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Multiple linear regression (paragraph one, p50 [54]) X's are continuous: we choose for example three levels of X2 and the

plot the relation between Y and X1 for each of these three levels of X2.
The word "linear" in multiple linear regression

• Figure 3-1 B
The authors never explicitly defined what they mean by the term

"linear". In fact, "linear" here means linear in the parameters i.e., in the

beta's. See the footnote on page 6 of my notes on M&M chapters 2

and 9 for more examples to make clear that the "linearity" is in the

parameters and not in the X's.

Try to make this graph yourself with a spreadsheet such as Excel.

• " the 3 lines can be thought of as contour lines... " (2nd last

para, p51 [55])

They think of "contours" differently! Usually, contours are used to

show elevation (Y) as a function of say X1=longitude and X2=latitude

in a topographical map: one connects (X1,X2) points which have the

same value of Y. Here they're not doing that. See below. See also the

use of colours in the example on the web page called "Average Weight

as function of Height and Age" : the colors designate different values

of Y, and the horizontal and vertical axes represent X1 and X2. The

same idea is used in digitized x-rays or CT scans -- gray scales are

used to show the intensity (Y) at each pixel.

" ... several independent variables on ... "

It would be better to say several "predictor" or "explanatory" or "

stimulus" -- or better still -- "X" variables. The reason I emphasize this

is that the term "independent" may be taken to mean that one can

change one X without changing the other X. It is not always possible to

do so. For example if we had X1 = year of birth, and X2 = age in the

year 2000, it is not possible for X2 to vary independently of X1.

WHAT WE REALLY DID ON MARS

Linking equations to planes is helpful. But the first priority should be

to show equations which link the mean values of W to their

corresponding values of height and water consumption, using some

function of height and water consumption. In other words, the object of

study is the relationship of the conditional Y means to the values of X1

and X2 that accompany these Y's. To be fair, the authors do say that

figure 3.1 B shows an "alternative presentation" of the data. All I'm

• " because there were three discrete levels of water

consumption" (line 5)

The authors did not use the "discreteness " of C to fit the regression.

They used it as a continuous variable just like height; they only

exploited the discreteness to plot all of the data. We often use "slices"

or "strata" to visualize the relation between one Y and 2 X's even if both
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quibbling with is their use of Ŵ  instead of "estimate of mean value of

W  at  given values of X1 and X2".

Suppose one aggregates all the Y's  from the various X "slices" or

"strata" or "X-locations" or "X-addresses". Then, even if the

conditional variations are Gaussian, the  distribution of the aggregated

Y's will not be -- it is a mixture of different Gaussian distributions!• "an equation which relates a dependent variable to several

independent variables ... " (text line 2, page 52 [line 1 p 56]).

A simple example: In an ethnically homogeneous adult population:
Again, I would prefer that -- at least in the early chapters -- they

continue to stress that they're looking for the relationship (systematic)

between the conditional means of the dependent variable and several

"independent" variables.

1. The heights of males would be close to Gaussian.

2. The heights of females would be close to Gaussian.

3. The heights of persons  would NOT be close to Gaussian.
• 4 "population characteristics" or "assumptions for multiple

linear progression"  (p 54 [58])
4. BUT, the "requirement" of Normality is met!!!  -- see 1. and 2. !!

Some texts "go to town" on these assumptions, making them so

forbidding that students are then afraid to even use regression. I have

the same "take these with a grain of salt" comment here that I already

made for simple linear regression.

• How to fit the best plane through a set of data (page 54 [58])

Page 54 deals with the universe of possible values of Y's at each X

combination. It's only when we get to page 55 that we get into

estimating the parameters that link these distributions together through

the X's. Note the use of the Greek letters β0 β1 β2 (parameters .. ) on

page 54 -- and the use of regular (Arabic) letters b0 b1 b2 (statistics ..

from samples) when we come to data on page 55.

If I were to re-emphasize my concerns about just one of these, it would

be about the "normality". Beginning students -- and even some

seasoned old-timers -- continue to misinterpret the so-called

"requirement" of "normality". They plot the marginal (unconditional)

Y's and look the see if they are Gaussian. They fuss if they are not.

What are assumed to be "normally" distributed are the 's -- the

individual variations about the specific means at the different X

levels.

• Computing the regression coefficients (page 55 [59])

Remember what it is we're trying to estimate: 3 beta's and 1 sigma.

