mexico in the 5 years 1982- 1986
(55 mph limt) and in 1987 (65 nph limt). See Cct. 27
article in JAVA by Gall aher et al. 1989; 262: 2243- 2245.

DATA  emeeeee-- 55 nph ----------- ||-- 65 nph --
1982 1983 1984 1985 1986 || 1987
Rat es per 2.8 20 21 1.7 1.9]] 2.9
108 v-nt
*vehicle mles; Variable named "R _ALL" bel ow.
SUWARI ES | F65MPH = 0 | F65MPH = 1
(coded "TYPE' = 1) (coded "TYPE' = 2)
N CF CASES 5 1
MEAN 2.100 2.900
VAR ANCE 0.175 0. 000
4 \ 1
3
R . ¢
L ;
L 2
L °
1
0 L 1
0(NO) 1(YES)
IF 65MPH

(1) t-test The only estinmate of the common variance is from
the 1st 5 years; in fact, sone statistical packages wll not
conpute the t test in this situation.

(o 2921 _ 0.8 _ 1 s

1 1. VNOI/5[ 0.2+ 10]
YEIEEE

(2) ANOVA
DEP VAR RALL N 6 MLTIPLER 0.66 MLTIPLE R: 0.43

SOURCE SUM OF- SQUARES DF MEAN- SQUARE F- RATI O P(2- si ded)
TYPE* 0. 533 1 0. 533 3.048 0. 156
ERRCR: * 0. 700 0.175

* Note: The "BETWEEN TYPES' SS is a weighted sum[weights 5:1
or 1:0.2] of the squared devns. of the nean, for each of the
2 types of years, fromthe y of all 6 years

i.e. as 5[y; -y 12+ [y, - ¥ ]2=0.533
As such, apart froma divisor, it has the formof a variance.
[ notice the ratio of 5:1 or 1/0.2:1/1 i.e. the same ones
whi ch appear in the denom nator of the t-test]

. 2.9 - 2.1]2

Conpare the 0.533 with the [ 0.2+ 10] one woul d get by
squaring the nunerator and part of the denomnator of the t-
test statistic. Squaring the entire t, statistic of 1.746
yields the F; 4 ratio test statistic of 3.048.

**Note: The "ERRCR' is calculated by pooling the variances
"within" each of the two types of years. Inthis e.g. the
estimate of error is contributed entirely by the "TYPE' = 1
years . The "mean square error" is the sane as the within
group variance in the t-test.
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The aimis to take conpare 1987 with the nost rel evant
period; the average of 1982-1986 is probably too high (rates
seemto have been falling over that time). A so one should
take out the systematic variation in the 5 years that, in the
s?2 used in the t-test or 1-way anova, appears as "unexpl ai ned
noi se". In other words, the idea is to nake the conparison
bot h FAI RER and SHARPER

(1) Wat the authors did... Fit aregression line tothe 5
years, estinate the "expected" value for 1987 and the
expected range of variation around this fitted nean, and
determne where, relative to this predicted range of
variation, the observed value in 1987 lies.

DEP VAR RALL N5 MALTIPLE RO0.794 MALTIPLE RZ 0.630

ADJUSTED MULTI PLE R%: 0. 507

STANDARD ERRCR CF ESTI MATE:  0.294 (This is a misnomer; It is
really the v of the average squared residual [0.086] and
could be called an "average residual’™)

VAR ABLE CCEFF. STD ERRCR T P(2 TAIL)

OCONSTANT  418. 740 184. 345 2.272 0.108
YEAR -0.210 0.093 -2.260 0. 109

ANALYSI S CF VAR ANCE
SORCE SUM OF-SQUARES DF MEAN-SQUARE F-RATIO P

REGRESSI CN 0. 441 1 0. 441 5.108 0.109
RESI DUAL 0. 259 3 0. 086

"fitted" rate for 1987 [generically: 9 = 5\0 + 5\1 * x ]
= 418.740 -0.210%1987 = 1.47
(slightly different from authors® because of rounding)

Range of variation of individual point about 1.47 :

- 7
1.47 £ t5 o5 X 0.294 X 1+ % + £1987 1984]
A[year - 1984]2

1.47 = 3.182 x 0.294 x ‘\’1+%+lio =1.47 £ 1.33

0.14 to 2.80.
4
o) o
O\\
—
) \
1982 1983 1984 1985 1986 1987

In the diagram the solid black line is the regression |ine
fitted to the points 1982-1986. The dotted |ines represent
the 95%Ilimts for individual values [ not to be confused by
the 95% A for the regression line (the line of neans)
itselfl ].

