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Type III (Wald) Tests

Tests of partial effects, after the inclusion of the other effects in the

model. (“Variables Added Last”). The order in which variables are

“clicked” or listed in model does not matter, since the computation is

as though the variable in question were the last in the list.

The “Wald” refers to tests based on the Mean Squares. They are the

same as the Likelihood Ratio (LR) tests in the case of (measured)

Y’s analyzed using Gaussian Errors.

Collinearity DiagnosticsX'X matrix

(from SAS wording) When an explanatory variable is nearly a linear

combination of the other explanatory variables in the model, the

affected estimates are unstable and have high standard errors. This

problem is called collinearity or multi-collinearity.

If model has p variables, or p+1 terms including the interecept term,

the X'X (pronounced “X transpose X”)  matrix is a (p+1) × (p+1)

matrix; the entry in a particular row/column is the sum (over all n

observations) of the products of the two variables in question. It is

not of any great help in and of itself...however, its inverse is central

to inferences: the entries of this inverse matrix, multiplied by the

MeanSquare Error (Mean Square Residual) provides the estmated

variances and covariances of the p+1 parameter estimates.

Draper and Smith (Applied Regression Analysis, 3rd Edition, page

369) complain that this use of the term collinearity is too loose. To

them, there is collinearity when at least one of the X’s is linearly

depndent on (a linearcombination of) the other X’s. They make a

distinction between this situation of “exact” collinearity and the “near

dependency” in the usage by many modern authors. Unless

calculations are programmed very carefully,  near dependency (or

other ill-conditioned data --- such as having a variable in the model,

all of whose values are very close to zero) can create accuracy

problems because of the accumulation of rounding errors.

Moreover, and more serious statistically, (I’m quoting loosely from

Type I (Wald) Tests

Tests of sequential  incremental improvement as each effect is added

to the model (Variables Added in Order”). Order is order in which

variables are “clicked” or listed in model.
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Graybill and Iyer) the presence of multicollinearity, has the

following implications: results are highly sensitive to errors in the

sample data; resulting parameter estimates cannot be taken seriously,

even though overall predictions may be more accurate; and it is not

possible with the data at hand to separate the influences of the

predictors of the response. this will be reflected in large

standarderrors for the individual estimated parameter values

Whereas we may be able to find good prediction functions, we have

to choose arbitrarily from amomg several sets of nearly equally good

prediction functions. Knowledge related to the field of application

can often guide us in making a rational selection..

uncorrelated with all linear combinations of the other X’s in

the model.

VIF = 3 => tol. = 0.33 => variable in question has a

multiple R
2
 of 0.67 with the other X’s in the model.

VIF = 4 => tol. = 0.25 => multiple R
2
 of 0.75;

VIF = 5 => tol. = 0.20 => multiple R
2
 of 0.80;

VIF=10 => tol. = 0.90 => multiple R
2
 of 0.90 etc

But with which other  X’s ???

Entries in rows with high Condition

Indices give some clues..

Collinearity Diagnostics...

The Tolerance and Variance Inflation Factor (VIF)

are printed by INSIGHT on same line as each parameter

estimate Condition Index (printed if Collinearity Diagnostics

requested)
Tolerance = 1 - the R-square that results from the

regression of the the variable in question on the other X

variables in the model. If all X variables are orthogonal to

each other (ie have zero correlation with each other) then

their tolerances are 1. At the other extreme, if a variable is a

perfect linear combination of the others, its tolerance is zero.

Look for rows with condition indices above 100 (Graybill

and Iyer say an index above 30 is taken to indicate strong

collinearity).

In such rows (each row is a “principal axis”), examine the

“Variance Proportion” for each variable: the proportion is the

proportion of the variance in the variable that is “explained

by” the principal axis. Variables with “Variance Proportions”

of say > 0.70 in a row (principal axis) with a high condition

index are taken as highly collinear.

The Variance Inflation Factor (VIF) associated with a

particular X variable in a model is the reciprocal of the

Tolerance. One can think of it as the extra sample size

needed to estimate --- to the same precision -- the beta in

question, relative to that needed if the X in question were
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Estimated Cov(ariance) Matrix Plot of Partial Leverage Plots

The estimated covariance matrix of the p+1 parameters; the standard

errors (SE’s) of the p+1 parameters are the square roots of the p+1

variances given by the diagonal entries; the off diagonal entries are

the product of the SE’s of the two parameter estimates in question

and the correlation of the two estimates. These are useful if one

wished to compute the SE of a linear combination of two or more

parameter estimates, e.g.

(Called “Partial Regression Residual plots” if run as an option in

PROC REG in SAS Editor Window)

One for each X variable in the model...