Unfortunately, many textbooks think the job of estimation is done once

they have computed the b's.
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We fit the "plane of means "to obtain estimates of  β0 β1 β2  and we

calculate the "lack of fit" i.e. the SSres, to obtain an estimate of  σ. The

b's and  the sy|x have a similar form to those for simple linear

regression in Chapter 2

for all levels of X2, i.e.,  where the slope does depend on the level of the

second of variable X2 --we have "different slopes for different folks".

The same applies to the 0.11 g per cup of water. This 0.11 is assumed

to be constant over all levels of height. If one had sufficient data, one

could see if the data support this assumption.• " ... physical interpretation" (last paragraph of page 55 [59])

• " the fact that the three lines in figure 3.1A corresponding to

the three levels of water consumption have the same slope

illustrates the point that the effects of changes in height on weight

were the same at each level of water consumption"

• The variability about the regression plane

The authors correctly emphasize the two essential components of

regression, the location and the spread (variability). The locations are

estimated by the fitted "plane of means", and the spread or variability is

estimated by sy|x.Lines will only be parallel if the authors forced them to be parallel!

Thus, it is not quite right to claim that just because the authors fitted

three parallel lines, the effect of changes of height on weight was the

same in each level of water consumption. That's an assumption one

builds in as soon as a one chooses to fit three parallel lines.

• Why divide by n - 3 here?

For the same reason that we divide by n - 2 back in Chapter 2 and by

n-1 back in course 607!

• "0.28 g per cm H is the increase in weight for each unit of

increase in height holding water consumption constant"
In 607, the focus was on estimating a single µY and the variation about

this  µY . The n residuals about the sample mean [ the deviations from

y– ] had one (1) constraint: they had to add to zero.It is better to say that "0.28 is the difference in weight for each unit

difference in height holding water consumption constant". When, in Chapter 2, we fit a line to estimate a "line of means", the n

residuals (the deviations from the line of means) are now constrained in

2 ways -- so only n - 2 residuals are free to vary independently. Put

another way, we have only n - 2 independent assessments of variation.

In addition, the 0.28 slope is the same 0.28 slope irrespective of the

level of water consumption. This says that we have the "same slope for

different folks". Later on, near the end of this chapter (page 94), we

will encounter situations where the slope of µY on X1 is not the same
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Now, in Chapter 3, we fit a plane. To do so we have to estimate 3

parameters. The n residuals are now constrained in 3 ways -- so only

any n - 3 of them are free to vary independently. We have three n - 3

independent assessments of variation.

• Expression for standard errors of the estimated slopes (b's)

(equation 3.6)

Again, it would be more intuitive to rewrite equation 3.6 as

    SE[bi] = 
sy |x1 x2

 n × SD(Xi)  × 1 - r2 x1 x2
     [ approx:  n  (n-1) ]• Standard errors of the regression coefficient

"We assumed that the underlying population is normally distributed

about the lane of means therefore all possible values of each of the

b's will be distributed normally"

The standard error is now function of 4 factors, 3 of which we have

seen before when we were dealing with a single X in Chapter 2.

The new factor is 1 - r2 x 1  x 2  .   To understand what it is and what its

impact will be, let us first examine its structure. Since rx1 x2  is between

-1 and 1, then r2x1 x2  is between 0 and 1, so 1 - r2 x1 x2  is between 0

and 1; it is on the bottom of the expression.

We could restate this by saying the ε's vary about the plane of µy|x1 x2

so the b's will cary around the β's with standard deviations that reflect

(1) the amplitude of the ε's (2) the spread of the X's and (3) the sample

size n.

Now, consider first the case where r2 x1 x2 = 0 (or close to 0). This

would apply if the  distribution of X2 values is about the same for each

value of X1 and vice versa [as would be the case in a clinical trial of the

"treatments" X1 = 0/1, in which randomization was successful in

making the distribution of X2 the same for the "X1 = 1" group as the

"X1 = 0" group]. In this case, there is no alteration to the standard

error.

The Gaussian-ness of the distribution of the b's can also be justified

even if the  ε's do not have a Gaussian distribution -- provided that the

sample size is sufficiently large that the Central Limit Theorem comes

into force.