The observed point of 2.9 (not shown) is just outside the 95%
range of randomvariation about the mean predicted for 1987.
In fact, using the SD of 1.45 [the 0.4205 obtai ned by
mul tiplying the 0.294 by the radical, the 2.9 is
_ 2.9 - 1.47

t = 70,4205
the estimated SD is based on only 3 df, this deviate is
somewhere between the 97.5%and the 99%le. It is not clear
whether the p-value in the article is 1- or 2-sided, or
i ndeed whether the authors calculated it in the sane way as
her e.

= 3.40 SD s above expected, and since
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(2) Another equivalent nmultivariate method..both this and the
author's methods are multivariate -- in the sense that they
deal with 3 (i.e. >2 ) variables (the rates and the two
"expl anat ory" variables of year and the status of the | aw).

The idea is to estimate sinultaneously both the trend over
years and the apparent "effect” (in terms of a junmp in the
fatal crash rates) that the relaxing of the |aw had. The data
poi nts coul d be thought of as two series with the same trends
but with the second series, starting in 1987, have a higher
level. e.g.

A

rates

"82 "83 "84 "85 "86 "87 "88 "89
e could represent these two |ines by two equations:

e expected rate = By + R*year (' 82-'86: 55 nph)

By + B*year + D ('87: 65 nph)

e expected rate
If we want to be conpact about it, and define an "indi cator
vari abl e" which takes on the value O if the limt is 55 nph
and 1 if 65 nph, we can wite the two equations in one as:

e expected rate = 3y + R*year + Drindicator_variable

In the conputer run bel ow, because of linitations on the
nunber of letters in the nane, the indicator variabl e has
been cal |l ed | F65MPH
By fitting the multiple regression equation:

R ALL = CONSTANT + YEAR + | F65MPH |,
we obtain the estinates /[\3 0 ﬁ and ’E\) as the coefficients
acconpanyi ng the vari abl es naned CONSTANT, YEAR and | F65MPH
DEP VAR = R ALL N=6 MULLTI PLE R=0.889 MLLTIPLE RZ = 0. 790

ADJUSTED MULTI PLE RZ = 0. 650
STANDARD ERRCR CF ESTI MATE = 0. 294 (see comment above)

VAR ABLE COCEFFICENT SIDERRCR T P(2 TAIL)
CONSTANT 418. 740 184.345 2.272 0. 108
YEAR -0. 210 0.093 -2.260 0.109
| F65MPH 1. 430 0.426  3.358 0. 044

i.e. the estimates are

Bo=41874; f =-0.210and D = 1.430, with SE s

184. 345; 0. 093 and 0. 426 respectively.
The one of direct interest is /IZ\) = 1.430, whichis
_1.430 - O

ty = 0. 436 - 3.358 SE's greater than O

[which, apart fromthe rounding errors, is just like it was
in the previous anal ysis].

What we did do to get the same answer? V¢ introduced one nore
observation directly into the analysis, but it went entirely
to estimating D the residual variation is still based on the
variance of the 5 first years fromtheir trend (the estimated
trend also remains the sane). Year is a covariate here.

Usual Iy, anal yses of covariance involve covariates which
overlap within the two or more groups of direct interest and
one has some chance to test whether it is reasonable to
assurre cormon slopes for the lines. Also, one is usually nore
interested in estimating the Dwithin the mddl e of the range
of the covariate, not at its extrene, as was the case here.
For conpl eteness, the partition of the overall 5 df variation
of s2 =1.233 in the 6 datapoints is given bel ow
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Note that the MLTIPLE RZ = 0.790 cones from dividing the
portion "explained by a junp froma linear trend by the total
variation of 1.233 is .7899, or 0.790 when rounded.

Note al so that neither the 1 df test of a non-zero trend nor
the "overall F ratio" for testing whether "two variables are
better than none" is statistically significant. However, the
inclusion of YEAR in the equation, and therefore the
subtraction of the variance explainable by it, is inportant
inletting the signal (estinmated at 1.43) shine through the
remai ning -- now not so large -- unexpl ai ned "noi se", which
we estinmate at S% gsiqual = 0.086. Contrast this with the s2 =
0.175 in the t-test and anova described at the very
begi nni ng.