Vertical Axis: Y residual after adjusting Y for other X’s in

model

i.e. Y - Yhat based on other X’s

Horizontal Axis: X residual after adjusting X for the other

X’s in model

i.e. X - Xhat based on other X’s

SE(b1 - b2)     =   sqrt{ Var[b1] + Var[b2] - 2 CoVar[b1 , b2] }

Estimated Corr(elation)  Matrix

The estimated correlation matrix of the p+1 parameters. The p+1

diagonal entries are all 1, reflecting the perfect correlation of an

estimate with itself!.; each off diagonal entry is the correlation of the

two parameter estimates in question.estimates. These are quite

helpful in that they indicate how “separable” are the two parameter

estimates, given the the sample size and the degree of collinearity in

the “X” data.

Used to assess strength and form of relationship between Y

and X after adjusting for other X’s [see earlier “Multiple

Regression as a series of simple regressions”]

For a particular X, the slope of the regression line of the

Partial Y residuals on the partial X residuals is none other

than the beta_hat of that X in the multiple regression with

this and the other X’s.. Also, this is a better way to decide

what to do next than to plot the regular Y residuals (from the

full model) against each X.

Residual plots

Residual by Predicted

Self Explanatory

Residual Normal QQ Plot

Residuals from Gaussian distribution==> plot close to straight line
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Note that all of the following quantities are at the
observation level ...  there are as many of them as there
are observations.

Residual

Observed Y minus Predicted Y

Residual Normal Quantile

The residuals are ranked from smallest (1) to largest (n). if they

were from a single Gaussian distribution, one would expect them to

be at approximately the (1/)n-th, (2/n)-th, ... (n/n)-th percentiles of

the corresponding Gaussian distribution. The Normal Quantile of

the i-th ordered residual is computed as the Z value corresponding to

the  fraction (i-3/8)/(n+1/4) of the distribution. The plot of the

observed versus the theoretical (expected) Normal Quantiles should

be roughly a straight line.
Hat diagonal

The hat (or leverage) value of an observation measures how typical

or atypical  the X values of the observation are. Typical (central)

observations have less potential influence on the fitted value;

conversely  atypical (extreme) observations have more influence.

The hat value is a measure of the distance -- in “X space” - between

the datapoint and the centroid (centre of gravity) of the X-space.

Standardized Residual

Residual scaled by a measure of its sampling variability. Residuals

associated with more extreme X data points have somewhat less

sampling variability (since the fitted line or plane is determined more

by -- and is thus closer to the Y values of -- the datapoints with

extreme X values). This standardization puts all residuals on the

same scale. The scaling is achieved by dividing the residual by {

RMSE times sqrt[1 - its hat or “leverage” value]}.

The hat value (leverage) is determined solely by the predictor

variables (the X’s) and is not affected by the response variable Y.

Thus it is a measure of the potential influence of an observation, and

can be calculated as soon as one knows the X values of all of the n

observations, and before one knows their associated Y values.
Studentized Residual

Since the RMSE in the denominator of the standardized residual was

obtained by summinmg all n residuals, including the one in

question, the standardized residual has a complicated distribution

Should worry about/investigate observations with hat values greater

than  2 times  # parameters / n.
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(for a t-ratio, the numerator and denominator have to be

independent). Moreover, if the observation in question is an

“outlier” with respect to its Y value, its residual will be large, and

will make the RMSE in the denominator of the standardized residual

too large, and may make the scaled residual too small to be noticed!

To avoid these problems, one can estimate the residual (and the

RMSE) from the model that does not include the observation in

question. The scaled residual so obtained is called a “studentized” or

“studentized deleted” or “jackknife” residual. It is sometimes

referred to as an “externally” studentized residual, since the scaling

uses a RMSE that is independent of the actual residual in the

numerator. In contrast, the standardized residual is sometimes

referred to as “internally” studentized, since the RMSE includes the

contribution from the residual in the numerator.

DFFitsS (DiFference in the FITted value --

S tandardized)

The influence of an individual observation can also be assessed by

examining the amount by which the predicted Y value for the

observation in question changes when the observation itself is

excluded from the analysis.  Again, it is a standardized measure,

with authors suggesting that absolute values greater than 2sqrt[p/n]

merit attention.

Dfbeta’s

 (Standardized) measures (1 per term in the model) of the effect of

the observation on the estimated regression coefficients. Values

above 2 indicate influential observations.

Cook’s D(istance)

A (standardized) measure of the amount by which the estimates of

the beta parameters [or the fitted values] change if the observation in

question is deleted froim the analysis. It is an amalgam of the hat

value or leverage (potential to influence) and the actual value of the

Y residual.

Some authors recommend examining those observations for which

Cook’s distance is greater than the median (50%) value of an F

variable with p and n-p degrees of freedom. See table A-10 in

KKMN.
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