But what if r = 0.6, say? Then 1 - r2 x1 x2  = 1 - 0.36= 0.8. Thus,

SE[b1] is increased or "inflated" by a factor of 1/0.8 = 1.25 = 25%

over what it would be if X1 and X2 were uncorrelated.
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If -- worse still -- r = 0.8 say, then the inflation is a 1/ 1 -0.64 = 1/0.6

or 1.7 This "inflation" is the price to pay for the fact that there is not

enough separate variation in X1 and X2 to allow the true effect of X1 to

be isolated well from the true effect of X2. (in the Belfast Catholic and

Protestant story, r = 1, so the standard error of b1 is infinite.

What if we had a variable X2 which -- because of its imbalance with

respect to the two treatment groups X1=1 and X1=0, and its own

effects on Y -- we wished to include in the analysis, using the model

µ Y | X1 X2 = µ0 + β1 X1 + β2 X2 .

• Sample size for comparison of two means .. in presence of a

"confounder"  (up from 607)

From equation 3.6, we can now generalize the sample size formula

number per group = (Zalpha/2 + Zbeta)2 × 
σ2

∆2  ×  
1

1 - r2 x 1  x 2  Students learn in 607 how to calculate a sample size for a given power

or power for a given sample size, when the interest is in a single

difference of means µ1 - µ0, estimated  by the "crude"  y–1 –  y–0. This

crude difference in means can also estimated from the most

fundamental of all simple regression situations. Let X=0 and X=1

denote the two groups being contrasted, so that the model is

µ Y|X = µ0 + β X

Then  β represents the difference in means; so b = y–1 –  y–0.

You can think of the 
1

1 - r2 x 1  x 2  
 as the "variance inflation factor"

or equivalently -- since sample size and variance are "exchangeable" --

as the "sample size inflation factor" to compensate for the

correlation of X1 and X2 (i.e., the imbalance of X2 with respect to X1).

 • Some additional links involving SE's

In the "607-level" example, the interest is in a crude estimate of

difference of means µ1 - µ0. This difference in means can be estimated

the most fundamental of all simple regression situations. Let X=0 and

X=1 denote the two groups being contrasted, so that the model is

µ Y|X = µ0 + β X

with  β representing the difference in means.

In 607,  the following equation gives the minimum n's to "detect", with

given "alpha" and "beta" error rates,  a difference of ∆ =  µ1 - µ0 :

number per group = (Zalpha/2 + Zbeta)2 × 
σ2

∆2 .
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In 607,  this difference was estimated

"directly" "by regression"

as

 y–1 –  y–0   b

Muddying the water: multicollinearity

The effects of the " instability " of the fitted regression coefficients are

summarized verbally in the first paragraph. Here is a table of the effect

on the standard error (SE) using as a "base" the SE when r = 0. (The

degree to which the sample size would need to be increased to

counteract this instability is a function of variance, not SE, and so the

tabulated SE inflation factors would need to be squared).

and its SE is calculated as

SE[y–1 –  y–0]  =  s 1/n1 + 1/n0  SE[b] = 
s

n × SD[X] The "SE inflation factor"  1 / 1 - r2 x 1  x 2  

tabulated as a function of r
where s is

SD of the pooled .SD of "residuals"

within-group deviations rX1,X2 1 / 1 - r2 x 1  x 2  rX1,X2 1 / 1 - r2 x 1  x 2  

But, using  π1 and π0=1-π1 to denote what fractions of the entire n = n1

+ n0 subjects are in group X=1 and X=0 respectively,  we can re-write

SE[y–1 –  y–0] as

SE[y–1 –  y–0]

=  s 1/(n π1) + 1/(n π0)

=  s 1/n  × 1/(π1π0)

=  
s

n  × π1π0 
   =   

s
n  × SD(X) 

 = SE[b]

0.0 1.00 (base) 0.7 1.40

0.1 1.01 0.8 1.67

0.2 1.02 0.85 1.90

0.3 1.05 0.90 2.29

0.4 1.09 0.95 3.20

0.5 1.15 0.98 5.02

0.6 1.25 0.99 7.09
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• "This situation, called multicollinearity is one of the potential

pitfalls in conducting a multiple regression analysis" (last

sentence of first paragraph)

" There is not a broad 'base' of values of the independent

variables X1 and X2 to support the regression plane"

Try balancing a rigid plane or sheet of paper on a long narrow bed of

inverted nails. The slightest shift in one of the nails will create

instability and will rock the plane. I've called the Excel program

"hammock" because it is as though the hammock is being supported

by a very narrow base rather than from all four corners. Some texts

referred to this instability as balancing a plane on a "knife-edge".