ANALYSI S OF VAR ANCE
SOURCE  SUM OF- SQUARES DF MEAN SQUARE F-RATIO P

REGRESSI ON 0.974 2 0. 487 5.643 0. 096
RESI DUAL 0. 259 3 0. 086
Tot al 1.233 5 0. 246

Note: Mst woul d consider the equation

RALL = By + B*YEAR + D*| F65MPH
"unnatural’ in that it inplies a shift to a parallel trend. A
nore narural one would be a shift to a different slope. This
coul d be represented by an equation of the form

RALL = By + B*YEAR + B,* YEAR*| F65MPH
where [, represents the change to the slope with 65MPH
(negative B, neans a shall ower, positive 3, a sharper trend.
Wth only 1 datapoint for 65MPH we cannot judge fromthe
data al one which nodel fits better.

frate/time = 31

frate/fitime = R1+R2

1986-87

1995, page 7



Using Multiple Regression to Make Comparisons
SHARPER & FAIRER

Illustration: Effect of sexual activity on nmale |ongevity
Longevity (days) of male fruit-flies randomzed to live with
either uninterested (GROUP 1) or interested fenal es (GROP
2). A so nmeasured: size of the fruit-fly (thorax, neasured in
mm) and the percentage of each day he spent sl eeping.

GROP LI FETI ME THORAX SLEEP
1 N OF CASES 25 25 25
Range 42 - 97 0.64- 0.92 4 - 66
NEAN 64.8 0. 826 24.1
STANDARD DEV 15. 6 0. 070 16.7
STD. ERRCR 3.1 0.014 3.3
2 N OF CASES 25 25 25
Range 21-8. 0.68- 092 5- 73
NEAN 56. 8 0. 838 25.8
STANDARD DEV 15. 0 0.071 18. 4
STD. ERRCR 3.0 0.014 3.7
100 —= T
'I- 80 | -
F
E
T 60 | -
M
: 1
40 | -
20
L Group 2

e t-test conparing GROUPS 1 and 2
(difference in nmeans is 56.76 - 64.8 = -8.04 days)
[Pool ed variance is approx 233.92]

> by hand ...

. 760 - 64. -8.04
t4g = 56.760 - 64.8 _:80 _ 1 86

T 1 4.326
'\/ 233.92 [ 3¢ + 3¢ |

> by SYSTAT...

| NDEPENDENT SAMPLES T- TEST ON LI FETI ME

RAP N MEAN SD
1 25 64. 800 15. 652
2 25 56. 760 14.928
POCOLED VARIANCES T = 1. 859
DF = 48
PRCB = 0.069

o EQU VALENTLY: - ANALYSI S OF VAR ANCE CF LI FETI ME

SOURCE SS DF %5 F-RATI O P

GROP 808. 02 1 808.020 3.454 0. 069
ERRCR 11228.56 48 233.928

N=50 MUTIPLE R = 0.259 MALTIPLE RZ = 0.067

e Another way :- d {difference in nean |lifetine}

Clgs = -8.04 + tyg 95 SE(observed difference)

+ tgg, 95 V{SE(64.8)}2 + {SE(56.76)}2
=-8.04 £ 2.01 (4.326) = -8.04 + 8.69
= 4 to 0.655, which just overlaps zero.
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* Yet another way ... Regression analysis
GROP 1 represented by X =0 and GROP 2 by X =1

Fit: lifetime = QONSTANT + X + randomvari ation

i.e. Mean(lifetine) = RBp + B*X [B "tines" X in "conputerese"]

VAR ABLE QOCEFFI A ENT STD ERRCR T P(2 TAI L)
CONSTANT /f\S 0 = 64.800 3.059 0. 000
X /[\3 =-8.040 4.326 1.859 0.069

Fit neans for two GROUPS by substituting X val ues.

N N
gp 1 B o+ R *X=064.800 + -8.040*0 = 64.80
AN AN
gp 22 B o+ B *X =64.800 + -8.040*1 = 64.80-8.040 = 56.76

N
i.e. the coefficient [ associated with the "dumy" variable
X estimates the difference in the means of the two
popul ations i.e. we can represent the "GROUPS' by vari abl es
that take on nurerical values, just |ike any other nureri cal
predictor variable. [This is in contrast to the use of the
the variable "GROUP' which sinply uses the integers 1 and 2

N
as labels for groups]. Note that R divided by its SE of
4.326 gives the identical t-value as in the previous
anal yses. Al so, the MEAN-SQUARE RESIDUAL of 233.928 based on
48 degrees of freedomis the "pool ed variance" used in the t-
test. The anova table that goes with the regression anal ysis
(below) is identical to the one that goes with the classical
anova tabl e used above.. the only differences are the
i nt erchangeabl e uses of the terms RESIDUAL in place of ERRCR
and REGRESSION (i.e. X) in place of GROUP.

ANALYSI S CF VAR ANCE

SOURCE  SUM OF-SQUARES DF  MEAN SQUARE  F-RATIO P
REGRESSI ON  808. 020 1 808.020 3.454 0. 069
RESI DUAL  11228. 560 48 233.928

[(233.928 = 15.3 = SD of resuiduals, sonetimes called "SE of
estimate"]

LI FETIME N=50 MULTIPLE R = 0.259 MLTIPLE RZ = 0. 067

e Should one worry about the distribution of the other

vari abl es thorax size and sl eep?

The crude differences in lifetine between the two study
groups are shown in the top right panel of the scatter plot
matrix [groups are represented by X=0 and X=1].

e can see fromthe mddl e panel in the top row of the
scatter plot matrix that thorax size has an inportant

i nfluence on longevity, with larger flies living considerably
| onger than smaller ones. [ldeally, one should ook at this
in each group separately, but the data (not shown) show the
sane rel ationship in each one]

LI FETI Me

el THORAX

However, this was a random zed study and one can al so see
fromthe mddl e panel in the rightmost column that the flies
are quite evenly distributed with respect to size. For what
it is worth, the experinental group (x=1) is just slightly

| arger on average than the control group (x=0) and as such is
starting out with a slight survival advantage; thus the final
adj usted estinate of "days lost" by the experinental group
needs to be enlarged to conpensate for the fact that, had it
started out without this advantage, it woul d have | ost even
nor e.
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"Correcting for" inbal ances with respect to size wll enhance
the observed difference only slightly. As we will see later,
the adjustnent noves the shortened lifetine froman average
of 8.04 to an average of 9.65 days. If we still use the
margin of error of + 8.69 that we cal cul ated at the

begi nning, this new estimate noves the significance |evel
fromP=0.06 to P=0.025 appr ox.

However, there is another inportant reason to take the
variation due to size into account {An even better termm ght
be "to take the effect of size out of the account"}. |
deliberately use the term"”take into account" rather than
"correct for" since we often think of the latter only when
there is an inbal ance. In fact, taking the extraneous factor
into account can have an inportant inpact even if the two
groups are perfectly bal anced by design or by good fortune.
The logic is the sane as the one that says we shoul d perform
a paired t-test, rather than an i ndependent sanples test,
when neasurenents cone from nmatched pairs: using only the
intra-pair differences renoves what could be a | arge
variation [even between nmenbers of the same group] due to the
extraneous matching factor. W can think of regression [or as
it is sometines called anal ysis of covariance] as using
"synthetic" or "poor-person' s" matching in order to renove
noi se fromthe conparison of two groups [see article on
appropriate uses of multivariate analysis]. This is done by
fitting regression lines to the data fromeach of the two
groups and cal cul ating the vertical distances between them
Just as in the exanple of the effect of liberalizing speed
limts, the idea is depicted schenatically as foll ows:

1 lifetime 1 lifetime

B = ——————————
 thorax 1 thorax
ife
ime
A mean = RO + R thorax
Means of Control /
Population \ 3

D

mean = RO + R thorax - D

Means of Experimental
Population

o

thorax

* Regression anal ysis: GROP 1 coded X = 0 and GROP 2 X
=1, and wth linear effect of thorax

Fit: lifetime = QONSTANT + X + THCRAX + randomvari ati on

i.e. Mean(lifetine) = Bp + BT*THORAX + By* X
[using RBx for D]

VARABLE QOCEFFIGENT STDERRCR T P(2 TAIL)