Technically speaking, multicollinearity is when one variable, say X1 is

predictable from some linear combination of the remaining X's. Here,

there is only one other X, so we're simply dealing with the correlation

of X1 and X2. If there are multiple X's, then it is the correlation of X1

with some combination of the others that is called multicollinearity.

Note that whereas correlation of X1 with X2 is easy to see in a scatter

plot, the (multiple) correlation of X1 with a combination of the other

X's is not so easy to visualize.

Multicollinearity: is it all bad?

Not if the objective is prediction. Yes if one wishes to separate or

"partial out" the effects of various X's one from one another.

Use the interactive Excel program (on web page) to see the effects of

the correlation between X1 and X2 on the b1 and b2 estimates. Figure 3-4

Again here the authors seem to imply  that multicollinearity involves

one X with just one other X. In fact, as I emphasized above, it can be

one X with a combination of several other X's.

• Figure 3-3 legend

"This situation, called multicollinearity, occurs when the two

independent variables contain the same information"
"data falling in a cigarette shaped cloud"

Again here, because there just 2 variables, it would not be enough to

say that we have collinearity between X1 and X2. Multicollinearity is

between one X variable and some or all of  the other X's.

The cigarette data on the web page are a useful "back here on earth"

data set that show the same pattern as in Figure 3-4. Two

characteristics of each cigarette brand, X1=the amount of tar and

X2=the amount of nicotine, predict the amount of carbon monoxide (Y)

produced by the cigarette. Plot the data in 3-D for yourself.
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DOES THE REGRESSION EQUATION DESCRIBE THE

DATA?

datapoints "well"; all one can conclude is that the variables in the

equation are "better than nothing", i.e. that

µ Y | X1 X2 = µ0 + β1 X1 + β2 X3

is better than

µ Y | X1 X2 = µ0

"... testing the significance of the regression coefficient" ( second

line)

Even in the case of a single independent variable, there is a big

difference between the "slope b being statistically significant" and "the

equation describing the data well". In simple linear regression, the tests

of significance performed by default by packages are in relation to the

null hypothesis H0: β = 0. Even if the test is "positive" (i.e., b is

significantly different from 0), β could still be minuscule: b could

simply be "statistically" significant because the sample size is large.

Even if β is truly sizable, there can still be substantial unexplained

variation: the equation may fit the means reasonably well, but there may

still be a lot of individual variation around the specific means.

A better heading for this section might have been "tests of a

(composite) null hypothesis" i.e. concerning several β's. The test at the

bottom of page 64 is in relation to the null hypothesis

  H0:  β1 = 0 and β2 = 0

Whereas the test procedure is described in detail on page 64, what is

missing is an explicit statement of the null hypothesis being tested, and

what the alternative hypothesis is. In fact, the alternative hypothesis is

that at least one of the two β's is non-zero:

  Halt:  β1 ≠ 0 or β2 ≠ 0 (includes possibility that both β1 ≠ 0 and β2 ≠ 0)

For example, it might be that there is a perfectly linear relationship

between the means of Y = blood pressure and X = age, but individuals

would still vary considerably about the age-specific means.

Even worse is the (naive) conclusion -- from the "significant F test" (p

= 0.02!!!) -- that the simple linear equation 2.21 on page 43 fits the

Gray Seal data "well".
The textbook by KKMN makes a point of carefully stating all

hypotheses.

The same caveats apply to tests in a regression with 2 X terms. A

"significant" regression does not necessarily fit the individual
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" to test the overall goodness of fit of the regression plane given

by equations 3.1 and " (line 4, page 65 [last para,  p 68]) Type I Tests

A more correct way to say this would be to test "whether one or both of

the variables help predict..."

Source DF Sum of Sq. Mean Sq. F Stat Prob > F

H_HEIGHT 1 47.839 47.839 2809.2 0.0001

Some authors (as do the authors themselves later) call this an overall

test

C_WATER 1   6.375   6.375   374.3 0.0001

Type III Tests

"Incremental sums of squares and the order of entry" (p 65 [69]) Source DF Sum of Sq. Mean Sq. F Stat Prob > F

This is called the "extra some of squares" in some textbooks H_HEIGHT 1 16.368 16.368   961.2 0.0001

Some software packages, such as SAS, report different tables under the

headings of "Type I sums of squares" and Type III sums of squares".

Below and right, for example, are the outputs from INSIGHT.