N
CQONSTANT B o = -46.038 20.799 -2.214 0. 032
THORAX % T = 134. 252 25.019 5.366 0. 000
X % X = -9.651 3.456 -2.793 0. 008
SOURCE SS DF  MEAN-SQUARE F-RATIO P
REGRESSI ON 5073. 677 2 2536.839 17.124 0. 000
RESI DUAL 6962. 903 47 148. 147STANDARD ERRCR CF

ESTI MATE = (148. 147 = 12.2 [vs 15. 295]
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P : - " . see that nake 2 is a bigger consuner of fuel -- something
Bx= -9_' 65_1 I's the a_dj usted" mean difference be.twaen the that can be seen clearly (and if need be backed up with a
groups; this is a 20%adjustment on the "crude” estimte of statistical test, which quantifies the limts of random

8.04 days. Furthermore, the uncertainty about the new variation) if one uses the less noisy index of |/100Km
estimate, as neasured by its SE is 3.456, whichis also a Inthis particular exanple, the runs could be natched and one
20%reduction fromthe previous SE of 4.326, which was based coul d use a paired analysis to bring out the signal. But what
on the overall or crude variation w thin each group. [that if the 8 runs were all of different distances? A regression
the two corrections are both 20%is just a coincidence]. approach woul handle this. In this e.g. below distances are

) . . in units of 100Km and renai n bal anced.
The purposes, then, of the_analysis of covariance (using

thorax size as a covariate) are two-fold: (1) to correct, by Fuel D ST1 DI ST2 (unit = 100Km
an arithnetic adjustment, for any inbal ances in inportant 81 10 0
vari abl e(s) between the groups being conpared and (2) to 231 30 0
sharpen the contrasts by renovi ng noi se due to these same 328 40 0
vari abl es and thereby reducing the SE of the estimated 160 20 0
bet ween-group di fferences in the response variable. Note that 89 0 10
(2) will occur even if (1) is unnecessary froma "bias- 270 0 30
correction" point of view 360 0 40
182 0 20
« Asinpler exanple of this mght be the foll ow ng data which FIT: average(FUEL) = [31*D ST1+ [3p*D ST2 (NO CONSTANT)
one could imagi ne resulting froma conpari son of the fuel
consunpti on of two nakes of autonobile. Shown are the VAR ABLE OCEFFI O ENT STD ERRCR T P(2 TAI L)
nmeasurenments in 4 runs of 1000, 2000, 3000, and 4000Km for A
each make. Consunption neasured as litres/run (B) or litres D STl B1= 802 0.091  88.00* 0. 000
/ 100Km shortened to |/100Km (C). D ST2 /ri 2 = 9.01 0. 091 08. 86* 0. 000
(* proof that it takes a non-zero amount of gasoline to drive 100KM!)
Make 1 Make 2
(A (B (9 (A (B (9 T 5
Km litres |/100Km Km litres | / 100Km SE(9.01- 8.02) = V0.0912 * 0.0912 = 0.13 (approx), so
1000 81 8.1 2000 182 9.1 difference of 0.99 |/100Kmis 7.5 SE s beyond zero (t=8.66
3000 231 7.7 1000 89 8.9 above arrived at by slightly different nethod).
4000 328 8.2 3000 270 9.0
2000 160 8.0 4000 360 9.0 ANALYSI S CGF VAR ANCE
SOURCE SS DF VB F- RATI O P
xbar 200<-----------mmmoo - >225.3 REGRESSI ON 436501.5 2 218250.75 8759.227 0. 000
s 105 t = 0.322 116.3 RESI DUAL 149.5 6 24.92
xbar 8- >9
s 0.22 t = 8.66 0.08

In theory, one mght want to weight each of the 4
observations according to its precision [e.g. fuel mght not
be measured equal |y precisely; even if fuel can be neasured
precisely, a longer trip nmight be less likely to be

i nfl uenced by various short-termfl uctuations]

However, the main point is that, even though the 2 sets of
observations are "bal anced" with respect to distance, the
variations in the "litres per run" index are very |large and
due nore to variations in distance than to variations in fuel
consunpti on between makes. Such noise makes it difficult to
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Multiple Regression for Proportions

Exanpl es:

Lowbi rtweight in relation to al cohol consunption during
pr egnancy

Asthma trends in |srael

Psychol ogi cal Stress, Snoking, A cohol Consunption and
susceptibility to the common col d.