C_WATER 1   6.375   6.375   374.3 0.0001

One way to tell a table of Type I sums of squares (effects of variables

added in order) from a table of Type III sums of squares (effect of

variables if added last) is if the sums of squares for the independent

variables in the table add up to the "regression" or "model" sum of

squares . If they do, then one is dealing with Type I or "sequential"

sums of squares.

Analysis of Variance

Source DF Sum of Sq. Mean Sq. F Stat Prob > F

Model   2 54.213 27.107 1591.8 0.0001

In the Type I table, 47.8...  + 6.3.. = the 54.2 in the overall Table; in the

Type III table, 16.3... + 6.3.. ≠ 54.213 in the overall table.
Error   9   0.153   0.017

C Total 11 54.367

If, later on, you forget which is Type I and which is Type III (who

could blame you), you can still remember that if they add up, they are

sequential! The term "SEQ SS" (for "sequential" SS)  is decidedly

more descriptive than "Type I" SS.
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Some texts use the following notation for sequential SS.

SSreg  = SS(H) + SS(C | H )

Relationship to t tests of individ. regression coefficients (p 67/71 )

" ...t test on a particular X is equivalent to conducting an F-test
based on the incremental sum of squares with that particular
variable put into the equation last"

In Figure 3.2, the sequence for the incremental sums of squares (Type

I SS in SAS) is "H then C" Check this in the Type III SS table ("variable added last") above

C:   T Stat = 19.3..  (T Stat)2 = 19.3..2  = 374.34 = F Stat (Type III)

SSreg  = SS(X2) + SS(X1 | X2) H:   T Stat = 31.0..  (T Stat)2 = 31.0..2  = 961.20 = F Stat (Type III)

Note that if one is interested in the contributions of variables if they

were added last, it doesn't matter which order one puts them in the

equation.

From SS(H) & SS(C | H ) , can we calculate SS(C) + SS(H | C )?

Q: What if we wish to reconstruct the sequential sums of

squares for C, then the incremental effect (SS) of H given C, but

forgot to put the variables into the regression in that particular

order? Can we get there from the printout in figure 3.2?
Parameter Estimates

Variable DF Estimate Std Error T Stat Prob > |T|

A: No! One would need to rerun the program with the variables listed

in the correct order, i.e., C entered before H

INTERCEPT 1 -1.220 0.3210  -3.8 0.0042

C_WATER 1 0.111 0.0057 19.3 0.0001

H_HEIGHT 1 0.283 0.0091 31.0 0.0001
Type I Tests

Source DF Sum of Sq. Mean Sq. F Stat Prob > F Parameter Estimates

C_WATER 1 37.845 37.845 2222.3 0.0001 Variable DF Estimate Std Error T Stat Prob > |T|

INTERCEPT 1 -1.220 0.3210  -3.8 0.0042
H_HEIGHT 1 16.368 16.368   961.2 0.0001

H_HEIGHT 1 0.283 0.0091 31.0 0.0001

C_WATER 1 0.111 0.0057 19.3 0.0001
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"As already discussed, the standard errors (SE's) for the b's

take the correlation of the X's into account..."

THE COEFFICIENT OF DETERMINATION AND THE

MULTIPLE CORRELATION COEFFICIENT

Recall the standard error of bi using the formula

SE[bi] = 
sy |x1 x2

 n × SD(Xi)  × 1 - r2 x 1  x 2   

The authors don't make much of the fact that the multiple correlation

coefficient is the correlation coefficient of the Y's  with the fitted Y's. In

fact, one could turn this around backwards and ask: what if one set out

to find the linear combination of X's which gave the maximum

correlation with the Y's. In fact, the coefficients in this linear

combination would turn out to be the least squares estimates (the b's).
The correlation between the two X's appears in the denominator.

Tested by the "T Stat"   b1 / SE(b1) is the model

µ Y | X1 X2 = µ0 + β1 X1 + β2 X2

versus

µ Y | X1 X2 = µ0 + 0  X1 + β2 X2

" it is possible to construct hypothesis tests for overall goodness

of fit based on the value of R2  ..."

I hesitate to sell them as tests for the "overall goodness of fit"

In the social sciences, most testing (of effects when variables are added

in order and added last) is carried out on the increments in R2 rather

than on the b's. In the biomedical field, we usually more interested in

the β's because they give us some sense of magnitude and often have a

physical interpretation.

and by the "T Stat"   b2 / SE(b2) is the model

µ Y | X1 X2 = µ0 + β1 X1 + β2 X2

versus

µ Y | X1 X2 = µ0 +  β1 X1 +  0  X2

MORE DUMMIES ON MARS
" ... b / SE(b) tests whether X contains significant predictive

information about Y after taking into account all the

information in the other independent variables" (page 68 [72])

They phrase their question : "does exposure to secondhand tobacco

smoke affect the relationship between height and weight of Martians?"

This is the same as if this particular X were entered last. Note: T2= F

here. The T statistic is more informative since it gives the sign of b.

While this is a legitimate question, it is not the question they

addressed in their analysis. The method for answering the question
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in italics above belongs in the section on "interactions" starting on page

94.

Obviously, with height being such a strong determinant of weight, one

wishes to make sure the comparison of smokers and non-smokers is

fair ("balanced", a comparison of "like with like") with respect to

height. But, beyond that one is not interested in height per se.The question they address in this section is -- as they themselves note

in the footnote to page 72 -- "is there an effect of secondhand tobacco

smoke on weight, controlling for the effect of height?" Or, put slightly

differently, "does exposure to secondhand smoke affect the weight of

Martians, all other factors (here height) being equal?"

" we conclude that exposure to secondhand smoke stunts

Martians' growth" (end of the first paragraph page 72 [75])

It is clear from this conclusion that the authors did not intend the

question the way they posed it on page 69.Is Glantz's use of "dummies" and "smoking" an intended double

entendre?
See the "making comparisons fairer" section of the article on

"Appropriate uses of multivariate analysis" referred to in the notes on

Chapter 1.

"the weight-height curve is shifted down by a constant amount

for the "dummies", no matter what height there are" (page 70

[74])

This is a consequence of the form of the regression equation adopted at

the bottom of page 69; i.e., the assumption of a parallel shift is "built

in" by the authors.

See also the chapters by Anderson, Anderson et al. accessible via the

web page.

Few textbooks emphasize this "analysis of covariance" sufficiently.

KKMN put it quite late in their text. More often than not, the focus of

multiple regression methods in the biomedical sciences is the effect of

one specific variable while adjusting for other (confounding) variables.

So why not make more of this early on?

Note that it would be good if the data bore out this assumption, since it

makes it much easier to report the results for smoking -- one does not

have to give a separate estimate of the smoking effect for Martians of

different heights. This allows it to be a simple "one effect fits all" story.

Note the primary interest on the effect of secondhand smoke. The fact

that individuals are of different heights is more of a nuisance.
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GENERAL MULTIPLE LINEAR REGRESSION Again, as discussed above, these are seldom interesting hypotheses.

The main changes in going from two X's to k X's are: When one has k variables, the "partial F test" of the null

H0:  a subset  of 1 (or more) of the k β's is (are) 0 

[say subset is of size "s"]

against the

Halt: at least 1 of the β's in the subset is non-zero:

involves the (partial) F statistic

F  =  
MSEXTRA
MSresidual

  =   
Difference in SSREG / s
SSresidual / [n - (k+1)]

and comparing it against the Fs,n - (k+1) distribution.

• The calculations become more involved. It is possible to carry out

multiple linear regression using a program or calculator which

performs simple linear regression, but  it takes programming,

organization and patience! If you want a taste, see my notes on

"multiple regression as a series of simple regressions" in the "notes

on multiple linear regression from 607". The example involves just 2

X's:  see if you can generalize it to 3 or more X variables.

• We cannot plot the data in all of the dimensions.

• To get an unbiased estimate of the variation of the variation

(σ2
Y | X1,... Xk) one divides the SSres by  n - (k + 1). The reason for this

divisor is that one has fitted (k + 1) b's to n data points

• SE[bi] now involves in its denominator the multiple correlation of Xi

with the best linear combination of the (k-1) other X's.
The Overall F test is at one extreme ("subset" is all k X's) and the t-test

(or its square, the "F with 1 df" test, for the variable added last) is at the

other (subset involves just 1 X).
• The "overall F test" now involves the null

H0:  β1 = 0 and β2 = 0  ... and ... βk = 0

vs. the alternative hypothesis that at least one of them is non-zero:

Halt:  β1 ≠ 0 or β2 ≠ 0 ... ... or ...  βk ≠ 0

(includes possibility that all β's ≠ 0)

Chapter 8 of KKMN goes into these Partial F tests in some detail. I

summarized them in session 4 in 1999. They use the notation "full

model" and "reduced model".