Non- r egr essi on approaches as before. They depend on the
conparative paraneter to be used: D of proportions; ratio of
proportions; ratio of odds.

Li kewi se, regression approaches depend on the form of
conpar ati ve paraneter.

Suppose we denote the parameters as p's. The general approach
is to use a regression nodel

g(p) = & Bex
If g() is the "ldentity" '"link' ie g(q) =9, we can
estimate D's of proportions (risk differences).
If g() isthe "Log" '"link' ie g(q =1In(qg), we can nodel
ratios of proportions ('risk ratios' or 'relative
risks').
If g() is the "Logit" '"link' ie g(q) = In(i), we can

1q

nodel ratios of odds ('odds ratios' or 'relative odds').

If g() isthe "Probit" '"link' ie g(q) =the Gaussian Z

devi ate corresponding to a proportion g, then we can
estimate shifts in LD60 (or LDxx) based on a Gaussi an
di stribution of tolerance. The probit curve is a cl ose
relative of the logit curve; both can be used for
nodel | i ng S-shaped ' dose-response' rel ationshi ps.

References:

Armitage and Berry (3rd ED) 812.8

Healy: GLIM: An Introduction

Hosmer and Lemeshow: Logistic Regression
Kleinbaum: Logistic Regression

Miettinen §18.3

Checkoway H : Res. Methods for Occ. Epi. 88

Kahn HA & Sempos: Sta. Meth. in Epi. : 86

Selvin S: Sta. Anal. of Epi. Data: 87 and 8

Breslow N and Day N: Volume| (Case Control studies)
Schlesselman J: Case Control Studies

Bland and Keirse (2 expository articles: logistic Regression)
AAHOVW
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Session 3:
Multiple regression as sequence of simple regressions

E.g.: Regression of Weight(Ib) on age(yrs) and Height(in) in 11-16 year olds

3 SIMPLE REGRESSIONS
(1) VWEIGHT = -105.38 + 3.36 * HEl GHT + RESW

(2) AE =-0.79 + 0.23 * HEIGHT + RESAGE , so that
(2') RESAGE = AGE - { -0.79 + 0.23 * HEIGHT }
(3) RESW = -0.023 + 2.82 * RESAGE + RES| DUAL

(variance 187.02)
Substitute (2') into (3) to get

(4 RESW =-0.023 + 2.82 * {AGE - {-0.79 + 0.23 * HEI GHT}}
and then (4) into (1) to get ...
(5) VE GHT =

-105.38 + 3.36 * HEIGHT +
-0.023 + 2.82 * {ACE- {-0.79 + 0.23 * HEl GHT}}
+ RESI DUAL (variance 187.02)

-105.378 + 3.36 * HEIGHT + 2.822 * AGE
-0.023 + -2.822 * 0.23 * HEI GHT

+ 2.822%{-{-0.789}}

+ RESI DUAL (variance 187.02)

-103. 174 + 2.725 * HEIGHT + 2.822 * ACE
+ RESIDUAL (variance 187.02)

Thisisequivalent (ignoring rounding errors from not using enough
decimal places) to performing a multiple linear regression:

Y=VEl GHT; N=233; MULT. R=0.70; SQ MALTI. R= 0.49
ADJUSTED SQ MLT R=0.49; STANDARD ERRCR CF ESTI MATE=13. 705

VAR OCEFF. STD ERRCR STD GOEF T P(2 TAIL)

OONST.  -103.150 14.199  0.000 -7.264 0.00000
HEl GHT 2.723 0.294 0.553 9.242 0.00000
ACGE 2.822 0.807 0.209 3.498 0. 00056

ANALYSI S CF VAR ANCE
SOURCE SUMCF-SQUARES DF MEANSQ F-RATIO P
REGRESSI ON  42186. 19420 2 21093.09 112.29578 0.000
RESI DUAL 43202. 08906 230 187. 83517
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Collinearity

Example of theissue: Suppose that in a study of workers aged
45-65 to quantify the degree to which hearing loss was affected
by their exposure to the noise from heavy machinery, the
number of years of exposure to this noise and the extent of
hearing loss were determined for each person. A multiple
regression is planned to assess the effect and to take the person's
age into account (hearing loss generally becomes worse with
age, even if thereis no unusual occupational exposure).

What isthe correlation between age and cumulated exposure
likely to be?

If it isvery high, what will it do to the estimate of the regression
slope of loss on exposure?.

Ifitislow, what will it do? If you think it will do very little,
would you bother to include agein the regression? [ This
guestion has to do with reduction of noise and making
comparisons sharper].

If you had a choice of which workersto select froma larger
available group, would you choose on a purely random basis, or
on some other basis? Why?

See some examples on next page. The panel on the extreme left
shows the distribution of age and exposure (both in years), with
afairly strong positive correlation. An example of a'stratified
sampl€e' isgiven next to it (upper panel). Here the selectionis
constrained to obtain persons equally from all 4 quadrants. This
makes it easier to separate the effect of age from the effect of
exposure. An example of an 'unstratified sample' isgiven in the
lower panel. Here the selection is ssimply a'miniature’ of the
parent distribution and so there will be greater difficulty in
separating the effect of age from the effect of exposure.

Suppose that in fact the mean hearing loss for persons of a
certain age and exposure is as follows:

mean = 0.3¢(age—25) + 0.4eexposure

and that the inter-individual variation around thismean is
Gaussian with a SD of 3. Intechnical language, we say that

[ exposure] = 0.4 and that [Jage] = 0.3, and that the SD of the
'residuals’ is 3.0.

On theright hand side of the following page the effects of the
collinearity on our estimates of the two [3s are displayed in list
and graphic mode for 10 unconstrained and 10 constrained
(stratified) random samples. The message from these is that the
estimates of the (3 associated with exposure are more variable
(and so less dependable) when the samples have collinearity.
(the sameistrue for the estimates of the [3 for age).

In the extreme, if the collinearity between age and exposure were
closeto acorrelation of 1, the estimates of the [3 for exposure
could oscillate even more, and could go from being quite
negative to quite positive. The only thing that would remain
reasonably stable is the sum of the estimate of (3 for exposure
and of the 3 for age (i.e. the sum of the two estimates would be
closeto 0.4 + 0.3 = 0.7, but an equation with the estimate of
[J[exposure] =—1.2 and [Jage] = +1.9 {or for that matter
[J[exposure] = +2.3 and R age] = —1.6} would do an equally
good job of predicting the responses (all the individuals would
be spread out along the diagonal in the age vs. exposure
diagram). Y ou can see some of this compensatory behaviour of
the two estimatesin the plot in the panel on the right (estimates
from "unstratified" samples), where there is a strong negative
correlation between the two estimates.
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Effect Modification

In the previous example, if females, because of their longer hair
or greater tendency to wear ear-protectors, or because of some
biological factor that might make them less susceptiple to noise-
induced hearing loss, were analyzed separately from males, how
would the regression coefficients for hearing losson years of
exposure compare in the two sexes?

Effect Modification = " Different Slopes for Different
Folks"

Can we combine the separate equations for males and females
into one?

A similar example of combining two equations into one: How to
estimate ideal body weight (based on findings of a Harvard
study)

For Women: 100 pounds for a height of 5 feet, with five
additional pounds for each added inch of height

For Men 110 pounds for aheight of 5 feet, and six additional
pounds for every added inch of height

Since 5 feet = 60 inches, and letting H = height in inches — 60,
the equations become:

Women: weight = 100 + 5¢H
Men: weight = 110 + 6°H

If denote Women by avariable G(ender)=0 and Men by G=1,
we can combine the 2 equations

weight = 100 + 10G + 5¢H + 1+GeH

Terminology: Note that the use of the product GeH asan
additional variablein the regression equation iscaled an
'interaction’ term. If the coefficient associated with this variable
were 0, we would have 'no statistical interaction’ (i.e. we would
have the 'same slope for different folks.

Thus the ideas of 'effect modification' and 'statistical interaction’
areredly the same: epidemiologists tend to use the former and
statisticians the latter.

The trouble with the word interaction is that it refersto a purely
numerical trick to write the equations for 2 or more non-parallel
linesin asingle compact equation. Unfortunately, users of the
equations sometimes try to give the word a biological meaning.
But by suitable transformations, one can sometimes transform
non-parallel curvesinto paralld lines and vice versa, so any
'interaction’ term has to be viewed in the context of the scale
used.
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